JPH02259108A - Synthetic fiber excellent in alkali resistance and liquid holding property and production thereof - Google Patents

Synthetic fiber excellent in alkali resistance and liquid holding property and production thereof

Info

Publication number
JPH02259108A
JPH02259108A JP1076475A JP7647589A JPH02259108A JP H02259108 A JPH02259108 A JP H02259108A JP 1076475 A JP1076475 A JP 1076475A JP 7647589 A JP7647589 A JP 7647589A JP H02259108 A JPH02259108 A JP H02259108A
Authority
JP
Japan
Prior art keywords
weight
fiber
carboxylic acid
fibers
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076475A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hosako
宝迫 芳彦
Yasushi Yamaguchi
泰史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1076475A priority Critical patent/JPH02259108A/en
Publication of JPH02259108A publication Critical patent/JPH02259108A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain the subject fiber useful as a battery separator by mixing PVC with a carboxylic acid group-containing polymethyl methacrylate and polysulfone in a specific proportion, dissolving the resultant mixture in DMF, etc., and spinning the prepared spinning solution into a coagulation bath. CONSTITUTION:PVC having 800-2500 polymerization degree in an amount of 20-40wt.% is mixed with 20-65wt.% carboxylic acid group-containing polymethyl methacrylate and 15 to 40wt.% polysulfone so as to provide 2.4X10<-4> to 5.8X10<-4>mol/g content of the carboxyl acid groups. The resultant mixture is then dissolved and dispersed in a solvent selected from the group of dimethylacetamide, DMF, dimethyl sulfoxide and acetone and the prepared spinning solution is subsequently spun into a coagulation bath consisting of 20 to 60wt.% coagulant an 80-40wt.% same solvent as that in the spinning solution to afford the objective fiber having <=1.5wt.% weight loss of fiber after treatment thereof in a 30wt.% aqueous solution of KOH in a boiling state under ordinary pressure for 1hr and >=50wt.% liquid holding ratio.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、耐アルカリ性、保液性の要求されるバッテリ
ーセパレーターに有用な合成繊維およびその製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a synthetic fiber useful for battery separators that require alkali resistance and liquid retention properties, and a method for producing the same.

〈従来の技術〉 従来、密閉型アルカリ電池、例えばニッケルカドミウム
アルカリ電池は、カーボニルニッケル粉末を焼結して得
られたニッケル焼結基板の細孔中に活物質を含浸保持さ
せた極板を所定の大きさに切断した後、合成繊維の不織
布からなるセパレーターを介して渦巻き状に巻き回して
極板群を構成し、しかる後電池缶に収納して電解液を注
入し、密閉し、組み立てられる。
<Conventional technology> Conventionally, sealed alkaline batteries, such as nickel-cadmium alkaline batteries, have a nickel sintered substrate obtained by sintering carbonyl nickel powder, and an electrode plate in which an active material is impregnated and retained in the pores of the nickel sintered substrate. After cutting to size, they are wound spirally through a separator made of synthetic non-woven fabric to form a group of electrode plates, which are then placed in a battery can, injected with electrolyte, sealed and assembled. .

ここで用いられるセパレーターの材質は、ナイロン繊維
の不織布が一般的であった。しかしながら近年電池使用
温度の高温化傾向が高まるにつれて、セパレーターの材
質も高温における耐アルカリ性に優れたポリプロピレン
繊維の不織布へと変わりつつある。
The material of the separator used here is generally a nonwoven fabric made of nylon fibers. However, in recent years, as battery operating temperatures have tended to rise, the material for separators has been changing to nonwoven polypropylene fibers, which have excellent alkali resistance at high temperatures.

しかしながら、ポリプロピレン繊維の不織布からなるセ
パレーターは、ナイロン繊維不織布からなるセパレータ
ーに比べて高温における耐アルカリ性は優れているもの
の保液性が低いために、セパレーターの電解液保持性が
劣っている。このためポリプロピレン繊維不織布からな
るセパレーターを用いた電池は充放電を繰り返すとセパ
レーター中の電解液が減少して放電特性が低下してしま
い、最悪の場合には放電不能な状態になる。そこでナイ
ロン繊維とポリプロピレン繊維の混抄やポリプロピレン
繊維の界面活性剤処理等の表面改質が試みられているが
、前者は高温における耐アルカリ性、後者は保液性効果
の持続性の点で十分とはいえない。
However, a separator made of a non-woven fabric made of polypropylene fibers has better alkali resistance at high temperatures than a separator made of a non-woven fabric made of nylon fibers, but has a lower liquid retention property, so the electrolyte retention property of the separator is inferior. For this reason, when a battery using a separator made of a nonwoven polypropylene fiber fabric is repeatedly charged and discharged, the electrolyte in the separator decreases and the discharge characteristics deteriorate, and in the worst case, the battery becomes unable to discharge. Therefore, attempts have been made to modify the surface of nylon fibers and polypropylene fibers, such as by mixing nylon fibers with polypropylene fibers and by treating polypropylene fibers with surfactants. I can't say that.

この欠点を改良する目的で特開昭62−51150号公
報で、ポリプロピレン繊維を多孔質化することによって
繊維に保液性を持たせ電解液保持性に優れたセパレータ
ーを作成し、アルカリ蓄電池の充放電サイクルを向上せ
しめる方式が提案されている。この多孔質のポリプロピ
レン繊維はシリカ微粉末をポリプロピレンと過熱混練し
、射出成型を行なった後シリカ微粉末を超音波除去する
ことによって得られるが、この手法は繊維製造方法とし
ては工業的でなくさらに改良が望まれている。
In order to improve this drawback, Japanese Patent Application Laid-Open No. 62-51150 proposed a separator with excellent electrolyte retention properties by making polypropylene fibers porous, thereby creating a separator with excellent electrolyte retention properties. Methods have been proposed to improve the discharge cycle. This porous polypropylene fiber is obtained by superheating and kneading fine silica powder with polypropylene, performing injection molding, and then removing the fine silica powder with ultrasonic waves, but this method is not industrially suitable for fiber manufacturing. Improvements are desired.

〈発明が解決しようとする課題〉 本発明は、高温時における耐アルカリ性に優れ、しかも
高度な保液性を必要とするアルカリ蓄電池用のセパレー
ターに有用な合成繊維およびその製造法を提供すること
にある。
<Problems to be Solved by the Invention> The present invention aims to provide a synthetic fiber useful for separators for alkaline storage batteries, which have excellent alkali resistance at high temperatures and require a high level of liquid retention, and a method for producing the same. be.

〈課題を解決するための手段〉 本発明は、重合度800〜2500のポリ塩化ビニル(
PvC)20〜40重量%、カルボン酸基含有ポリメチ
ルメタクリレート(PMMA) 20〜65重量%およ
びポリサルホン(PSF) 15〜40重量%の組成か
らなり、繊維中のカルボン酸基の含有量が2.4 X 
10−4〜5.8 X 10−’ mol/gである繊
維であって、KOH30重量%水溶液中で常圧沸騰状態
で1時間処理後の繊維減量が1.5重量%以下、導水収
縮率が25%以下、さらに本文中に示す測定法による保
液率が50重量%以上であ・ることを特徴とする耐アル
カリ性、保液性に優れた合成繊維、および重合度800
〜2500のPvC20〜40重量%、カルボン酸基含
有PMMA20〜65置方%およびPSF15〜40重
量%をカルボン酸基の含有量が2.4×10−4〜5.
8 X’I O−’ mol/ gになるように混合し
ジメチルアセトアミド、ジメチルホルムアミド、ジメチ
ルスルホキシドおよびアセトンの群から選ばれる溶剤に
溶解分散させた紡糸原液を、凝固剤20〜60重量%お
よび紡糸原液と同じ溶剤80〜40重量%とからなる凝
固浴中に紡出することを特徴とする耐アルカリ性、保液
性に優れた合成繊維の製造法にある。
<Means for Solving the Problems> The present invention provides polyvinyl chloride (
PvC) 20 to 40% by weight, carboxylic acid group-containing polymethyl methacrylate (PMMA) 20 to 65% by weight, and polysulfone (PSF) 15 to 40% by weight, and the content of carboxylic acid groups in the fiber is 2. 4 X
10-4 to 5.8 x 10-' mol/g, the fiber loss after being treated in a 30 wt% KOH aqueous solution at normal pressure boiling for 1 hour is 1.5 wt% or less, and the water conduction shrinkage rate Synthetic fibers with excellent alkali resistance and liquid retention properties, characterized by having a liquid retention rate of 25% or less and a liquid retention rate of 50% or more by the measurement method shown in the text, and a polymerization degree of 800.
-2500 PvC 20-40% by weight, carboxylic acid group-containing PMMA 20-65% and PSF 15-40% by weight with a carboxylic acid group content of 2.4 x 10-4-5.
8 X'I O-' mol/g and dissolved and dispersed in a solvent selected from the group of dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and acetone, a spinning stock solution is mixed with 20 to 60% by weight of a coagulant and a spinning agent. The present invention provides a method for producing synthetic fibers having excellent alkali resistance and liquid retention properties, which is characterized by spinning into a coagulation bath containing 80 to 40% by weight of the same solvent as the stock solution.

本発明繊維の第一の要件は、PVC20〜40重量%、
カルボン酸基含有PMMΔ20〜65重量%およびPS
F15〜40重景%からなり置方らにカルボン酸基を2
.4X10−4〜5.8X10−4mol/g含有する
ことにある。
The first requirement for the fiber of the present invention is 20 to 40% by weight of PVC,
Carboxylic acid group-containing PMMΔ20-65% by weight and PS
It consists of F15 to 40% and contains 2 carboxylic acid groups.
.. The content is 4X10-4 to 5.8X10-4 mol/g.

pvcが20重量%未満では実用上十分な物性を有する
繊維を製造することが困難となり、またPvCが40重
量%を超えると耐アルカリ性が低下し、具体的にはKO
f130重量%水溶液中で常圧沸騰状態で1時間処理後
の繊維減量が1.5重量%を超える。
When PVC is less than 20% by weight, it becomes difficult to produce fibers with practically sufficient physical properties, and when PvC exceeds 40% by weight, alkali resistance decreases, and specifically, KO
The fiber loss after treatment in a 30% by weight f1 aqueous solution at normal pressure boiling for 1 hour exceeds 1.5% by weight.

カルボン酸基含有PMMAが65重量%を超えると繊維
物性の低下が起こり実用上好ましい物性をもった繊維に
することが不可能になる。
If the amount of carboxylic acid group-containing PMMA exceeds 65% by weight, the physical properties of the fiber will deteriorate, making it impossible to obtain a fiber with practically desirable physical properties.

PSFの含有量が15重量%未満では繊維の導水収縮率
が25%を超え、繊維物性としては好ましくない。また
PSFが40重置方を超えると繊維の強伸度が不十分と
なる。
If the content of PSF is less than 15% by weight, the water conduction shrinkage rate of the fiber will exceed 25%, which is not preferable in terms of fiber physical properties. Furthermore, if the PSF exceeds 40, the strength and elongation of the fibers will be insufficient.

繊維中のカルボン酸基の含有量は2.4X10−4〜5
.8 X 10−’ mol/ gであることが必要で
ある。カルボン酸基の含有量が2.4 X 10−’ 
mol/g未満では十分な保液率が得られず、具体的に
は保液率50重量%未満となる。逆にカルボン酸基の含
有量が5.8 X 10−’ mol/ gを超えI未 ると繊維の保液率ヂ向上するものの耐アルカリ性が低下
し、KOJI 30重量%水溶液中で常圧沸騰状態で1
時間処理後の繊維減量が1.5重量%を超える。
The content of carboxylic acid groups in the fiber is 2.4X10-4~5
.. It is necessary that the amount is 8 x 10-' mol/g. The content of carboxylic acid groups is 2.4 X 10-'
If it is less than mol/g, a sufficient liquid retention rate will not be obtained, specifically, the liquid retention rate will be less than 50% by weight. On the other hand, if the content of carboxylic acid groups exceeds 5.8 x 10-' mol/g, the liquid retention rate of the fiber improves, but the alkali resistance decreases, and the fiber cannot be boiled at normal pressure in a 30% by weight aqueous solution of KOJI. 1 in condition
Fiber loss after time treatment exceeds 1.5% by weight.

繊維中へのカルボン酸基の導入は、カルボン酸基含有ポ
リマーをPVC/PMMA/PSFとブレンドし湿式紡
糸するこによって達成される。しかしカルボン酸基含有
ポリマーは得られた繊維の耐アルカリ性を損なわないも
のである必要があり、さらに紡糸工程における工程通過
性を考慮すると紡糸溶媒に溶解または分散可能であるこ
とが重要である。好まし交い手法としてはPMMA自体
に必要量のカルボン酸基を含有させることであり、メチ
ルメタクリレートにカルボン酸基含有モノマー、たとえ
ば、アクリル酸、メタアクリル酸またはそれらの塩を共
重合させることに依ってカルボン酸基含有PMM^が得
られ、アクリル酸共重合の場合は3〜20重量%、メタ
アクリル酸の場合は3.5〜24重量%メチルメタクリ
レートに共重合させることが好ましい。
Introduction of carboxylic acid groups into the fibers is achieved by blending a carboxylic acid group-containing polymer with PVC/PMMA/PSF and wet spinning. However, the carboxylic acid group-containing polymer must be one that does not impair the alkali resistance of the obtained fibers, and furthermore, in consideration of process passability in the spinning process, it is important that it can be dissolved or dispersed in the spinning solvent. A preferred method is to make PMMA itself contain a required amount of carboxylic acid groups, and to copolymerize methyl methacrylate with a monomer containing a carboxylic acid group, such as acrylic acid, methacrylic acid, or a salt thereof. Therefore, carboxylic acid group-containing PMM^ is obtained, and in the case of acrylic acid copolymerization, it is preferable to copolymerize with 3 to 20% by weight, and in the case of methacrylic acid, to copolymerize with 3.5 to 24% by weight of methyl methacrylate.

使用するPvCポリマーの重合度は、800〜2500
で、重合度800未満では繊維物性、特に得られた繊維
に十分な強伸度を与えることができない、また重合度が
2500を超えると紡糸原液のゲル化が発生しやすくな
り、安定に繊維を製造することが困難になる。カルボン
酸基含有PMMA、 PSFについては特に重合度の規
定はないが、通常、フィルム、成型材料に使用されるも
のであればよい。
The degree of polymerization of the PvC polymer used is 800 to 2500.
If the degree of polymerization is less than 800, it will not be possible to impart sufficient strength and elongation to the fiber properties, and if the degree of polymerization exceeds 2,500, gelation of the spinning solution will easily occur, making it difficult to stably form the fiber. It becomes difficult to manufacture. There is no particular regulation regarding the degree of polymerization of carboxylic acid group-containing PMMA or PSF, but any polymer that is normally used for films and molding materials may be used.

また本発明に用いることのできるカルボン酸基を含有す
るPMMAは、メチルメタクリレート単独ポリマーのみ
を意味するものではなく、少量の可塑成分を含有するP
MMA系ポリマー全体を意味するものである。前述した
如く本発明に用いるPMMAとしては、適切なカルボン
酸基を含有しているが、その場合においても少量の可塑
成分を含有してもなんら問題はない。
Furthermore, PMMA containing a carboxylic acid group that can be used in the present invention does not mean only methyl methacrylate monopolymer, but PMMA containing a small amount of plastic component.
This refers to all MMA-based polymers. As mentioned above, PMMA used in the present invention contains an appropriate carboxylic acid group, but even in this case, there is no problem even if a small amount of plasticizing component is contained.

さらに本発明の繊維の組成は、pvc 、カルボン酸基
含有PMMA、、PSFに限られるものではなく、紡糸
原液の溶剤中でPvC、カルボン酸基含有PMMA、 
PSFに混合または分散し、繊維賦型可能なポリマーで
あれば組成物として加えることが可能であるが、その添
加量としては5重量%未満であることが好ましい。また
添加されるポリマーは耐アルカリ性を損なうものであっ
てはならない。
Furthermore, the composition of the fiber of the present invention is not limited to PVC, carboxylic acid group-containing PMMA, PSF, but PvC, carboxylic acid group-containing PMMA,
Any polymer that can be mixed or dispersed in PSF to form fibers can be added as a composition, but the amount added is preferably less than 5% by weight. Furthermore, the added polymer must not impair alkali resistance.

また耐光、耐熱安定剤等を少量添加することも可能であ
る。
It is also possible to add a small amount of light-resistant and heat-resistant stabilizers.

本発明の繊維は、湿式紡糸方式によって製造される。紡
糸原液の溶剤としては、PvC、カルボン酸基含有PM
MA、 PSFを溶解分散させる能力を有するものであ
れば、単一の溶剤または混合溶剤が使用可能である。こ
れらの溶剤としては、ジメチルアセトアミド、ジメチル
ホルムアミド、ジメチルスルホキシド、アセトンが挙げ
られるが、ジメチルアセトアミド、ジメチルホルムアミ
ドが有利に使用される。これらの溶剤にPvC、カルボ
ン酸基含有PMMA、 PSFを混合溶解分散し紡糸用
原液が調製されるが、紡糸原液は予めポリマーを混合し
溶剤に混合するか、または個々のポリマーを溶剤に熔解
した溶液を混合することによって得られる。紡糸原液の
50°Cにおける粘度は100〜2000ボイズ、好ま
しくは150〜1000ポイズとすることがよく、これ
らの値になるように原液固形分濃度が調製されるが、固
形分濃度はゲル化を紡糸する上で50重量%以下とする
ことが好ましい。
The fiber of the present invention is manufactured by a wet spinning method. As a solvent for the spinning dope, PvC, carboxylic acid group-containing PM
A single solvent or a mixed solvent can be used as long as it has the ability to dissolve and disperse MA and PSF. These solvents include dimethylacetamide, dimethylformamide, dimethylsulfoxide and acetone, with dimethylacetamide and dimethylformamide being advantageously used. A spinning stock solution is prepared by mixing, dissolving and dispersing PvC, carboxylic acid group-containing PMMA, and PSF in these solvents.The spinning stock solution is prepared by mixing polymers in advance and mixing them in a solvent, or by dissolving individual polymers in a solvent. Obtained by mixing solutions. The viscosity of the spinning stock solution at 50°C is often 100 to 2000 poise, preferably 150 to 1000 poise, and the solid content concentration of the stock solution is adjusted to these values. In spinning, it is preferable that the amount is 50% by weight or less.

得られた紡糸原液は、紡糸口金より凝固浴中に押し出さ
れ繊維に賦型される。紡糸口金の大きさは目標とする繊
維の太さに応じ適時選択される。凝固浴中の凝固剤とし
ては、ポリマーの非溶剤である水、アルコール等が使用
されるが工業的には水が最も好ましい。凝固浴は紡糸原
液に用いたと同じ溶剤と凝固剤との混合溶液からなり、
その混合比率は凝固剤20〜60重量%、溶剤80〜4
0重量%の組成であるのが望ましい。凝固剤の比率が2
0重量%未満になると凝固浴中に吐出される繊維が接着
を起こし、逆に凝固剤の比率が60重量%を超えると凝
固糸の接着はなくなるが、凝固糸中に多量の空隙が生じ
繊維としての適切な強伸度を与える上で必要な延伸性を
損なう。凝固浴の温度は特に規定はしないが、好ましく
は20〜40°Cで行なうのが望ましい。
The obtained spinning dope is extruded from a spinneret into a coagulation bath and shaped into fibers. The size of the spinneret is appropriately selected depending on the target thickness of the fiber. As the coagulant in the coagulation bath, water, alcohol, etc., which are non-solvents for the polymer, are used, but water is most preferred from an industrial standpoint. The coagulation bath consists of a mixed solution of the same solvent and coagulant used in the spinning stock solution.
The mixing ratio is 20-60% by weight of coagulant and 80-4% by weight of solvent.
A composition of 0% by weight is desirable. Coagulant ratio is 2
If the proportion of the coagulant is less than 0% by weight, the fibers discharged into the coagulation bath will adhere, whereas if the proportion of the coagulant exceeds 60% by weight, the coagulated filaments will not adhere, but a large amount of voids will form in the coagulated filaments, causing the fibers to stick together. This impairs the stretchability necessary to provide appropriate strength and elongation. Although the temperature of the coagulation bath is not particularly limited, it is preferably 20 to 40°C.

得られた凝固糸は、沸騰水中で延伸、洗浄され、更に必
要に応じ延伸、洗浄を繰り返すことによってより繊維と
しての適当な物性があたえられる。繊維は乾燥または未
乾燥のまま補集されバッテリーセパレーター用の紙、編
織物、不織布等のシートの原料として使用される。凝固
浴をでた未延伸糸の洗浄、延伸、乾燥方式は繊維中のポ
リマー組成に応じて適時最適な条件を選定することがで
きるが、生成した繊維の保液率を損なうものでなければ
特に制限されるものではない。
The obtained coagulated thread is stretched and washed in boiling water, and further stretched and washed as necessary to give it more suitable physical properties as a fiber. The fibers are collected dry or undried and used as raw materials for sheets such as paper for battery separators, knitted fabrics, and nonwoven fabrics. The method of washing, stretching, and drying the undrawn yarn after leaving the coagulation bath can be determined at the appropriate time depending on the polymer composition in the fiber, but it is especially important that the conditions do not impair the liquid retention rate of the produced fiber. There are no restrictions.

本発明の繊維は高温時における耐アルカリ性に優れた物
であり、耐アルカリ性として具体的には30重量%XO
H水溶液に浸せきし、常圧沸騰中1時間後の繊維減量が
1.5重量%以下であることが必要であり、この値は同
一手法により測定されるポリプロピレン繊維の値を下回
るものである。
The fiber of the present invention has excellent alkali resistance at high temperatures, and specifically, the alkali resistance is 30% by weight
It is necessary that the fiber loss after 1 hour of immersion in an H aqueous solution and boiling under normal pressure is 1.5% by weight or less, and this value is lower than the value of polypropylene fibers measured by the same method.

さらに優れたアルカリ電池用バッテリーセパレーターを
生成する繊維としては、優れた保液性を有することが必
要であり、具体的には繊維を脱イオン水中に24時間浸
せきし、IOCで10分間遠心脱水した後の繊維重量を
測定しくWI)、この繊維の乾燥重量(讐2)を測定し
、以下の式から算出される保液率が50重量%以上であ
ることが必要である。
Furthermore, in order to produce a superior battery separator for alkaline batteries, the fiber must have excellent liquid retention properties, and specifically, the fiber was soaked in deionized water for 24 hours and centrifuged for 10 minutes in an IOC. It is necessary that the liquid retention rate calculated from the following formula by measuring the dry weight of the fiber (width wi) and the dry weight of this fiber is 50% by weight or more.

本発明の繊維の断面形状は特に限定されるものではなく
、高温時における耐アルカリ性および保液性を損なうも
のでなければ種々選択が可能である。シート状成型物で
あるセパレーターの嵩を増し、保液性を高める目的で繊
維断面を円形から扁平または十字、Y字断面に変形し、
繊維間の空隙を増すことも有効であり、このような異型
断面化はシート状物であるセパレーターの保液性をより
高める効果を有する。また本発明の繊維の繊度は3デニ
ール以下、好ましくは2デニール以下とすることがよい
。このような細デニールとした繊維によって、より薄い
セパレーターの製造が可能となり、電池の小型化に適し
たセパレーターが提供される。セパレーターの薄化に伴
い、セパレーターを構成する繊維間の空隙が減少し、保
液性低下の要因となるが、本発明の繊維の如く、繊維そ
のものに高い保液性を有する場合、セパレーターの薄化
に伴う保液性の低下を効果的に補うことが可能である。
The cross-sectional shape of the fiber of the present invention is not particularly limited, and can be selected from various shapes as long as it does not impair alkali resistance and liquid retention properties at high temperatures. In order to increase the bulk of the separator, which is a sheet-like molded product, and improve its liquid retention properties, the fiber cross section is changed from circular to flat, cross, or Y-shaped.
It is also effective to increase the voids between the fibers, and such irregular cross-section has the effect of further increasing the liquid retention properties of the separator, which is a sheet-like material. Further, the fineness of the fiber of the present invention is preferably 3 deniers or less, preferably 2 deniers or less. Such fine denier fibers enable the production of thinner separators, providing separators suitable for downsizing batteries. As the separator becomes thinner, the voids between the fibers that make up the separator decrease, which causes a decrease in liquid retention.However, when the fibers themselves have high liquid retention, such as the fibers of the present invention, the separator becomes thinner. It is possible to effectively compensate for the decrease in liquid retention caused by

〈実施例〉 以下、本発明を実施例により説明する。<Example> The present invention will be explained below with reference to Examples.

実施例1 溶剤としてジメチルアセトアミドを用い、重合度110
0のPvCとメタアクリル酸(MAA)を10重量%共
重合したPMMA、 PSFを第1表に示す混合比率で
溶剤に溶解分散させ、紡糸原液をえた。この時の固形分
濃度は50°Cにおける粘度が200ボイズ付近になる
ように調製した。
Example 1 Using dimethylacetamide as a solvent, the degree of polymerization was 110.
PMMA and PSF, which are copolymerized with 0 PvC and 10% by weight of methacrylic acid (MAA), were dissolved and dispersed in a solvent at the mixing ratio shown in Table 1 to obtain a spinning stock solution. The solid content concentration at this time was adjusted so that the viscosity at 50°C was around 200 voids.

この紡糸原液をジメチルアセトアミド60重量%、脱イ
オン水40重量%、温度30°Cの凝固浴中へ吐出し、
未延伸糸を得た。この未延伸糸を湧水中で約3倍延伸を
行ない、さらに湧水中で洗浄を行なった後、繊度1.0
デニールの繊維を得た。得られた繊維の性能を第1表に
示した。
This spinning stock solution was discharged into a coagulation bath containing 60% by weight of dimethylacetamide and 40% by weight of deionized water at a temperature of 30°C.
An undrawn yarn was obtained. This undrawn yarn was stretched approximately 3 times in spring water, and after further washing in spring water, the yarn had a fineness of 1.0.
Obtained denier fiber. The performance of the obtained fibers is shown in Table 1.

第1表に示したKOI+処理後の減量および保液率は、
本文中に示した方法で処理し測定した値である。
The weight loss and liquid retention rate after KOI+ treatment shown in Table 1 are as follows:
This is a value processed and measured using the method shown in the text.

第1表に示すようにpvcの含有量が20重量%未満で
は十分な延伸性が得られず、紡糸不能となり、逆に40
重量%を超えると耐アルカリ性を損なう結果となる。
As shown in Table 1, if the PVC content is less than 20% by weight, sufficient stretchability cannot be obtained and spinning becomes impossible;
If it exceeds % by weight, the alkali resistance will be impaired.

実施例2 溶剤としてジメチルアセ1〜アミドを用い、PvCとM
AAIO重量%共重合PMMΔとPSFを組成比で30
150/20とし、pvcの重合度を第2表に示す様に
変更して、溶剤に溶解分散させ、紡糸原液をえた。
Example 2 Using dimethylacetamide as a solvent, PvC and M
AAIO weight% copolymerized PMMΔ and PSF at a composition ratio of 30
The polymerization degree of PVC was changed to 150/20 as shown in Table 2, and the mixture was dissolved and dispersed in a solvent to obtain a spinning dope.

これらの紡糸原液をジメチルアセトアミド60重量%、
脱イオン水40重量%、温度30°Cの凝固浴中へ吐出
し、未延伸糸を得た。この未延伸糸を湧水中で約3倍延
伸を行ない、さらに湧水中で洗浄を行なった後、繊度1
.0デニールの繊維を得た。また得られた繊維中のカル
ボン酸基の含有量は5.8 X 10−’ mol/ 
gである。更に、得られた繊維の性能を第2表に示した
These spinning stock solutions were mixed with 60% by weight of dimethylacetamide,
It was discharged into a coagulation bath containing 40% by weight of deionized water and a temperature of 30°C to obtain an undrawn yarn. This undrawn yarn was stretched approximately 3 times in spring water, and after further washing in spring water, the yarn had a fineness of 1
.. A fiber of 0 denier was obtained. The content of carboxylic acid groups in the obtained fibers was 5.8 x 10-' mol/
It is g. Furthermore, the performance of the obtained fibers is shown in Table 2.

第2表 実施例3 溶剤としてジメチルアセトアミドを用い、重合度110
0のpvcと1八10重量%共重合PMMA、PSP組
成が第3表に示すようにPSPの混合比率を変更して、
溶剤に熔解分散させ、紡糸原液をえた。
Table 2 Example 3 Using dimethylacetamide as a solvent, polymerization degree 110
0 pvc and 18 10% by weight copolymerized PMMA, PSP composition by changing the mixing ratio of PSP as shown in Table 3.
The mixture was dissolved and dispersed in a solvent to obtain a spinning stock solution.

これらの紡糸原液をジメチルアセトアミド60重量%、
脱イオン水40重量%、温度30″Cの凝固浴中へ吐出
し、未延伸糸を得た。この未延伸系を沸水中で約3倍延
伸を行ない、さらに沸水中で洗浄を行なった後、繊度1
.0デニールの繊維を得た。また得られた繊維中に含有
するカルボン酸基の量は5.8 X 10−’ mol
/ gであった。
These spinning stock solutions were mixed with 60% by weight of dimethylacetamide,
40% by weight of deionized water was discharged into a coagulation bath at a temperature of 30''C to obtain an undrawn yarn.This undrawn yarn was stretched approximately 3 times in boiling water, and further washed in boiling water. , fineness 1
.. A fiber of 0 denier was obtained. In addition, the amount of carboxylic acid groups contained in the obtained fiber was 5.8 x 10-' mol
/g.

得られた繊維の性能を第3表に示した。The performance of the obtained fibers is shown in Table 3.

第3表に示すようにPSFの含有量が15重量%未満に
なると繊維の清水収縮率が増加し熱安定性を損なう。逆
に40重量%を超えると繊維物性特に強度が低下し実用
に供さなくなる。
As shown in Table 3, when the PSF content is less than 15% by weight, the fresh water shrinkage rate of the fiber increases and thermal stability is impaired. On the other hand, if it exceeds 40% by weight, the physical properties of the fibers, particularly the strength, will deteriorate and the fibers will no longer be of practical use.

実施例4 ?容剤としてジメチルアセトアミドを用い、PvCとM
AA共重合PMMA、、PSFを組成が30150/2
0とし、またPMMA中のMAAの共重合量を変更し得
られる繊維中のカルボン酸基の含有量を調製して、溶剤
に溶解分散させ、紡糸原液をえた。
Example 4? Using dimethylacetamide as a container, PvC and M
AA copolymer PMMA, PSF composition is 30150/2
The content of carboxylic acid groups in the resulting fiber was adjusted by changing the copolymerization amount of MAA in PMMA, and the resulting fiber was dissolved and dispersed in a solvent to obtain a spinning dope.

これらの紡糸原液をジメチルアセトアミド60重量%、
脱イオン水40重量%、温度30°Cの凝固浴中へ吐出
し、未延伸糸を得た。この未延伸糸を湧水中で約3倍延
伸を行ない、さらに湧水中で洗浄を行なった後、繊度1
、Oデニールの繊維を得た。
These spinning stock solutions were mixed with 60% by weight of dimethylacetamide,
It was discharged into a coagulation bath containing 40% by weight of deionized water and a temperature of 30°C to obtain an undrawn yarn. This undrawn yarn was stretched approximately 3 times in spring water, and after further washing in spring water, the yarn had a fineness of 1
, O denier fibers were obtained.

得られた繊維の性能を第4表に示した。Table 4 shows the performance of the obtained fibers.

第4表に示すように繊維中のカルボン酸基の含有量が2
.4 X 10−’ mol/ g未満では十分な保液
性が得られず、具体的には保液率が50重量%未満とな
る。また逆に5.8X10−’ mol/gを超えると
繊維の保液性は増大するものの耐アルカリ性を損なう結
果となる。
As shown in Table 4, the content of carboxylic acid groups in the fiber is 2
.. If it is less than 4 x 10-' mol/g, sufficient liquid retention will not be obtained, and specifically, the liquid retention rate will be less than 50% by weight. On the other hand, if it exceeds 5.8 x 10-' mol/g, the liquid retention property of the fibers will increase, but the alkali resistance will be impaired.

実施例5 溶剤としてジメチルアセトアミドを用い、重合度110
0(7)PVC30重量%、MAAIO重量%共重合P
MMA50重量%、PSF20重量%の混合比率で溶剤
に溶解分散させ、固形分濃度が35重量%になるように
紡糸原液を調製した。この時の紡糸原液の50°Cにお
ける粘度は204ボイズであった。
Example 5 Using dimethylacetamide as a solvent, the degree of polymerization was 110.
0(7) 30% by weight of PVC, % by weight of MAAIO copolymerized P
A spinning dope was prepared by dissolving and dispersing in a solvent at a mixing ratio of 50% by weight of MMA and 20% by weight of PSF so that the solid content concentration was 35% by weight. The viscosity of the spinning dope at this time at 50°C was 204 voids.

この紡糸原液を第5表にしめず混合比率からなるジメチ
ルアセトアミドと脱イオン水の凝固浴中へ吐出し、未延
伸糸を得た。この未延伸糸を沸水中で約3倍延伸を行な
い、さらに沸水中で洗浄を行い第5表に示すような繊維
を得た。
This spinning stock solution was discharged into a coagulation bath of dimethylacetamide and deionized water having the mixing ratio shown in Table 5 to obtain an undrawn yarn. This undrawn yarn was drawn approximately 3 times in boiling water and further washed in boiling water to obtain fibers shown in Table 5.

実施例6 実施例1 、No、 1で得られた繊維を6胚に力・ン
トした短繊維85重量%とバインダー繊維としてカット
長3InI11のポリエチレン繊維15重量%とを混合
抄紙し、熱圧着により見付50 g/rtTの不織布を
得た。この不織布の耐アルカリ性およびKOH30重量
%水溶液の保液率を測定した。
Example 6 A paper was made by mixing 85% by weight of short fibers obtained by compressing the fibers obtained in Example 1, No. 1 into 6 embryos, and 15% by weight of polyethylene fibers with a cut length of 3InI11 as binder fibers, and bonding them by thermocompression. A nonwoven fabric with a weight of 50 g/rtT was obtained. The alkali resistance of this nonwoven fabric and the liquid retention rate of a 30% by weight aqueous KOH solution were measured.

この結果第6表Gこ示した様に市販のノ\・ンテリーセ
パレーター不織布と比べて優れた電解液保持性を有する
ことがわかった。
As a result, as shown in Table 6 G, it was found that the electrolyte retaining property was superior to that of commercially available nonwoven fabrics.

第6表 なお、以上の実施例における保液率は下記の測定方式で
示す評価法で行なった。
Table 6 Note that the liquid retention rates in the above examples were evaluated using the evaluation method shown below.

KOI+水溶液の保液率(重量%)評価法不織布の任意
の部分より5 cm X 5 cmの試験片を3枚切り
出し、秤量(旧)する。この試験片をKOH30重量%
水溶液(20°C)に1時間浸せき後、10分液滴を切
り重量(wi)を測定し、以下の式より算出した。
Evaluation method for liquid retention rate (wt%) of KOI + aqueous solution: Cut out three test pieces of 5 cm x 5 cm from any part of the nonwoven fabric and weigh them (old). This test piece was mixed with KOH 30% by weight.
After being immersed in an aqueous solution (20° C.) for 1 hour, the droplet was cut off for 10 minutes, the weight (wi) was measured, and the weight (wi) was calculated using the following formula.

〈発明の効果〉<Effect of the invention>

Claims (2)

【特許請求の範囲】[Claims] (1) 重合度800〜2500のポリ塩化ビニル20
〜40重量%、カルボン酸基含有ポリメチルメタクリレ
ート20〜65重量%およびポリサルホン15〜40重
量%の組成からなり、繊維中のカルボン酸基の含有量が
2.4×10^−^4〜5.8×10^−^4mol/
gである繊維であって、KOH30重量%水溶液中で常
圧沸騰状態で1時間処理後の繊維減量が1.5重量%以
下、さらに本文中に示す測定法による保液率が50重量
%以上であることを特徴とする耐アルカリ性、保液性に
優れた合成繊維。
(1) Polyvinyl chloride 20 with a degree of polymerization of 800 to 2500
-40% by weight, 20-65% by weight of carboxylic acid group-containing polymethyl methacrylate, and 15-40% by weight of polysulfone, and the content of carboxylic acid groups in the fiber is 2.4 x 10^-^4-5 .8×10^-^4mol/
g, which has a fiber loss of 1.5% by weight or less after being treated in a 30% by weight KOH aqueous solution at normal pressure boiling for 1 hour, and has a liquid retention rate of 50% by weight or more by the measurement method shown in the text. A synthetic fiber with excellent alkali resistance and liquid retention properties.
(2) 重合度800〜2500のポリ塩化ビニル20
〜40重量%、カルボン酸基含有ポリメチルメタクリレ
ート20〜65重量%およびポリサルホン15〜40重
量%をカルボン酸基の含有量が2.4×10^−^4〜
5.8×10^−^4mol/gになるように混合しジ
メチルアセトアミド、ジメチルホルムアミド、ジメチル
スルホキシドおよびアセトンの群から選ばれる溶剤に溶
解分散させた紡糸原液を、凝固剤20〜60重量%およ
び紡糸原液と同じ溶剤80〜40重量%とからなる凝固
浴中に紡出することを特徴とする耐アルカリ性、保液性
に優れた合成繊維の製造法。
(2) Polyvinyl chloride 20 with a degree of polymerization of 800 to 2500
~40% by weight, 20~65% by weight of carboxylic acid group-containing polymethyl methacrylate and 15~40% by weight of polysulfone, with a content of carboxylic acid groups of 2.4 x 10^-^4 ~
A spinning solution prepared by mixing 5.8 x 10^-^4 mol/g and dissolving and dispersing it in a solvent selected from the group of dimethylacetamide, dimethylformamide, dimethyl sulfoxide and acetone is mixed with 20 to 60% by weight of coagulant and A method for producing synthetic fibers having excellent alkali resistance and liquid retention properties, which comprises spinning the fibers into a coagulation bath containing 80 to 40% by weight of the same solvent as the spinning dope.
JP1076475A 1989-03-30 1989-03-30 Synthetic fiber excellent in alkali resistance and liquid holding property and production thereof Pending JPH02259108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076475A JPH02259108A (en) 1989-03-30 1989-03-30 Synthetic fiber excellent in alkali resistance and liquid holding property and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076475A JPH02259108A (en) 1989-03-30 1989-03-30 Synthetic fiber excellent in alkali resistance and liquid holding property and production thereof

Publications (1)

Publication Number Publication Date
JPH02259108A true JPH02259108A (en) 1990-10-19

Family

ID=13606211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076475A Pending JPH02259108A (en) 1989-03-30 1989-03-30 Synthetic fiber excellent in alkali resistance and liquid holding property and production thereof

Country Status (1)

Country Link
JP (1) JPH02259108A (en)

Similar Documents

Publication Publication Date Title
US3047456A (en) Manufacture of paper products from fibers wet spun from polymer blends
CN104630923A (en) Method for preparing carbon nano tube modified polyacrylonitrile fibers with solution in-situ polymerization technology
US5202183A (en) Alkali-resistant synthetic fiber
JP2021105244A (en) High-performance fiber and dope used in manufacturing of the fiber
EP0438598A1 (en) Porous fiber and production thereof
US3322611A (en) Porous fibers and processes of preparing same
KR100636851B1 (en) Acrylic Copolymer Composition and Manufacturing Method of Spinning Solution thereof
KR101100299B1 (en) Hydrophilic non-woven fabric comprising homogeneous mixture of polypropylene and hydrophilic polymer and method for preparing same
JPS5818444B2 (en) Microporous acrylic fiber with improved water absorption
JPH02259108A (en) Synthetic fiber excellent in alkali resistance and liquid holding property and production thereof
JPH02259189A (en) Sheet-like formed product with high alkali resistance
JPH03808A (en) Synthetic fiber having excellent alkali resistance and production thereof
JP4324891B2 (en) Sheet material
JPH0247305A (en) Synthetic fiber having alkali resistance and liquid-retaining property and production thereof
JP2729656B2 (en) Manufacturing method of synthetic fiber for battery separator with excellent alkali resistance and strength
JPH0226916A (en) Synthetic fiber excellent in alkali resistance and liquid retentivity and production thereof
JP3281014B2 (en) Method for producing hydrophilic polymer alloy and method for producing porous membrane comprising hydrophilic polymer alloy
JP2908083B2 (en) Polyolefin fiber with durable hydrophilicity
JPH01132820A (en) Novel synthetic fiber having excellent alkali resistance
JP2000133237A (en) Cell separator and cell using same
KR950002814B1 (en) Process for the production of non-drawing ultrafine acrylic fibers
US3037240A (en) Method and apparatus for manufactureing shaped articles from solutions of acrylonitrile polymers and copolymers
Qin et al. Relation between microporous structure of PAC/AS blend fibers and sequence distribution of AS copolymers
JPH06234899A (en) Hydrophilic polymer alloy, porous membrane and fiber from the polymer alloy and production process thereof
US3698994A (en) Acrylic synthetic fibers having improved properties and process for producing the same