JPH02258500A - Evaporative heat exchanger - Google Patents

Evaporative heat exchanger

Info

Publication number
JPH02258500A
JPH02258500A JP1078612A JP7861289A JPH02258500A JP H02258500 A JPH02258500 A JP H02258500A JP 1078612 A JP1078612 A JP 1078612A JP 7861289 A JP7861289 A JP 7861289A JP H02258500 A JPH02258500 A JP H02258500A
Authority
JP
Japan
Prior art keywords
medium
heat exchanger
cooling medium
heat exchange
exchange section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078612A
Other languages
Japanese (ja)
Inventor
Kokichi Furuhama
古浜 功吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1078612A priority Critical patent/JPH02258500A/en
Publication of JPH02258500A publication Critical patent/JPH02258500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat exchanger efficiency in an evaporative heat exchanger used for space and the like by disposing a first heat exchanger part provided with a cooling medium flow passage and a cooled medium flow passage adjoiningly at the periphery of an approximately cylindrical second heat exchanger part. CONSTITUTION:This evaporative heat exchanger 1 is formed of a first and a second heat exchanger parts 3, 5, and the first heat exchanger part 3 is formed by providing a cooled medium passage 9 in which a cooled medium (a) flows along the periphery of a first cooling medium passage 7 in which a first cooling medium bb flows, interposing a bulkhead 11. The second heat exchanger part 5 is disposed inside the first heat exchanger part 3 and provided with a cooled medium passage 23 in which the cooled medium (a) flows along the periphery of a cylindrical container 21 as well as a spray nozzle 25 for spraying a second cooling medium (b) above the container 21. The container 21 and the passage 23 are partitioned by a cylinder bulkhead 27. The first cooling medium passage 7 is formed of plural passages approximately in the spiral form, and press the first cooling medium bb to the bulkhead 11 by the centrifugal action.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、蒸発熱交換器に係り、特に宇宙軌道上のよ
うな微小重力環境下で用いる蒸発熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an evaporative heat exchanger, and particularly to an evaporative heat exchanger used in a microgravity environment such as in a space orbit.

(従来の技術) 衛星や宇宙ステーション等の宇宙軌道上装置内で発生す
る熱は、宇宙空間へ排熱する必要がある。この排熱手段
として従来放熱板が多く利用されるが、場合によっては
放熱板が使用不可能であったり、放熱板による放熱量が
要求排熱ω以下になることがある。そのような状況では
放熱板以外の可熱手段が必要となり、その中の一つの有
力な排熱手段として冷lJl媒体の蒸発潜熱を利用した
蒸発熱交換器がある。しかし、蒸発熱交換器内では冷I
n媒体の気相と液相が混在した状態になることが多く、
宇宙軌道上のJ:つな微小重力環境下では地上機器とし
て使用されている蒸発熱交換器のうち多くの形式のもの
が使用困難になってしよう、。
(Prior Art) Heat generated in space orbit devices such as satellites and space stations needs to be exhausted to outer space. Conventionally, a heat sink is often used as a means for discharging heat, but in some cases, the heat sink cannot be used, or the amount of heat dissipated by the heat sink may be less than the required exhaust heat ω. In such a situation, a heat generating means other than a heat sink is required, and one effective heat exhausting means is an evaporative heat exchanger that utilizes the latent heat of vaporization of a cold lJl medium. However, in the evaporative heat exchanger, the cold I
In many cases, the gas phase and liquid phase of the medium are mixed,
In the microgravity environment in space orbit, many types of evaporative heat exchangers used as ground equipment will become difficult to use.

微小重力環境下において比較的容易に使用できる形式と
しては、冷却媒体を噴霧する「フラッシュ蒸発熱交換器
」、冷却媒体を高速で細管内を流す「高速強制対流蒸発
交換器11表面張力により気液分離する「ウィック付き
蒸発熱交換器」等がある。
Types that can be used relatively easily in a microgravity environment include the "flash evaporative heat exchanger" that sprays the cooling medium, and the "high-speed forced convection evaporative exchanger 11" that flows the cooling medium at high speed through thin tubes. There are "evaporative heat exchangers with wicks" that separate the heat.

ところで、例えば米国のスペースシャトルのような宇宙
往還dでは様体の一部を開いて放熱板として使用するが
、上昇及び帰還ときには放熱板を開くことができない。
By the way, for example, during a space shuttle like the US Space Shuttle, a part of the body is opened and used as a heat sink, but the heat sink cannot be opened during ascent and return.

このため、上d及び帰還時には放熱板以外の排熱手段が
必要となり、スペースシトトルでは蒸発熱交換器が使用
されている。
For this reason, a heat exhausting means other than a heat sink is required at the time of up-d and return, and an evaporative heat exchanger is used in the space shuttle.

このスペースシャトルで使用された蒸発熱交換器と同形
式の従来の蒸発熱交換器としては、例えば第5図に示す
ようなものがある。
An example of a conventional evaporative heat exchanger similar to the evaporative heat exchanger used in the Space Shuttle is shown in FIG.

第5図に示す蒸発熱交換器は円筒形の容器101の外側
に被冷却媒体aが流れる流路103が設けられており、
前記容器101の上方には冷W媒体すを噴霧する噴霧ノ
ズル105が設けられ、また、前記容器101と流路1
03とは円筒隔壁107で仕切られている。そして、冷
却媒体すは噴霧ノズル105から容器101内に液相の
状態で噴霧され、容器101内の飽和温度に略等しい温
度で容器101の円筒隔壁107の内面に衝突し、円筒
隔壁107を介して被冷却媒体aから熱を奪い蒸発する
。蒸発して気相となった冷却媒体])は容器101の下
方に設(プられた蒸気出口109から出口配管に排出さ
れる。
The evaporative heat exchanger shown in FIG. 5 is provided with a flow path 103 on the outside of a cylindrical container 101 through which the medium to be cooled a flows.
A spray nozzle 105 for spraying a cold W medium is provided above the container 101, and a spray nozzle 105 is provided above the container 101.
03 by a cylindrical partition wall 107. The cooling medium is then sprayed in a liquid phase into the container 101 from the spray nozzle 105, collides with the inner surface of the cylindrical partition wall 107 of the container 101 at a temperature approximately equal to the saturation temperature in the container 101, and is sprayed through the cylindrical partition wall 107. The medium to be cooled removes heat from the medium a and evaporates. The cooling medium which has evaporated into a gas phase is discharged from a vapor outlet 109 provided below the container 101 to an outlet pipe.

方、被冷却媒体aは入口ヘッダ111から流路103に
供給され、円筒隔壁107を介して冷in媒体すと熱交
換し、冷却されて出口ヘッダ113から蒸発熱交換器の
外へ取出される。
On the other hand, the medium to be cooled a is supplied from the inlet header 111 to the flow path 103, exchanges heat with the cooling medium via the cylindrical partition wall 107, is cooled, and is taken out of the evaporative heat exchanger from the outlet header 113. .

このような蒸発熱交換器では、被冷却媒体aは流路10
3に沿って徐々に温度が低下J−るが冷却媒体すは円筒
隔壁107上のいずれの地点においても略等しい温度に
なっている。従って、被冷却媒体aと冷却媒体すは円筒
隔壁107の各地点で温度差が異なる。すなわち、被冷
却媒体aが供給される入口ヘッダ111に近い地点はど
温度差が大きくなる。このため熱交換器にも場所によっ
て大きな差が生じ、熱交換器としての効率が著しく低下
する。また、冷却媒体すの温度は被冷却媒体aの出口温
度よりも低いので被冷却媒体aの入口ヘッダ111付近
では、被冷却媒体aと冷却媒体すとの間の温度差が大き
くなり過ぎて冷W媒vAbの液滴が円筒隔壁107から
離脱さぜられ、蒸発熱交換器の性能が更に低下すること
がある等の問題点があった。
In such an evaporative heat exchanger, the medium a to be cooled flows through the flow path 10.
Although the temperature gradually decreases along the cylindrical partition wall 107, the temperature of the cooling medium is approximately the same at any point on the cylindrical partition wall 107. Therefore, the temperature difference between the cooled medium a and the coolant medium differs at each point on the cylindrical partition wall 107. That is, the temperature difference becomes larger at a point near the inlet header 111 to which the medium to be cooled a is supplied. For this reason, there are large differences in the heat exchanger depending on the location, and the efficiency of the heat exchanger is significantly reduced. In addition, since the temperature of the cooling medium A is lower than the outlet temperature of the cooling medium A, the temperature difference between the cooling medium A and the cooling medium A becomes too large near the inlet header 111 of the cooling medium A. There were problems such as droplets of the W medium vAb being separated from the cylindrical partition wall 107 and causing further deterioration of the performance of the evaporative heat exchanger.

これに対し、第5図に示した従来の蒸発熱交換器を複数
台用いてそれらを被冷却媒体aが各急発交換器を順番に
流れるように接続し、冷却媒体すの温度も各蒸発熱交換
器毎に変える。という方法がζえられるが、この場合に
は円筒形の容1M101が?!12数個並ぶことになり
、複数の蒸発熱交換器全体が占める体積が大きくなる。
In contrast, by using a plurality of conventional evaporative heat exchangers shown in Fig. 5 and connecting them so that the medium to be cooled flows through each sudden exchanger in turn, the temperature of the cooling medium a can be changed for each evaporator. Change for each heat exchanger. This method can be considered, but in this case, the cylindrical volume 1M101? ! Twelve or more evaporative heat exchangers are lined up, and the volume occupied by the plurality of evaporative heat exchangers becomes large.

衛星や宇宙往還はのような限られた空間を利用する宇宙
軌道上装置の搭載機器としては、体積の増加は大きな欠
点であり、時には致命的ともなりかねないので実用性が
極めて小さい。
As a device mounted on a space orbit device that uses limited space such as a satellite or a space shuttle, an increase in volume is a major drawback and can sometimes be fatal, making it extremely impractical.

(発明が解決しようとする課題) このように、従来の微小重力環境下において有効な熱交
換器は、熱交換効率を上げようとするときには大型化す
る恐れがあった。
(Problems to be Solved by the Invention) As described above, conventional heat exchangers that are effective in a microgravity environment have the risk of becoming larger when trying to increase heat exchange efficiency.

そこでこの発明は、微小重力環境下において高い熱交換
効率を有し、かつ小へ2に構成することができる蒸発熱
交換器の提供を目的とする。
Therefore, an object of the present invention is to provide an evaporative heat exchanger that has high heat exchange efficiency in a microgravity environment and can be configured into two small units.

[発明の(Iが成1 (課題を解決するための手段) 上記目的を達成するためにこの発明は、冷却媒体と液冷
1」媒体とが隔壁を介して接触し、前記冷却媒体と前記
液冷!D媒体が熱交換し、前記冷却媒体の全流Gあるい
は一部流帛が液相から気相へ変化する蒸発熱交換器にお
いて、前記冷却媒体と前記被冷却媒体との熱交換部が第
1熱交換部ど第2熱交換部とに分割され、前記第2熱交
換部を筒形に形成し、前記第1熱交換部を前記冷71]
TR体が流れる流路と前記被冷FA媒体が流れる流路お
よび両流路間の隔壁とから形成すると共に該第1熱交換
部を前記第2熱交換部の外周に冶って設置して蒸発熱交
換器を構成した。
[Means for Solving the Problems of the Invention] In order to achieve the above object, the present invention provides a method in which a cooling medium and a liquid cooling medium are in contact with each other through a partition wall, and the cooling medium and the liquid cooling medium are in contact with each other through a partition wall. In an evaporative heat exchanger in which a liquid cooling!D medium exchanges heat and the entire flow G or a part of the flow of the cooling medium changes from a liquid phase to a gas phase, a heat exchange section between the cooling medium and the medium to be cooled. is divided into a first heat exchange section and a second heat exchange section, the second heat exchange section is formed into a cylindrical shape, and the first heat exchange section is formed into the cold 71].
The first heat exchange section is formed by a flow path through which the TR body flows, a flow path through which the cooled FA medium flows, and a partition wall between the two flow paths, and the first heat exchange section is installed around the outer periphery of the second heat exchange section. An evaporative heat exchanger was constructed.

(作用) 上記の構成によれば、第1熱交換部におよび第2熱交換
部によって熱交換が行なわれるので蒸発熱交換全体の熱
交換効率を向上させることができ、しかも、蒸発熱交換
器の体積を減少せしめ小型化することができる。
(Function) According to the above configuration, heat exchange is performed by the first heat exchange section and the second heat exchange section, so that the heat exchange efficiency of the entire evaporative heat exchange can be improved. It is possible to reduce the volume and downsize.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明の一実施例係る蒸発熱交換器の縦断面
説明図、第2図は第1図の平面図を示すものである。
FIG. 1 is an explanatory longitudinal cross-sectional view of an evaporative heat exchanger according to an embodiment of the present invention, and FIG. 2 is a plan view of FIG. 1.

この蒸発熱交換器1は、第1熱交換部3と第2熱交換部
5とから構成されており、第1熱交換部3の内側に第2
熱交換部5が配置されている。
The evaporative heat exchanger 1 includes a first heat exchange section 3 and a second heat exchange section 5.
A heat exchange section 5 is arranged.

前記第1熱交換部3は、第1冷却媒体bbが流れる第1
冷却媒体流路7の外周に沿って被冷却媒体aが流れる被
冷却媒体流路9が設けられ、両流路7.9を隔壁11で
仕切って構成されている。前記′PSl冷FiI媒体流
路7の入口と出口にはそれぞれ第1冷却媒体入ロヘツダ
13と第1冷却媒体出ロヘツダ15とが設(′lられて
おり、また前記液冷W媒体流路9の入口と出口には被冷
却媒体入口ヘッダ17と被冷却媒体出口ヘッダ19どが
設(ブられている。
The first heat exchange section 3 includes a first heat exchange section 3 through which the first cooling medium bb flows.
A cooled medium flow path 9 through which the cooled medium a flows is provided along the outer periphery of the coolant flow path 7, and both flow paths 7.9 are partitioned off by a partition wall 11. A first coolant inlet header 13 and a first coolant outlet header 15 are provided at the inlet and outlet of the 'PSl cold FiI medium flow path 7, respectively. A cooled medium inlet header 17 and a cooled medium outlet header 19 are installed at the inlet and outlet of the coolant.

この実施例にお番〕る前記第1冷却媒体流路7は第3図
に示すように、複数の流路7a、7b・・・から形成さ
れ、さらに、各流路7a、7b・・・を略螺旋状に形成
している。このように第1冷却媒体流路7を形成するこ
とにより、第1冷却媒体bbに遠心力が作用し、液相が
隔壁11に押し付けられて隔壁11上での熱伝達が促進
される。
As shown in FIG. 3, the first cooling medium flow path 7 according to this embodiment is formed of a plurality of flow paths 7a, 7b, . . . is formed into a substantially spiral shape. By forming the first cooling medium flow path 7 in this manner, centrifugal force acts on the first cooling medium bb, the liquid phase is pressed against the partition wall 11, and heat transfer on the partition wall 11 is promoted.

前記第2熱交換部5は前記第1熱交換部3の内側に配置
されており、従来例と同様に円筒形の容器21の外周に
沿って液冷」媒体aが流れる被冷却媒体流路23が設り
られ、また、容器21の上方には第2冷却媒体すを噴霧
する噴霧ノズル25が設けられている。そして、容器2
1と液冷TA媒体流路23とは円筒隔壁27で仕切られ
ている。
The second heat exchange section 5 is disposed inside the first heat exchange section 3, and is a cooled medium flow path in which the liquid cooling medium a flows along the outer periphery of the cylindrical container 21, similar to the conventional example. 23 is provided above the container 21, and a spray nozzle 25 for spraying the second cooling medium is provided above the container 21. And container 2
1 and the liquid-cooled TA medium flow path 23 are separated by a cylindrical partition wall 27.

前記被冷却媒体流路23の入口と出口にはそれぞれ被冷
却媒体入口ヘッダ29と被冷却媒体出口ヘッダ31が設
けられており、前記被冷却媒体入口ヘッダ29は接続管
33を介して第1熱交換部3の被冷却媒体流路9の出口
ヘッダ19に接続されている。また、容器21の下方に
は蒸気出口35が設けられている。
A cooled medium inlet header 29 and a cooled medium outlet header 31 are provided at the inlet and outlet of the cooled medium flow path 23, respectively. It is connected to the outlet header 19 of the cooled medium flow path 9 of the exchange section 3 . Further, a steam outlet 35 is provided below the container 21.

つぎに上記一実施例の作用について)ホベる。Next, let's talk about the operation of the above embodiment.

被冷却媒体aは第1熱交換部3の被冷却媒体入口ヘッダ
17から被冷却媒体流路9に入り該流路9を流れる間に
隔壁11を介して第1冷却媒体流路7を流れる第1冷却
媒体bbと熱交換をし、冷却されて被冷却媒体出口ヘッ
ダ19から接続管33を通って第2熱交換部5の被冷却
媒体入口ヘッダ2つに入る。
The cooled medium a enters the cooled medium flow path 9 from the cooled medium inlet header 17 of the first heat exchange section 3 and flows through the first coolant flow path 7 via the partition wall 11 while flowing through the flow path 9. It exchanges heat with the first cooling medium bb, is cooled, and enters the two cooling medium inlet headers of the second heat exchange section 5 through the connecting pipe 33 from the cooling medium outlet header 19.

方、第1冷fA媒体bbは第1冷却媒体入ロヘツダ13
から第1冷却媒体流路7に入り、同流路7の入口に近い
地点で蒸発を開始し、隔壁11を介して被冷却媒体流路
9を流れる液冷IJ媒体aから熱を奪って蒸発を続け、
同流路7の出口に近い地点では気相の割合の大きい気液
二相流あるいは気相の単相流となり、第1冷却媒体出ロ
ヘツダ15から第1熱交換部3の外部へ排出される。
On the other hand, the first cooling fA medium bb is connected to the first cooling medium inlet header 13.
The liquid coolant enters the first cooling medium flow path 7 and starts evaporating at a point near the entrance of the flow path 7, and evaporates by taking heat from the liquid cooling IJ medium a flowing in the cooled medium flow path 9 via the partition wall 11. Continue,
At a point near the outlet of the flow path 7, the flow becomes a gas-liquid two-phase flow with a large proportion of the gas phase or a single-phase flow of the gas phase, and is discharged from the first cooling medium outlet header 15 to the outside of the first heat exchange section 3. .

このようにして被冷却媒体aを冷却するとき第1冷却媒
体流路7内における第1冷却媒体bbは大部分が気液二
相流であり、該流路7内の圧力10失によって流れ方向
に減圧し、飽和圧力の低減により飽和温度すなわち第1
冷却媒体bbの温度も低下する。従って、特に水のよう
な冷却媒体では、飽和圧力の低下に対する飽和温度の低
下が顕著であるので、第1図に示ずように第1冷却媒体
流路7内の第1冷却媒体bbと被冷却媒体流路9内の被
冷却媒体aの流れる方向を路間−にしかつ適切な第1冷
却媒体流路7の設五1によって第1冷却媒体bbの圧力
損失を制御することにより、被冷却媒体aと第1冷IA
媒体bbの温α差を第1熱交換部3仝体で略一定とする
ことかでき、第1熱交換部3の熱交換効率を高めること
ができる。
When cooling the medium a to be cooled in this way, the first cooling medium bb in the first cooling medium flow path 7 is mostly a gas-liquid two-phase flow, and due to a loss of 10 degrees of pressure in the flow path 7, the first cooling medium bb in the first cooling medium flow path 7 is By reducing the saturation pressure, the saturation temperature, that is, the first
The temperature of the cooling medium bb also decreases. Therefore, especially in a cooling medium such as water, since the saturation temperature decreases significantly with respect to the decrease in saturation pressure, as shown in FIG. The flow direction of the cooled medium a in the coolant flow path 9 is made to be between the paths, and the pressure loss of the first coolant bb is controlled by an appropriate setting 51 of the first coolant flow path 7. Medium a and first cold IA
The temperature α difference of the medium bb can be made substantially constant across the first heat exchange section 3, and the heat exchange efficiency of the first heat exchange section 3 can be increased.

このようにして第1熱交換部3で相当量の熱交換が行わ
れた被冷却媒体aは続いて第2熱交換部5の被冷却媒体
入口ヘッダ29から被冷却媒体流路23に入り、該流路
23を流れる間に円筒隔壁27を介して第2冷却媒体す
と熱交換をし、冷却されて被冷却媒体出口ヘッダ31か
ら蒸発熱交換器1の外へ取出される。
The cooled medium a, which has undergone a considerable amount of heat exchange in the first heat exchange section 3 in this way, then enters the cooled medium flow path 23 from the cooled medium inlet header 29 of the second heat exchange section 5. While flowing through the flow path 23, heat is exchanged with the second cooling medium through the cylindrical partition wall 27, and the cooled medium is taken out of the evaporative heat exchanger 1 through the cooling medium outlet header 31.

方、液相の状態で噴霧ノズル25から容器21内に噴霧
された第2冷却媒体すは容器21内の飽和温度に略等し
い温度で円筒隔壁27の内面にi付文し、該円筒隔壁2
7を介して液冷fA媒体流路23を流れる被冷却媒体a
から熱を奪って蒸発する。ぞして、蒸発して気相となっ
た第2冷却媒体すは容器21の下方に設(jられた蒸気
出口35から第2熱交換部5の外部に排出される。
On the other hand, the second cooling medium sprayed into the container 21 from the spray nozzle 25 in a liquid phase is marked with an i on the inner surface of the cylindrical partition wall 27 at a temperature substantially equal to the saturation temperature in the container 21, and the cylindrical partition wall 2
The medium a to be cooled flowing through the liquid cooling fA medium flow path 23 via 7
It absorbs heat and evaporates. The second cooling medium, which has evaporated into a gas phase, is then discharged to the outside of the second heat exchange section 5 through a vapor outlet 35 provided below the container 21.

この実施例によれば、上述のように第1熱交換部3で相
当量の熱交換が行われるので、第2熱交換部5は従来例
の蒸発熱交換器に比べその体積を大幅に減少することが
でき、かつ、′KS1熱交換部3は、第1冷却媒体流路
7と被冷却流路9および両流路7,9との隔壁11から
なり、これらを第2熱交換部5の外側に沿って設置され
ているので、第1熱交換部3の占める体積は第2熱交換
部5の体積に比べると殆ど無視できる程度のものである
According to this embodiment, since a considerable amount of heat exchange is performed in the first heat exchange section 3 as described above, the volume of the second heat exchange section 5 is significantly reduced compared to the conventional evaporative heat exchanger. and 'KS1 heat exchange section 3 consists of a first coolant flow path 7, a cooled flow path 9, and a partition wall 11 between both flow paths 7 and 9, and these are connected to the second heat exchange section 5. The volume occupied by the first heat exchange section 3 is almost negligible compared to the volume of the second heat exchange section 5.

従って、蒸発熱交換器1全体の体積を大幅に減少するこ
とができ、ずなわら、具体的には、従来の蒸発熱交1!
!!器を複数台用いた場合と比較すると、2台の従来の
蒸発熱交換器を1台の蒸発熱交換器に置換えることによ
り、大幅な体積の減少を図ることができる。
Therefore, the overall volume of the evaporative heat exchanger 1 can be significantly reduced, and more specifically, the volume of the evaporative heat exchanger 1 can be reduced significantly.
! ! Compared to the case where a plurality of evaporative heat exchangers are used, the volume can be significantly reduced by replacing two conventional evaporative heat exchangers with one evaporative heat exchanger.

この発明は、上述の実施例に限定されるものではない。The invention is not limited to the embodiments described above.

例えば、第4図に示すように、第1冷却媒体流路7を往
復流路7a、7b・・・ 7a′ 7b−・・・とする
こともできる。この場合には液相の割合が多く高い熱伝
達率が期待できる往路の流路7a、7b・・・を流れる
第1冷却媒体bbを隔壁11と接触させている。
For example, as shown in FIG. 4, the first coolant flow path 7 may be configured as reciprocating flow paths 7a, 7b, . . . 7a', 7b-. In this case, the first cooling medium bb flowing through the outward channels 7a, 7b, . . ., which has a large proportion of liquid phase and can be expected to have a high heat transfer coefficient, is brought into contact with the partition wall 11.

また、第1冷fJ]媒体bbとしてアンモニアのような
高圧媒体を使用する場合には圧力損失による温度の低下
が少ないので、第1熱交換部3での第1冷N1媒体bb
と被冷却媒体aの流れの方向を略反対方向とし、第1冷
却媒体bbが気相になった後の顕然も同時に利用する構
成にすることもできる。
In addition, when a high-pressure medium such as ammonia is used as the first cold N1 medium bb, the temperature decrease due to pressure loss is small, so the first cold N1 medium bb in the first heat exchange section 3
It is also possible to configure the flow direction of the first cooling medium bb to be substantially opposite to that of the first cooling medium bb, and to simultaneously utilize the flow of the first cooling medium bb after it becomes a gas phase.

また、第1図に示す実施例では、第1冷却媒体bbと第
2冷却媒体すを別々にそれぞれ第1熱交換部3 J5よ
び第2熱交換部5へ供給し、気相の単相流あるいは気相
が大部分を占める気液二相流になった第1冷却奴休bb
および第2冷却媒体すを別々に排出しているが第1冷却
媒体、bbと第2冷」媒体すの両方をまず第1熱交換部
3へ供給し、被冷却媒体aと熱交換をして相当量の液相
が残った気液相流とし、これを第2熱交換部5の噴霧ノ
ズル25に導いて容器21内へ噴霧させるようにするこ
ともできる。なお、この場合には噴霧ノズル25を二相
流ノズルに置換える。
In addition, in the embodiment shown in FIG. 1, the first cooling medium bb and the second cooling medium S are separately supplied to the first heat exchange section 3 J5 and the second heat exchange section 5, respectively, and the gas phase single-phase flow is performed. Alternatively, the first cooling rest bb becomes a gas-liquid two-phase flow in which the gas phase occupies most of the flow.
Although the second cooling medium and the second cooling medium are discharged separately, both the first cooling medium, bb, and the second cooling medium are first supplied to the first heat exchange section 3 to exchange heat with the cooled medium a. It is also possible to create a gas-liquid phase flow with a considerable amount of the liquid phase remaining, which is then guided to the spray nozzle 25 of the second heat exchanger 5 and sprayed into the container 21. In this case, the spray nozzle 25 is replaced with a two-phase flow nozzle.

[発明の効果コ 以上の説明より明らかなように、この発明の構成によれ
ば、蒸発熱交換器の冷却媒体と被冷却媒体の熱交換部が
第1熱交換部と第2熱交換部に分割され、第2熱交換部
を略円筒形に形成し、第1熱交換部が冷却媒体が流れる
流路と液冷JJ′l媒体が流れる流路および両流路間の
隔壁とから形成されると共に該第1熱交換部が前記第1
熱交換部の外周に泊って設置されているため、蒸発熱交
換器の熱交換効率を高めることができ、しかも、蒸発熱
交換器全体の体積を大幅に減少することができる。
[Effects of the Invention] As is clear from the above explanation, according to the configuration of the present invention, the heat exchange section for the cooling medium and the medium to be cooled of the evaporative heat exchanger is divided into the first heat exchange section and the second heat exchange section. The second heat exchange part is formed into a substantially cylindrical shape, and the first heat exchange part is formed from a flow path through which a cooling medium flows, a flow path through which a liquid cooling medium flows, and a partition wall between both flow paths. and the first heat exchange section is connected to the first heat exchange section.
Since it is installed on the outer periphery of the heat exchange section, the heat exchange efficiency of the evaporative heat exchanger can be increased, and the volume of the entire evaporative heat exchanger can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る蒸発熱交換器の縦断
面説明図、第2図は第1図の平面図、第3図は第1図に
示した実施例の第1熱交摸部の流路を示す断面説明図、
第4図は他の実施例の第1熱交換部の流路を示す断面説
明図、第5図は従来側に係る蒸発熱交換器の断面図であ
る。 a・・・被冷却媒体 b 、 bb・・・冷IJl媒体
1・・・蒸発熱交換器 3・・・第1熱交換部5・・・
第2熱交換部 7・・・第1冷却媒体流路9・・・液冷
PIl媒体流路 11・・・隔壁21・・・容器(第2
熱交換部)
FIG. 1 is an explanatory longitudinal cross-sectional view of an evaporative heat exchanger according to an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a first heat exchanger of the embodiment shown in FIG. A cross-sectional explanatory diagram showing the flow path of the sampling part,
FIG. 4 is an explanatory cross-sectional view showing the flow path of the first heat exchange section of another embodiment, and FIG. 5 is a cross-sectional view of a conventional evaporative heat exchanger. a...Medium to be cooled b, bb...Cold IJl medium 1...Evaporative heat exchanger 3...First heat exchange section 5...
Second heat exchange section 7... First cooling medium channel 9... Liquid cooling PIl medium channel 11... Partition wall 21... Container (second
heat exchange part)

Claims (2)

【特許請求の範囲】[Claims] (1)冷却媒体と被冷却媒体とが隔壁を介して接触し、
前記冷却媒体と前記被冷却媒体が熱交換し前記冷却媒体
の全流量あるいは一部流量が液相から気相へ変化する蒸
発熱交換器において、前記冷却媒体と前記被冷却媒体と
の熱交換部が第1熱交換部と第2熱交換部とに分割され
、前記第2熱交換部を筒形に形成し、前記第1熱交換部
と前記冷却媒体が流れる流路と前記被冷却媒体が流れる
流路および両流路間の隔壁とから形成すると共に該第1
熱交換部を前記第2熱交換部の外周に沿つて設置したこ
とを特徴とする蒸発熱交換器。
(1) The cooling medium and the medium to be cooled are in contact with each other through a partition wall,
In an evaporative heat exchanger in which the cooling medium and the medium to be cooled exchange heat and the total flow rate or a part of the flow rate of the cooling medium changes from a liquid phase to a gas phase, a heat exchange section between the cooling medium and the medium to be cooled. is divided into a first heat exchange section and a second heat exchange section, the second heat exchange section is formed in a cylindrical shape, and the first heat exchange section and a flow path through which the cooling medium flows and the medium to be cooled are connected to each other. a flowing channel and a partition wall between both channels, and the first
An evaporative heat exchanger, characterized in that a heat exchange section is installed along the outer periphery of the second heat exchange section.
(2)請求項1記載の蒸発熱交換器において、第1熱交
換部の冷却媒体の流路を複数の流路で形成すると共に、
これら流路を第2熱交換部の外周に沿つて略螺旋状に設
置したことを特徴とする蒸発熱交換器。
(2) In the evaporative heat exchanger according to claim 1, the cooling medium flow path of the first heat exchange section is formed by a plurality of flow paths, and
An evaporative heat exchanger characterized in that these channels are arranged in a substantially spiral shape along the outer periphery of the second heat exchange section.
JP1078612A 1989-03-31 1989-03-31 Evaporative heat exchanger Pending JPH02258500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078612A JPH02258500A (en) 1989-03-31 1989-03-31 Evaporative heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078612A JPH02258500A (en) 1989-03-31 1989-03-31 Evaporative heat exchanger

Publications (1)

Publication Number Publication Date
JPH02258500A true JPH02258500A (en) 1990-10-19

Family

ID=13666703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078612A Pending JPH02258500A (en) 1989-03-31 1989-03-31 Evaporative heat exchanger

Country Status (1)

Country Link
JP (1) JPH02258500A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637927A1 (en) 2004-09-02 2006-03-22 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the same
EP2020616A2 (en) 2007-08-02 2009-02-04 FUJIFILM Corporation Resist composition for electron beam, x-ray, or euv, and pattern-forming method using the same
EP2020617A2 (en) 2007-08-03 2009-02-04 FUJIFILM Corporation Resist composition containing a sulfonium compound, pattern-forming method using the resist composition, and sulfonium compound
EP2090932A1 (en) 2008-02-13 2009-08-19 FUJIFILM Corporation Positive resist composition for use with electron beam, X-ray or EUV and pattern forming method using the same
JP2012112648A (en) * 2012-03-16 2012-06-14 Mitsubishi Electric Corp Refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637927A1 (en) 2004-09-02 2006-03-22 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the same
EP2020616A2 (en) 2007-08-02 2009-02-04 FUJIFILM Corporation Resist composition for electron beam, x-ray, or euv, and pattern-forming method using the same
EP2020617A2 (en) 2007-08-03 2009-02-04 FUJIFILM Corporation Resist composition containing a sulfonium compound, pattern-forming method using the resist composition, and sulfonium compound
EP2090932A1 (en) 2008-02-13 2009-08-19 FUJIFILM Corporation Positive resist composition for use with electron beam, X-ray or EUV and pattern forming method using the same
JP2012112648A (en) * 2012-03-16 2012-06-14 Mitsubishi Electric Corp Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US4520866A (en) Falling film evaporation type heat exchanger
US6571569B1 (en) Method and apparatus for high heat flux heat transfer
US20070119568A1 (en) System and method of enhanced boiling heat transfer using pin fins
EP1380799A2 (en) Method and apparatus for cooling with coolant at a subambient pressure
US5101884A (en) Evaporation heat exchanger, especially for a spacecraft
JPH02258500A (en) Evaporative heat exchanger
US3310103A (en) Direct contact heat exchanger
JPH05213296A (en) Vaporization type heat-exchanger
JPH02229455A (en) Apparatus of heat pipe system
JPH01123958A (en) Internal heat exchanger for absorber
JPH08189726A (en) Falling film evaporator, and turbo refrigerating machine equipped with the evaporator
US4563882A (en) Air cooling type absorption cooler
US4462222A (en) Dilute solution producing system of absorption refrigerating apparatus
JP2855811B2 (en) Heat sink device for spacecraft
JP2555056Y2 (en) Plate fin type flash evaporator for heat control system exhaust heat of spacecraft
JPS63306398A (en) Heat exchanger
JP6783369B2 (en) Heat exchange system
CN212623959U (en) Heat exchanger of block chain operation center
JP2877420B2 (en) Absorption refrigerator
JPH0311294A (en) Evaporation type heat exchanger
EP4265982A1 (en) Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method
JPH0250059A (en) Evaporator
JPH0726239Y2 (en) Flash evaporator for exhaust heat of heat control system of space shuttle
JPH06241615A (en) Evaporator for refrigerating machine
JPS6358098A (en) Plate fin type vaporizer