JPH0225757A - Light applied measuring instrument - Google Patents

Light applied measuring instrument

Info

Publication number
JPH0225757A
JPH0225757A JP63173911A JP17391188A JPH0225757A JP H0225757 A JPH0225757 A JP H0225757A JP 63173911 A JP63173911 A JP 63173911A JP 17391188 A JP17391188 A JP 17391188A JP H0225757 A JPH0225757 A JP H0225757A
Authority
JP
Japan
Prior art keywords
optical
light
filter
wavelength
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63173911A
Other languages
Japanese (ja)
Inventor
Hiroshi Murase
洋 村瀬
Hitoshi Okubo
仁 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63173911A priority Critical patent/JPH0225757A/en
Publication of JPH0225757A publication Critical patent/JPH0225757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To prevent an error caused by the wavelength dependency generated by a variation of an ambient temperature of an optical transmitter and to exactly execute the measurement by inserting an optical filter consisting of a narrow band filter between a photosensor part and an optical receiver. CONSTITUTION:An optical transmitter 1 is connected to a photosensor part consisting of a lens 3, a polarizer 4, a Faraday element 5, an analyzer 6 and a lens 7 through an optical fiber 2, and transmits a light beam. It is amplified by an amplifier 10 through an optical fiber 8, a narrow-band filter 15 and an optical receiver 9, and thereafter, one is connected to an integrator 11 and the other is connected to an amplifier 13 through a coupling capacitor 12, and outputs of both of them are outputted to a divider 14. In such a way, even if optical wavelength of its wave is varied by a variation of an ambient temperature of the optical transmitter 1, a light beam transmits through only some band by the optical filter 15, therefore, an error caused by the wavelength dependency is prevented, and the measurement can be executed exactly.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、例えば電界や磁界などの被測定量により光
学特性が変化し光強度変化することにより被覆測定量を
光学的に検出する光応用測定装置に関するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention is an optical method for optically measuring a coating measurement quantity by changing the optical characteristics and light intensity depending on the quantity to be measured, such as an electric field or a magnetic field. The present invention relates to an optical measurement device that detects

(従来の技術) 第2図は従来の光応用測定装置の構成図で1例としてフ
ァラデー効果を利用した磁界測定装置を示したものであ
る。図において、1は光送信器。
(Prior Art) FIG. 2 is a block diagram of a conventional optical application measuring device, and shows, as an example, a magnetic field measuring device using the Faraday effect. In the figure, 1 is an optical transmitter.

2は光ファイバ、3はレンズ、4は偏光子、5はファラ
デー素子、6は検光子、7はレンズ、8は光ファイバ、
9は光受信器、10は増幅器、11は積分器、12はカ
ップリングコンデンサ、13は増幅器、14は割算機で
ある。
2 is an optical fiber, 3 is a lens, 4 is a polarizer, 5 is a Faraday element, 6 is an analyzer, 7 is a lens, 8 is an optical fiber,
9 is an optical receiver, 10 is an amplifier, 11 is an integrator, 12 is a coupling capacitor, 13 is an amplifier, and 14 is a divider.

次に動作について説明する。光送信機(Dから出た光は
光ファイバ2を通りレンズ3で平行ビームとなり偏光子
4に入射する。そして偏光子4で直線偏光になりファラ
デー素子5に入るが、光の進行方向と平行方向の磁界が
あると、この磁界により上記直線偏光の偏光面がファラ
デー効果により回転する6従って検光子6である角度の
偏光面の光を透過するように設定しておくと(−膜内に
は直線性が最も良くなるように上記偏光子4と検光子6
とはその偏光面が45°の角度をなすように配置される
)磁界により光が強度変調される。
Next, the operation will be explained. The light emitted from the optical transmitter (D passes through the optical fiber 2, becomes a parallel beam at the lens 3, and enters the polarizer 4.The light then becomes linearly polarized light at the polarizer 4, and enters the Faraday element 5, but parallel to the traveling direction of the light. When there is a magnetic field in the direction, this magnetic field rotates the plane of polarization of the linearly polarized light due to the Faraday effect 6 Therefore, if the analyzer 6 is set to transmit light with a plane of polarization at a certain angle (- is the polarizer 4 and analyzer 6 so that the linearity is the best.
The light is intensity-modulated by the magnetic field (which is arranged so that its plane of polarization forms an angle of 45°).

しかして、この光をレンズ7で集光し、光ファイバ8を
介して光受信器9で光電変換した後、必要な電圧に増幅
器10で増幅後、一方は変調成分を平均化するため積分
器11に入れ、他方は変調成分だけを増幅するためカッ
プリグコンデンサ12で交流分だけを通し増幅器13で
増幅する。そしてこれら両者の出力を割算器14で割算
処理することにより、光伝送路(例えば光フアイバ自体
や、レンズとの結合部分)、光送信器1でのロス変化や
光パワー変化いよる誤差を補償している。すなわち、光
センサ部(レンズ3、偏光子4.ファラデー素子5、検
光子8、レンズ7で構成される)での磁界による光強度
変調の度合は不変であるため、光送信器1の光パワーが
小さくなったり、光伝送路でのロスが大きくなったりし
ても、平均受光パワー(変調成分を取除いた分、即ち、
積分器11の出力に相当する)も小さくなり、割算する
結果、常に一定した出力が得られることになる。
Then, this light is focused by a lens 7, photoelectrically converted by an optical receiver 9 via an optical fiber 8, and then amplified by an amplifier 10 to the required voltage. In order to amplify only the modulation component, the other one passes only the alternating current component through a coupling capacitor 12 and is amplified by an amplifier 13. Then, by dividing these two outputs by the divider 14, errors due to loss changes and optical power changes in the optical transmission line (for example, the optical fiber itself or the coupling part with the lens) and the optical transmitter 1 are divided. is compensated for. That is, since the degree of optical intensity modulation by the magnetic field in the optical sensor section (consisting of lens 3, polarizer 4, Faraday element 5, analyzer 8, and lens 7) remains unchanged, the optical power of optical transmitter 1 Even if the loss in the optical transmission path becomes small or the loss in the optical transmission path becomes large, the average received light power (the amount by which the modulation component is removed, i.e.,
(corresponding to the output of the integrator 11) also becomes smaller, and as a result of division, a constant output is always obtained.

(発明が解決しようとする課題) 従来の光応用測定装置は以上のように構成されているが
、光送信器1は周囲温度の変化によりその発光波長が変
化し、光センサ部で波長依存性がある場合誤差となる問
題点があった。
(Problem to be Solved by the Invention) The conventional optical measurement device is configured as described above, but the optical transmitter 1 changes its emission wavelength due to changes in ambient temperature, and the optical sensor section exhibits wavelength dependence. There was a problem where an error would occur if there was.

この発明は上記のような問題点を解消するためになされ
たもので1周囲温度が変化しても正確な測定ができる光
応用測定装置を提供するものである。
The present invention has been made to solve the above-mentioned problems and provides an optical measuring device that can perform accurate measurements even when the ambient temperature changes.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)この発明に係
る光応用測定装置は、光センサ部から光受信器までの途
中に光学フィルタを挿入したものである。
(Means and Effects for Solving the Problems) The optical measurement device according to the present invention has an optical filter inserted between the optical sensor section and the optical receiver.

このようにするとこの発明における光応用測定装置は、
光送信器の周囲温度変化により、その波光波長が変化し
ても、光フィルタによりある波長の帯域しか透過しない
ので、波長依存性による誤差は生じなく、正確な測定が
できる。
In this way, the optical application measuring device according to the present invention is
Even if the wavelength of the light wave changes due to changes in the ambient temperature of the optical transmitter, only a certain wavelength band is transmitted through the optical filter, so errors due to wavelength dependence do not occur and accurate measurements can be made.

(実施例)。(Example).

以下、この発明の一実施例を図について説明する。第1
図において、第2図と同一符号は同一のものを示す、1
5は狭帯域フィルタで、ファラデー素子5を通過し、検
光子6により検光され、光ファイバ8に受光された光は
この狭帯域フィルタ15を通過して光受信器9に入射す
るようになされている。その他は従来と同様である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figures, the same symbols as in Figure 2 indicate the same things, 1
Reference numeral 5 denotes a narrow band filter, and the light that passes through the Faraday element 5, is analyzed by the analyzer 6, and is received by the optical fiber 8 passes through this narrow band filter 15 and enters the optical receiver 9. ing. Others are the same as before.

次に動作について説明する。光受信器9に入射する光は
狭帯域フィルタ15を透過するため、この狭帯域フィル
タ15の帯域減分だけの光が受光される。従って周囲温
度により光送信器1の偏光波長が変化しても、光受信器
9で受光される光の波長は一定の帯域を保つこととなる
。この場合、光送信器1の発光スペクトルに対してその
スペクトル内の狭い帯域だけが透過するように上記帯域
フィルタ15を選定しておくと、広い温度範囲に亘り帯
域を一定に保つことができる。光ファイバ2に入った光
は従来の場合と同様の動作をするのてこでは説明を省略
する。
Next, the operation will be explained. Since the light incident on the optical receiver 9 passes through the narrow band filter 15, only the amount of light corresponding to the band decrement of the narrow band filter 15 is received. Therefore, even if the polarization wavelength of the optical transmitter 1 changes depending on the ambient temperature, the wavelength of the light received by the optical receiver 9 will maintain a constant band. In this case, if the bandpass filter 15 is selected so that only a narrow band within the emission spectrum of the optical transmitter 1 is transmitted, the band can be kept constant over a wide temperature range. The light entering the optical fiber 2 operates in the same manner as in the conventional case, so a description of the lever will be omitted.

このように帯域を一定に保つことにより、温度変化で光
パワーが変化するが(光送信器1の発光スペクトルが温
度変化で波長シフトする範囲でスペクトル分布が一定で
ない場合)、これは割算器14で割算処理することによ
り補修され正確な測定ができる。
By keeping the band constant in this way, the optical power changes with temperature changes (if the spectral distribution is not constant in the range where the emission spectrum of optical transmitter 1 shifts in wavelength due to temperature changes), this is due to the divider. By dividing by 14, it is repaired and accurate measurements can be made.

光学フィルタ15は、光送信器1と光ファイバ2の間に
設置する方法が特開昭61−193033に提案されて
いるが1本方法では、たとえばLEDのような発光源の
光を効率よく光ファイバ2に入射させるためには、でき
る限り光フアイバ端面をLEDの発光面に近づけなけれ
ばならず、この部分に光学フィルタ15を設置すること
は光送信器1と光ファイバ2の結合ロスをまねく。それ
に対し本発明では、光ファイバ8と光受信器9との間に
光学フィルタ15を設置している。光受信器9を構成す
るフォトダイオードは、広い受光部を有するものも市販
されており、光ファイバ8と光受信器9との間の結合に
ついては、間隔を多少広げても結合ロスが生じることは
ない。したがってこの部分に光学フィルタ15を設置す
る方が光量を多くとることができ、アライメント調整も
楽である。
A method of installing the optical filter 15 between the optical transmitter 1 and the optical fiber 2 has been proposed in JP-A-61-193033. In order to input the light into the fiber 2, the end face of the optical fiber must be as close as possible to the light emitting surface of the LED, and installing the optical filter 15 in this area will cause coupling loss between the optical transmitter 1 and the optical fiber 2. . In contrast, in the present invention, an optical filter 15 is installed between the optical fiber 8 and the optical receiver 9. Photodiodes constituting the optical receiver 9 are commercially available with wide light-receiving areas, and even if the distance between the optical fiber 8 and the optical receiver 9 is increased somewhat, coupling loss may occur. There isn't. Therefore, by installing the optical filter 15 in this portion, a larger amount of light can be obtained, and alignment adjustment is also easier.

また、本発明においては、光送信器1と偏光子4、ファ
ラデー素子5、検光子6などから構成される光センサ部
との間には光学フィルタが設置されないので、光センサ
部を通過する光量は多く、モニタテレビなどでの光スポ
ットの観測が容易となり、光軸調整が容易となる。
Further, in the present invention, since no optical filter is installed between the optical transmitter 1 and the optical sensor section composed of the polarizer 4, Faraday element 5, analyzer 6, etc., the amount of light passing through the optical sensor section is This makes it easier to observe the light spot on a monitor TV, etc., and makes it easier to adjust the optical axis.

また本発明は第3図に示すように、3個の発光ダイオー
ドIf、Ig、lhからの光を3本の光ファイバ2a 
、 2b 、 2cによってファラデー素子5に送り、
3本の光を別々にファラデー素子5内を通過させ、1点
に集光させて、1本の光ファイバ8に取り込み光受信器
に送る方法に本発明を適用することもできる。このとき
、光学フィルタ15は3本の光が集光している。光学セ
ンサ部と光受信器の間に設置すれば光学フィルタ15は
1個ですむばかりでなく、3つの光ともに同一の光学フ
ィルタ15を通過するので、フィルタ効果は3光とも全
く同一となり、3光のバランスを保つうえで好都合であ
る。本方式において、受光光量を一定とするために、受
光波形をモニタして、この波形が常に同一レベルを保つ
ように発光ダイオードIf、Ig、lhに流す電流をフ
ィードバックし、発光量を調節している。このとき、第
4図に示すように光学フィルタ15の中心波長λfは、
光源の発光スペクトルの中心波長λ。
Further, as shown in FIG. 3, the present invention transmits light from three light emitting diodes If, Ig, and
, 2b, 2c to the Faraday element 5,
The present invention can also be applied to a method in which three beams of light are passed through the Faraday element 5 separately, focused on one point, taken into one optical fiber 8, and sent to an optical receiver. At this time, the optical filter 15 focuses three beams of light. If it is installed between the optical sensor section and the optical receiver, not only one optical filter 15 is required, but also all three lights pass through the same optical filter 15, so the filter effect is exactly the same for all three lights. This is convenient for maintaining the balance of light. In this method, in order to keep the amount of received light constant, the received light waveform is monitored, and the current flowing through the light emitting diodes If, Ig, and lh is fed back to adjust the amount of light emitted so that the waveform always maintains the same level. There is. At this time, as shown in FIG. 4, the center wavelength λf of the optical filter 15 is
Center wavelength λ of the emission spectrum of the light source.

よりいくらか大きめに選ぶ。このようにすれば、一定の
発光量変化に対するフィードバックによる発光ダイオー
ドIf、Ig、lhに流す電流の変化量は小さくできる
。この原理を以下に説明する。いま受光量が減少した場
合を考える。フィードバック回路によって発光ダイオー
ドに流れる電流を増加させ発光量を増加させるが、電流
が増加すると発光ダイオードでの発熱が増加し、周囲温
度が増加して発光スペクトルが長波長側にずれる。いま
Choose something a little larger. In this way, the amount of change in the current flowing through the light emitting diodes If, Ig, and lh due to feedback in response to a constant change in the amount of light emission can be reduced. This principle will be explained below. Now consider a case where the amount of received light decreases. A feedback circuit increases the current flowing through the light emitting diode to increase the amount of light emitted, but as the current increases, heat generation in the light emitting diode increases, ambient temperature increases, and the emission spectrum shifts to the longer wavelength side. now.

λf〉λ。とじているので、λ。が大きくなる程光学フ
ィルタ15を通過できる光量は多くなり、受光量が増加
するためフィードバックにより電流は多少減少する。し
たがって定常状態に移った時には、フィードバックによ
る電流変化は、λ。=λfどしたときより小、さくなる
。また、受光量が増加した場合には、フィードバック回
路によって発光ダイオードに流れる電流が減少し発光量
を減少させると同時に1発光ダイオードの発熱が減少し
て発光スペクトルが短波長側に移行し、光学フィルタ1
5を通過する光量を減少させる。したがってこの場合も
λ。=λfとした場合より、フィードバックによる電流
の変化幅は小さくとることができる。したがって、より
高精度なフィードバックが期待でき、測定器の精度を向
上できる。
λf〉λ. Since it is closed, λ. As the value increases, the amount of light that can pass through the optical filter 15 increases, and since the amount of received light increases, the current decreases somewhat due to feedback. Therefore, when the steady state is reached, the current change due to feedback is λ. = λf. In addition, when the amount of received light increases, the current flowing through the light emitting diode is reduced by the feedback circuit, reducing the amount of light emitted. At the same time, the heat generation of one light emitting diode decreases, and the emission spectrum shifts to the short wavelength side, and the optical filter 1
5 to reduce the amount of light passing through. Therefore, in this case also λ. =λf, the range of current change due to feedback can be made smaller. Therefore, more accurate feedback can be expected and the accuracy of the measuring instrument can be improved.

なお1以上の実施例ではファラデー効果を利用した磁界
測定の例であるが、ポッケルス効果を利用した電界、電
圧測定、光弾性効果を利用した加速測定、その地被測定
量により光強度変調されるものの適用についても同様の
効果を奏する。
Note that the above embodiments are examples of magnetic field measurement using the Faraday effect, electric field and voltage measurement using the Pockels effect, acceleration measurement using the photoelastic effect, and light intensity modulation depending on the amount of ground cover measured. The same effect can be achieved with the application of objects.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、光送信器から光センサ
部までの経路の途中に光学フィルタを挿入したので周囲
温度により光送信器の発光波長が変化しても光学フィル
タによりある波長の帯域しか透過しなく、波長依存性に
よる誤差は生じなく正確な測定ができる。
As described above, according to the present invention, since the optical filter is inserted in the middle of the path from the optical transmitter to the optical sensor, even if the emission wavelength of the optical transmitter changes depending on the ambient temperature, the optical filter allows a certain wavelength band to be emitted. This allows for accurate measurements without wavelength-dependent errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光応用測定装置の構
成図、第2図は従来の光応用測定装置の構成図、第3図
は本発明の他の実施例を示す構成図、第4図は本発明の
フィルタの中心波長と発光スペクトルを示す図である。 1・・・光送信器    2.8・・・光ファイバ4・
・・偏光子     5・・・ファラデー素子6・・・
検光子     9・・・光受信器15・・・光学フィ
ルタ  16・・・導体41・・・光源の発光スペクト
ル 42・・・光学フィルタの帯域 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第 図 λ0 tf λf>10 第 図 ヲ皮炙
FIG. 1 is a configuration diagram of an optical application measurement device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a conventional optical application measurement device, and FIG. 3 is a configuration diagram showing another embodiment of the invention. FIG. 4 is a diagram showing the center wavelength and emission spectrum of the filter of the present invention. 1... Optical transmitter 2.8... Optical fiber 4.
...Polarizer 5...Faraday element 6...
Analyzer 9... Optical receiver 15... Optical filter 16... Conductor 41... Emission spectrum of light source 42... Bandwidth representative of optical filter Patent attorney Yudo Noriyuki Chika Kendai Daishimaru Fig. λ0 tf λf>10 Fig. Roasted skin

Claims (1)

【特許請求の範囲】[Claims] 被測定量により光学特性が変化して光の強度変化をする
光センサ部、この光センサ部に光伝送部を介して光を送
信する光送信器、上記光センサ部からの光を光伝送部を
介して受信する光伝送部及び光受信器から構成される光
応用測定装置において、上記光センサ部と光受信器の間
に狭帯域フィルタから成る光学フィルタを挿入したこと
を特徴とする光応用測定装置。
An optical sensor section whose optical characteristics change depending on the amount to be measured and changes the intensity of light; an optical transmitter that transmits light to this optical sensor section via an optical transmission section; and an optical transmission section that transmits the light from the optical sensor section. An optical application measurement device comprising an optical transmission section and an optical receiver that receive data through the optical sensor, characterized in that an optical filter consisting of a narrow band filter is inserted between the optical sensor section and the optical receiver. measuring device.
JP63173911A 1988-07-14 1988-07-14 Light applied measuring instrument Pending JPH0225757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63173911A JPH0225757A (en) 1988-07-14 1988-07-14 Light applied measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63173911A JPH0225757A (en) 1988-07-14 1988-07-14 Light applied measuring instrument

Publications (1)

Publication Number Publication Date
JPH0225757A true JPH0225757A (en) 1990-01-29

Family

ID=15969365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63173911A Pending JPH0225757A (en) 1988-07-14 1988-07-14 Light applied measuring instrument

Country Status (1)

Country Link
JP (1) JPH0225757A (en)

Similar Documents

Publication Publication Date Title
US6043883A (en) Wavemeter and an arrangement for the adjustment of the wavelength of the signals of an optical source
US5841536A (en) Polarization interferometer apparatus using the polarization dependent phase lag in a birefringent retarder
JPH079386B2 (en) Optical fiber dispersion characteristics measurement method
US10790634B2 (en) Laser system with optical feedback
US6961128B2 (en) Apparatus for detecting cross-talk and method therefor
CN102474357A (en) Optical transceiver and optical fiber gyroscope
US20040051876A1 (en) Wavelength determining apparatus and method
US5003268A (en) Optical signal sampling apparatus
JPH11211571A (en) Wavelength measuring apparatus
US6590666B2 (en) Method and system for optical spectrum analysis with non-uniform sweep rate correction
US6429669B1 (en) Temperature-insensitive electro-optic probe
US4994663A (en) Light intensity correlating apparatus
JPH0526804A (en) Multiple ga detecting device
EP1130813B1 (en) Method and system for optical heterodyne detection using optical attenuation
CN111751845A (en) Laser radar frequency locking device and method for gas detection
JPH0225757A (en) Light applied measuring instrument
US20040033021A1 (en) Wavelength stabilized module, stable wavelength laser beam generating device and optical communication system
JPH02284045A (en) Detection of concentration and pressure of gas with tunable etalon utilized therefor
JPH0716982Y2 (en) Optical frequency change measuring device
JPS61193033A (en) Light applying measuring instrument
KR100343070B1 (en) System and method for real time wavelength watching of each chahnnels in wavelength division multiplexing optical transmission system
JP2591610Y2 (en) Optical frequency modulation characteristics measurement device
JPH0786959B2 (en) Method and device for measuring physical quantity by optical sensor
JPS59670A (en) Optical fiber magnetic field sensor
SU1427971A1 (en) Meter of degree of coherence of laser radiation