JPH02257941A - Radiation amount regulator in radiation imaging device - Google Patents

Radiation amount regulator in radiation imaging device

Info

Publication number
JPH02257941A
JPH02257941A JP1078384A JP7838489A JPH02257941A JP H02257941 A JPH02257941 A JP H02257941A JP 1078384 A JP1078384 A JP 1078384A JP 7838489 A JP7838489 A JP 7838489A JP H02257941 A JPH02257941 A JP H02257941A
Authority
JP
Japan
Prior art keywords
radiation
opening
radiation amount
aperture
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078384A
Other languages
Japanese (ja)
Inventor
Koji Amitani
幸二 網谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1078384A priority Critical patent/JPH02257941A/en
Publication of JPH02257941A publication Critical patent/JPH02257941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To control exposure compensation with high responsive property and accuracy to provide a sharp picture with wide latitude by driving a throttle member for regulating a radiation amount with a galvanometer type drive device. CONSTITUTION:A radiation screening member 2 formed on the radiation side of a radiation source 1 with a laterally long opening 2a is provided to be moved in the direction orthogonal to the longitudinal direction for forming a fan beam FB. A plurality of throttle members 3 movable integrally with said member 2 and connected with rotary shafts 5 of galvanometer type drive devices 4 are provided, and the throttle member 3 is disposed adjacent every region of longitudinally divided opening 2a with each rotary shaft 5 being directed in the directions orthogonal to the longitudinal direction of the opening 2a. The throttle members 3 are disposed staggered at such intervals that the fan beam FB can be almost screened when the throttle members 3 are fully closed. The fan beam FB is radiated to the human body 6 so that the picture taking and recording corresponding to the radiation amount passing through the opening 2a are carried out on an imaging surface 7. The radiation amount is detected by a detector 8 and the passed radiation amount is regulated by changing the opening area so that the radiation amount reaching the image taking surface 7 falls within an approximately fixed range.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、放射線(一般にX線)撮像装置における露出
補償用の放射線量調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a radiation dose adjustment device for exposure compensation in a radiation (generally X-ray) imaging device.

〈従来の技術〉 放射線撮像装置は、一般にX線管が用いられる放射線源
と、被照射物体を通過した前記放射線源からの放射線量
を検出して撮像記録する例えばX線フィルムや輝尽性蛍
光体等の撮像記録手段とから構成される。
<Prior Art> A radiation imaging device generally uses an X-ray tube as a radiation source, and detects and records the radiation dose from the radiation source that has passed through an irradiated object, such as an X-ray film or stimulable fluorescence. It is composed of a means for capturing and recording images of the body, etc.

ところで、例えば医療用に用いられるX線撮像装置にお
ける胸部撮影では、撮影部分における厚さや放射線吸収
性の違いによって解剖学的厚みに大きな変動を示、すこ
とが問題である。
By the way, in chest imaging using an X-ray imaging apparatus used for medical purposes, for example, there is a problem in that the anatomical thickness shows large fluctuations due to differences in thickness and radiation absorption in the imaging area.

即ち、厚みの大きい領域は露出不足となって、例えばフ
ィルムに出力した時の濃度が薄(なり過ぎ、厚みの薄い
部分は露出過多となって濃すぎてラチチュードが低下す
る。
That is, thicker areas are underexposed and, for example, the density when output to film is too low (too much), while thinner areas are overexposed and too dark, resulting in a decrease in latitude.

このため、放射線源の前方に開口を設けてこの開口をそ
の長手方向に分割される領域毎に開口面積を可変に制御
すべく絞り部材を出入させ、開口部分を通過して得られ
る放射線ビームを長手方向と直角方向に移動する走査を
行って対象物に投射しつつ対象物の背後に設けられた逼
像面にて撮像記録する一方、措像面における各部の放射
線量を検出するディテクタを設け、該ディテクタからの
検出信号に基づいて適切な露出量を得るように前記絞り
部材による絞り量を制御する構成としたものがある(特
開昭62−129034号公報等参照)。
For this purpose, an aperture is provided in front of the radiation source, and a diaphragm member is moved in and out to variably control the aperture area for each region divided in the longitudinal direction, and the radiation beam obtained by passing through the aperture is It performs scanning that moves in the longitudinal direction and the perpendicular direction and projects the image onto the object while capturing and recording the image on the imaging surface installed behind the object, while a detector is installed to detect the radiation dose of each part on the imaging surface. There is a structure in which the amount of aperture by the aperture member is controlled so as to obtain an appropriate amount of exposure based on the detection signal from the detector (see Japanese Patent Application Laid-Open No. 129034/1984, etc.).

〈発明が解決しようとする課題〉 ところで、このような放射線撮像装置においては、放射
線ビームを走査しつつ絞り制御を行うため、ディテクタ
からの検出信号に対して応答性良く絞り制御を行う必要
がある。
<Problems to be Solved by the Invention> Incidentally, in such a radiation imaging device, since the aperture control is performed while scanning the radiation beam, it is necessary to perform the aperture control with good responsiveness to the detection signal from the detector. .

しかしながら、従来の装置にあっては、絞り部材を開口
を横断する方向にスライドさせて開口面積を制御させる
構成としているが、これでは必ずしも応答性の良い制御
を行えるものではなかった。
However, in conventional devices, the aperture area is controlled by sliding the diaphragm member in a direction across the aperture, but this does not necessarily allow responsive control.

本発明は、このような従来の問題点に鑑みなされたもの
で、絞り部材を応答性良く駆動制御できる構成として適
正な露出量が得られ、上記問題点を解決した放射線撮像
装置を提供することを目的とする。
The present invention has been made in view of these conventional problems, and an object of the present invention is to provide a radiation imaging device that solves the above-mentioned problems by having a configuration in which the aperture member can be driven and controlled with good responsiveness to obtain an appropriate amount of exposure. With the goal.

く課題を解決するための手段) このため本発明は、放射線源と被写体との間に、放射線
ビームを生成する開口を形成した放射線遮断部材を設け
ると共に、ガルバノメータ式駆動装置に連結されて回転
駆動される複数個の絞り部材を、前記開口に臨ませて放
射線通過量を調整する構成とした。
Therefore, the present invention provides a radiation shielding member having an aperture for generating a radiation beam between a radiation source and a subject, and also provides a radiation shielding member connected to a galvanometer drive device to be rotatably driven. A plurality of diaphragm members are arranged to face the opening and adjust the amount of radiation passing through the aperture.

また、前記絞り部材を振動させる振動手段を含んで構成
してもよい。
Further, the configuration may include a vibration means for vibrating the aperture member.

〈作用〉 撮像面における放射線量の検出信号等に基づいてガルバ
ノメータ式の駆動装置により、各絞り部材が回転駆動さ
れて放射線の通過量が調整され適正に露出補償された撮
像が得られる。
<Operation> Each diaphragm member is rotationally driven by a galvanometer-type drive device based on a detection signal of the radiation dose on the imaging surface, and the amount of radiation passing through is adjusted, thereby obtaining an image with proper exposure compensation.

また、振動手段を設けることにより、放射線が通過し易
い部分と通過し難い部分との格差が抑制され、撮像に縞
模様が生じるの防止できる。
Further, by providing the vibrating means, the disparity between the portions through which radiation easily passes and the portions through which it is difficult to pass is suppressed, and it is possible to prevent striped patterns from occurring in imaging.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第1図において、放射線源(一般
にはX線管)1の照射側に横長の開口2aを形成した放
射線遮断部材2を設けて、この放射線遮断部材2を長手
方向と直角の方向に移動させることにより、ファンビー
ムFBを生成するようにしである。
In FIG. 1 showing the configuration of one embodiment, a radiation shielding member 2 having a horizontally long opening 2a is provided on the irradiation side of a radiation source (generally an X-ray tube) 1, and this radiation shielding member 2 is connected in the longitudinal direction. By moving in the right angle direction, a fan beam FB is generated.

また、放射線遮断部材2と一体に移動する鉛板で形成さ
れる絞り部材3を、ガルバノメータ式の駆動装置4の回
転軸5に連結したものを複数個設け、各回転軸5を開口
2aの長手方向と直角方向に向けて絞り部材3を開口2
aの長手方向に分割された領域毎に臨ませて配設する。
In addition, a plurality of aperture members 3 made of a lead plate that move together with the radiation shielding member 2 are connected to a rotating shaft 5 of a galvanometer-type drive device 4, and each rotating shaft 5 is connected to the longitudinal axis of the opening 2a. The diaphragm member 3 is opened in the direction perpendicular to the opening 2.
It is arranged so as to face each area divided in the longitudinal direction of a.

そして、絞り部材3を夫々の回転によ−り開口2aを開
閉自由であって、夫々の全開時にファンビームFBを大
略遮断できる程度の間隔で放射線照射方向の位置をずら
せて配設する。
The diaphragm members 3 can freely open and close the apertures 2a by their respective rotations, and are disposed with their positions shifted in the radiation irradiation direction at intervals that are sufficient to substantially block the fan beam FB when fully opened.

ファンビームFBは対象物(人体)6に照射されるが、
その対象物6の背後に設けられたスクリーン/フィルム
等の撮像面7にて前記開口2aを通過した放射線量に応
じた撮像・記録がなされる。
The fan beam FB is irradiated onto the object (human body) 6,
An image is taken and recorded on an imaging surface 7 such as a screen/film provided behind the object 6 in accordance with the amount of radiation that has passed through the opening 2a.

尚、スクリーン/フィルムの場合、放射線が蛍光体N(
蛍光スクリーン)に照射されて可視光に変換され、この
可視光が銀塩感光材料を塗布したフィルムに感光される
。但し、撮像面7は、「原性蛍光体ディテクタを用いて
画像情報を蓄積し、半11cレーザーにより走査して取
り出し、このデジタル画像情報を外部メモリに記憶させ
て、CRTに再生可能とする方式のものであってもよい
In addition, in the case of screen/film, the radiation is the phosphor N(
It is irradiated onto a fluorescent screen) and converted into visible light, which is then exposed to a film coated with a silver salt photosensitive material. However, the imaging surface 7 uses a method in which image information is accumulated using a primary phosphor detector, scanned and retrieved by a semi-11C laser, and this digital image information is stored in an external memory so that it can be reproduced on a CRT. It may be of.

また、撮像面7における各部の放射線量を検出するディ
テクタ、8が設けられ、これにより、ファンビームFB
が照射されているライン上の各部の放射線量をディテク
タ8により検出し、各部毎に撮像面7に到達する放射線
量が略一定範囲内となるように、前記駆動装置5により
、各絞り部材3を駆動して開口面積を変えることにより
通過放射線量を調整する。
Further, a detector 8 is provided to detect the radiation dose of each part on the imaging surface 7, and thereby the fan beam FB
The detector 8 detects the radiation dose of each part on the line that is irradiated, and the driving device 5 controls each aperture member 3 so that the radiation dose reaching the imaging surface 7 for each part is within a substantially constant range. The amount of radiation passing through is adjusted by driving and changing the aperture area.

さらに、前記各絞り部材3と放射線遮断部材2とを一体
に上下方向に移動して走査しつつ、水平方向に所定の揺
れ幅を以て振動させる振動手段としてのパイブレーク9
が、放射線遮断部材2と駆動装置5とを一体に保持する
フレーム10の側壁に連結して設けられる。
Furthermore, pie break 9 serves as a vibrating means for vibrating horizontally with a predetermined swing width while moving each aperture member 3 and radiation shielding member 2 together in the vertical direction for scanning.
is connected to the side wall of the frame 10 that holds the radiation shielding member 2 and the drive device 5 together.

第2図は、前記ガルバノメータ式の駆動装置4の構造の
概要を示す。
FIG. 2 shows an outline of the structure of the galvanometer drive device 4. As shown in FIG.

回転軸5は、マグネットドライバ41のコイルに通電さ
れる電流の大きさによって回転量が制御され、該回転量
は回転軸5の一端に装着されたポジションセンサ42に
よって検出される。該ポジションセンサ42からの回転
量に応じた検出電圧は差動増幅器43の一側入力端子に
入力され、該差動増幅器43の+側入力端子には、この
駆動装置4で駆動される絞り部材3の装着部位を通過す
る放射線量を検出するディテクタ8からの検出信号(電
圧)が入力される。
The amount of rotation of the rotating shaft 5 is controlled by the magnitude of the current applied to the coil of the magnet driver 41, and the amount of rotation is detected by a position sensor 42 attached to one end of the rotating shaft 5. A detection voltage corresponding to the amount of rotation from the position sensor 42 is input to one side input terminal of a differential amplifier 43, and an aperture member driven by this drive device 4 is connected to the + side input terminal of the differential amplifier 43. A detection signal (voltage) from a detector 8 that detects the amount of radiation passing through the attachment site 3 is input.

そして、例えばディテクタ8によって検出される放射線
量が基準の露光量に対応する放射wAilより大きい(
小さい)場合には、絞り部材3の現在位置に対応する検
出信号電圧とに電圧差を生じて、マグネットドライバ4
1への通電電流が変化し、絞り部材3が閉方向(開方向
)に回転し、放射線通過(照射)量を減少(増大)させ
る。
For example, the radiation dose detected by the detector 8 is larger than the radiation wAil corresponding to the reference exposure dose (
small), a voltage difference is generated between the detection signal voltage corresponding to the current position of the aperture member 3 and the magnet driver 4
1 changes, the diaphragm member 3 rotates in the closing direction (opening direction), and the amount of radiation passing through (irradiation) decreases (increases).

これにより、解剖学的厚みに応じた放射線量が照射され
、各部位の露出度を適正に保つように制御される。
As a result, a radiation dose corresponding to the anatomical thickness is irradiated, and the degree of exposure of each region is controlled to be maintained appropriately.

そして、かかるガルバノメータ式の駆動装置5は、検出
信号に対して極めて応答性の良い駆動特性を有しており
、したがって、該駆動装置5を用いて絞り部材3を開閉
制御する構成としたことにより高精度な露出補償制御を
行え、ラチチュードの広い撮像が得られる。
The galvanometer-type drive device 5 has drive characteristics that are extremely responsive to detection signals, and therefore, by using the drive device 5 to control opening and closing of the diaphragm member 3, Highly accurate exposure compensation control can be performed, and imaging with a wide latitude can be obtained.

また、応答性向上により走査速度を増大できるが、これ
は、心臓等動きの速いものの撮像に与える影響を小さく
できることに繋がる。
Furthermore, the scanning speed can be increased by improving the responsiveness, which leads to reducing the influence on imaging of fast-moving objects such as the heart.

一方、本実施例のように回転軸5を開口2aの長手方向
と直角方向にして配設した場合、開口2a前方から見て
回転軸5に近い部分は絞り部材3の全開近くまで放射線
が通過しないのに対し回転軸5から離れるほど放射線が
通過する絞り部材3の最小開度が小さくなる。つまり、
回転軸5近傍は放射線が通過する機会が少な(、回転軸
5から離れるほど放射線が通過する機会が多いという不
均一な特性を有する。このため、そのままでは、やはり
撮像に走査方向に延びる縞模様を生じる傾向があるが、
本実施例では、絞り部材3をパイプレーク9により開口
2aの長手方向に振動させつつ走査することにより放射
線通過特性を開口2aの長手方向に均一化して撮像に縞
模様が生じることを効果的に防止できる。この場合の振
動の揺れ幅としては、回転軸から絞り部材の側端面まで
の距離つまり絞り部材の開口2a長手方向の幅程度か、
それ以上(好ましくは整数倍)とし、振動の周波数は、
走査速度に応じて縞模様の発生を防止できる程度の大き
さに設定するのがよいであろう。
On the other hand, when the rotating shaft 5 is arranged perpendicularly to the longitudinal direction of the opening 2a as in this embodiment, the radiation passes through the portion close to the rotating shaft 5 when viewed from the front of the opening 2a until the aperture member 3 is nearly fully opened. On the other hand, as the distance from the rotating shaft 5 increases, the minimum opening degree of the aperture member 3 through which radiation passes becomes smaller. In other words,
The vicinity of the rotation axis 5 has a non-uniform characteristic in which there are fewer opportunities for radiation to pass through (the farther away from the rotation axis 5, the more opportunities for radiation to pass through).Therefore, if left as is, a striped pattern extending in the scanning direction will appear in the image. There is a tendency to cause
In this embodiment, by scanning the diaphragm member 3 while vibrating it in the longitudinal direction of the aperture 2a with the pipe rake 9, the radiation passing characteristics are made uniform in the longitudinal direction of the aperture 2a, and the occurrence of striped patterns in imaging can be effectively prevented. It can be prevented. In this case, the amplitude of the vibration is approximately the distance from the rotation axis to the side end surface of the aperture member, that is, the width of the aperture 2a of the aperture member in the longitudinal direction.
higher than that (preferably an integral multiple), and the frequency of vibration is
It is preferable to set the size to a size that can prevent the occurrence of striped patterns depending on the scanning speed.

尚、かかる振動を伴う走査は、前述した機能から明らか
なように絞り部材の全閉時に隙間を生じている場合の縞
模様の発生に対しても抑制効果があるから、振動のみで
抑制しきれる場合には、絞り部材を全閉時に僅かの隙間
を持たせて一列に配列しコンパクト化を図る構成として
もよい。
Furthermore, as is clear from the above-mentioned function, scanning accompanied by such vibration has the effect of suppressing the occurrence of striped patterns when a gap is created when the diaphragm member is fully closed, so it can be suppressed by vibration alone. In some cases, the throttle members may be arranged in a line with a slight gap when fully closed to achieve compactness.

第3図は、本発明の第2の実施例を示す。FIG. 3 shows a second embodiment of the invention.

即ち、このものにおいては、前記第1の実施例同様に構
成された絞り部材3と駆動装置4との連結体を、回転軸
5が開口2aの長手方向と平行であって開口2aの幅方
向の両側、実施例の場合は上下両側に交互に位置するよ
うに設け、該回転軸5の回転により開口2aを開閉自由
であって全閉時に開口2a前方から見て隙間を生じない
間隔で取りつける。その他の構成は、第1の実施例と同
様である。
That is, in this embodiment, the connecting body of the diaphragm member 3 and the drive device 4, which is constructed in the same manner as in the first embodiment, is arranged so that the rotating shaft 5 is parallel to the longitudinal direction of the opening 2a and in the width direction of the opening 2a. The opening 2a can be opened and closed freely by rotation of the rotating shaft 5, and the opening 2a is installed at intervals that do not create a gap when viewed from the front of the opening 2a when it is fully closed. . The other configurations are the same as in the first embodiment.

この実施例に、おいても、ガルバノメータ式の駆動装置
4により、応答性の良い高精度な露出補償制御が行える
ことは同様である。
In this embodiment as well, the galvanometer type drive device 4 can perform highly responsive and highly accurate exposure compensation control.

また、この配置では、絞り部材3の開口2a長手方向に
対しては放射線通過特性が同一であり、長手方向と直角
な方向に対しては、回転軸5からの距離で異なるものの
、この方向に移動して走査が行われるために放射線通過
特性による縞模様発生を回避できる。したがって、振動
手段を省略することが可能になる。但し、隣接する絞り
部材相互に隙間を生じていたり、重なりが原因で、この
部分の撮像に縞模様を生じるようであれば、振動手段を
設けて開口2a長手方向に振動させればよい、この場合
も揺れ幅としては十分な放射線通過特性の均一化を図る
ためには、絞り部材3の開口2a長手方向の長さの程度
以上が適当であろう。
In addition, in this arrangement, the radiation transmission characteristics are the same in the longitudinal direction of the aperture 2a of the aperture member 3, and differ depending on the distance from the rotation axis 5 in the direction perpendicular to the longitudinal direction. Since scanning is performed while moving, it is possible to avoid the occurrence of striped patterns due to radiation transmission characteristics. Therefore, it becomes possible to omit the vibration means. However, if there is a gap between adjacent diaphragm members or if they overlap, and a striped pattern is produced in the imaging of this part, it is sufficient to provide a vibrating means to vibrate in the longitudinal direction of the aperture 2a. In this case, in order to achieve sufficient uniformity of the radiation passing characteristics, it is appropriate that the oscillation width be equal to or larger than the longitudinal length of the aperture 2a of the diaphragm member 3.

尚、かかる振動手段を設ける代わりにディテクタ側で検
出信号の電気的な補正を行ったり、撮像をモニター画面
で映像する場合には、撮像画面の再生を電気的に補正す
ることで縞模様の発生を抑制できる場合もあるであろう
In addition, instead of providing such a vibration means, if the detection signal is electrically corrected on the detector side, or if the captured image is displayed on a monitor screen, the generation of striped patterns can be avoided by electrically correcting the reproduction of the captured image screen. In some cases, it may be possible to suppress the

又、以上水した実施例においては、横長の放射線ビーム
を上下方向に移動走査するものを示したが、これらの機
構を90”回転させて縦長とした放射線ビームを左右方
向に移動走査するようにしてもよいことは勿論である。
In addition, in the embodiment described above, the horizontally elongated radiation beam is moved and scanned in the vertical direction, but these mechanisms can be rotated by 90 inches to move and scan the vertically elongated radiation beam in the left and right directions. Of course, it is possible.

また、ディテクタや輝尽性蛍光体により一度弱い放射線
ビームを照射した後、放射線透過量の検出値に基づいて
本撮像時の照射量を補正制御するものにも適用でき、こ
の場合でも応答性向上により走査速度を増大できること
は同様である。
It can also be applied to systems that irradiate a weak radiation beam once with a detector or stimulable phosphor, and then correct and control the irradiation amount during actual imaging based on the detected value of the amount of radiation transmitted. Even in this case, responsiveness can be improved. Similarly, the scanning speed can be increased by

〈発明の効果〉 以上説明したように本発明によれば、放射線量調整用の
絞り部材をガルバノメータ式の駆動装置によって駆動す
る構成としたことにより、応答性のよい高精度な露出補
償制御が行え、ラチチュードの広い鮮明な撮像が得られ
る。
<Effects of the Invention> As explained above, according to the present invention, by configuring the aperture member for adjusting the radiation dose to be driven by a galvanometer-type drive device, highly responsive and highly accurate exposure compensation control can be performed. , clear imaging with wide latitude can be obtained.

更に、振動手段を設け、あるいは絞り部材と駆動装置と
の配置の工夫によって、放射線通過特性を均一化でき撮
像に縞模様が発生することを防止できる。
Further, by providing a vibrating means or devising the arrangement of the diaphragm member and the drive device, it is possible to make the radiation passage characteristics uniform and prevent the occurrence of striped patterns in the image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(A)は、本発明の第1の実施例の全体構成を
示す平面図、同図(B)は、同上実施例の要部拡大平面
図、同図(C)は、同図(B)を放射線照射方向から見
た図、第2図は、同上実施例で使用されるガルバノメー
タ式の駆動装置の回路構成の概要を示す図、第3図は、
第2の実施例の要部を放射線照射方向から見た図である
。 1・・・放射線源  2・・・放射線遮断部材  2a
・・・開口  3・・・鉛板  4・・・駆動装置  
5・・・回転軸  6・・・対象物  7・・・撮像面
  8・・・ディテクタ  9・・・バイブレータ 第1図(8) a 第1図(C)
In FIG. 1, (A) is a plan view showing the overall configuration of the first embodiment of the present invention, FIG. 1(B) is an enlarged plan view of the main part of the same embodiment, and FIG. Figure (B) is viewed from the radiation irradiation direction, Figure 2 is a diagram showing an outline of the circuit configuration of the galvanometer type drive device used in the above embodiment, and Figure 3 is
FIG. 7 is a diagram of main parts of the second embodiment as viewed from the radiation irradiation direction. 1... Radiation source 2... Radiation blocking member 2a
...Opening 3...Lead plate 4...Drive device
5... Rotation axis 6... Target 7... Imaging surface 8... Detector 9... Vibrator Figure 1 (8) a Figure 1 (C)

Claims (2)

【特許請求の範囲】[Claims] (1)放射線源と被写体との間に、放射線ビームを生成
する開口を形成した放射線遮断部材を設けると共に、ガ
ルバノメータ式駆動装置に連結されて回転駆動される複
数個の絞り部材を、前記開口に臨ませて放射線通過量を
調整する構成としたことを特徴とする放射線撮像装置に
おける放射線量調整装置。
(1) A radiation blocking member having an aperture that generates a radiation beam is provided between the radiation source and the subject, and a plurality of diaphragm members connected to a galvanometer drive device and rotationally driven are provided in the aperture. 1. A radiation dose adjustment device for a radiation imaging apparatus, characterized in that the radiation dose adjustment device is configured to adjust the amount of radiation passing through the radiation imaging device.
(2)前記絞り部材を振動させる振動手段を含んで構成
したことを特徴とする請求項1記載の放射線撮像装置に
おける放射線量調整装置。
(2) The radiation dose adjusting device in a radiation imaging apparatus according to claim 1, characterized in that the device includes a vibrating means for vibrating the aperture member.
JP1078384A 1989-03-31 1989-03-31 Radiation amount regulator in radiation imaging device Pending JPH02257941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078384A JPH02257941A (en) 1989-03-31 1989-03-31 Radiation amount regulator in radiation imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078384A JPH02257941A (en) 1989-03-31 1989-03-31 Radiation amount regulator in radiation imaging device

Publications (1)

Publication Number Publication Date
JPH02257941A true JPH02257941A (en) 1990-10-18

Family

ID=13660519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078384A Pending JPH02257941A (en) 1989-03-31 1989-03-31 Radiation amount regulator in radiation imaging device

Country Status (1)

Country Link
JP (1) JPH02257941A (en)

Similar Documents

Publication Publication Date Title
US4773087A (en) Quality of shadowgraphic x-ray images
JP3307519B2 (en) Medical X-ray equipment
JP5468720B2 (en) Adaptive X-ray beam system and method in an X-ray system
US4196351A (en) Scanning radiographic apparatus
US4953189A (en) X-ray radiography method and system
US5299250A (en) Computer tomography apparatus with compensation for focus migration by adjustment of diaphragm position
JP2562734B2 (en) X-ray scanning device, X-ray flux control device, and modulation method
US5070519A (en) Selective equalization radiography
US5054048A (en) X-ray radiography method and system
US4972458A (en) Scanning equalization radiography
JPH0690423B2 (en) Slit radiography equipment
JPS63233658A (en) Method for deciding read condition of radiation picture information
US5307396A (en) Radiation image pickup method and apparatus
JP2670632B2 (en) Optical scanning device
CA1087760A (en) Tomometry system having provisions for selectively adjusting the format of a displayed picture
JPH02257941A (en) Radiation amount regulator in radiation imaging device
US4433430A (en) Apparatus for the areal recording of x-ray images
JP4202457B2 (en) X-ray CT system
JPH0868864A (en) Image pickup apparatus
JP3079314B2 (en) Radiation imaging device
JP4306021B2 (en) X-ray equipment
JPH02502868A (en) Device for contrast equalization of X-ray images
JPH04312449A (en) Radiation image pickup device
JP2816696B2 (en) Radiation imaging device
JP2001292992A (en) Radiographic device