JPH0225729A - Method of predicting corrosion of metal in contact with high-temperature water - Google Patents

Method of predicting corrosion of metal in contact with high-temperature water

Info

Publication number
JPH0225729A
JPH0225729A JP17504188A JP17504188A JPH0225729A JP H0225729 A JPH0225729 A JP H0225729A JP 17504188 A JP17504188 A JP 17504188A JP 17504188 A JP17504188 A JP 17504188A JP H0225729 A JPH0225729 A JP H0225729A
Authority
JP
Japan
Prior art keywords
corrosion
contact
amount
temperature water
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17504188A
Other languages
Japanese (ja)
Inventor
Takeya Ohashi
健也 大橋
Taku Honda
卓 本田
Eiji Kashimura
樫村 栄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17504188A priority Critical patent/JPH0225729A/en
Publication of JPH0225729A publication Critical patent/JPH0225729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To predict the corrosion rate of a metallic material by determining the influence that the oxide film consisting of an oxide crystals on the corrosion phenomenon of said material. CONSTITUTION:The nucleus formation and growth of the crystal of the oxide formed when the surface of the metallic material comes into contact with high- temp. water of various conditions (pH, temp., dissolved oxygen concn., flow rate, etc.) are first measured and quantitized. The various conditions of such high temp. are taken into the memory device section of a computer and the quantity of the oxide film and the elution quantity of the metal after the time (t) are measured by using the n-dimensional vector variable with the number of a function as the number of the next order. The elution quantity of the oxide is then calculated by using the similar function groups and the corrosion quantity after the time (t) is predicted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温水と接する金属材料に係り、特に、原子カ
プラントの一次冷却系配管のように、高温の流動水が鉄
鋼材料に接し、腐食が進行する部分での腐食予測方法に
関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to metal materials that come into contact with high-temperature water, and in particular, the present invention relates to metal materials that come into contact with high-temperature water, and in particular, such as the primary cooling system piping of an atomic couplant, where high-temperature flowing water comes into contact with steel materials, corrosion may occur. This paper relates to a method for predicting corrosion in areas where corrosion progresses.

〔従来の技術〕[Conventional technology]

従来、高温水に接する金属の腐食については、コロ−ジ
ョン35.5 (1979年)第219頁から第226
頁(Corrosion 35 、5 (1979)P
219〜226)において論じられているように、定数
を実験値のベストフィツトから求めた、放物線側、ある
いは、対数側の近似による予測がなされていた。しかし
、この方法では、環境及び材料の条件が一つでも実験条
件と異なる場合は、定数が求まらず、腐食の予測が不可
能となる。
Conventionally, corrosion of metals in contact with high-temperature water has been discussed in Corrosion 35.5 (1979), pp. 219 to 226.
Page (Corrosion 35, 5 (1979) P
As discussed in 219-226), predictions have been made by approximating the constant on the parabolic or logarithmic side, which is obtained from the best fit of experimental values. However, with this method, if even one of the environmental and material conditions differs from the experimental conditions, a constant cannot be determined and corrosion prediction becomes impossible.

このような不都合は、腐食によって形成される金属表面
の皮膜が、腐食速度に与える影響について、各条件ごと
に実験的に確かめられるのみで、環境因子と材料因子が
皮膜形成に与える影響を定量的に評価していなかったこ
とによる。
The problem with this problem is that the effect of the film formed on the metal surface due to corrosion on the corrosion rate can only be experimentally confirmed under each condition, and the effects of environmental factors and material factors on film formation cannot be quantitatively determined. This is because they were not evaluated.

本発明は、種々の高温水条件(p Hp温度、溶存酸素
濃度、流速等)での種々の金属材料(ステンレス鋼、炭
素鋼等)の腐食量を長期的にも予測可能にするものであ
る。
The present invention makes it possible to predict the amount of corrosion of various metal materials (stainless steel, carbon steel, etc.) under various high-temperature water conditions (pH temperature, dissolved oxygen concentration, flow rate, etc.) over the long term. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は金属表面に形成される酸化物結晶の皮膜
層の腐食速度に与える影響についての検討が十分になさ
れておらず、腐食速度が低減することに関する定量的な
解釈ができないという問題があった。
The above-mentioned conventional technology has the problem that the influence of the oxide crystal film layer formed on the metal surface on the corrosion rate has not been sufficiently studied, and it is not possible to quantitatively interpret the reduction in the corrosion rate. Ta.

本発明の目的は、酸化物結晶によって構成される酸化皮
膜の腐食現象に与える影響を明らかにし、金属材料の腐
食速度を予測する方法を提供することにある。
An object of the present invention is to clarify the influence of an oxide film composed of oxide crystals on corrosion phenomena, and to provide a method for predicting the corrosion rate of metal materials.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、金属材料表面が各種条件の高温水に接した
時に形成される酸化物の結晶の核生成。
The above purpose is to nucleate oxide crystals that are formed when the surface of a metal material comes into contact with high-temperature water under various conditions.

及び、その成長を定量化することにより達成される。and by quantifying its growth.

まず、高温水の温度の影響については、高温になるほど
酸化物の成長速度を大きくすることが知られているが、
ステンレス鋼、及び、炭素鋼ではそれぞれ250”Cと
150℃付近で最大の腐食速度を示し、それ以上では高
温になるにもかかわらず腐食速度は減少する。これは酸
化物が金属表面をある程度−様に覆い、酸化剤の金属面
への接触をさまたげるためである。従って、他の条件が
一定であれば、ある温度での酸化物の結晶数を求めるこ
とにより、他の温度でも同数の結晶が形成され、その成
長速度を温度の関数として基本的に求めることができる
First, regarding the influence of the temperature of high-temperature water, it is known that the higher the temperature, the faster the growth rate of oxides.
Stainless steel and carbon steel show maximum corrosion rates at around 250"C and 150℃, respectively, and above that the corrosion rate decreases despite the high temperature. This is because oxides damage the metal surface to a certain extent. This is to prevent the oxidizing agent from contacting the metal surface.Therefore, if other conditions are constant, by determining the number of oxide crystals at a certain temperature, it is possible to obtain the same number of crystals at other temperatures. is formed, and its growth rate can essentially be determined as a function of temperature.

次に、溶存酸素濃度については、温度と逆に酸化物の結
晶核の生成個数を左右し、核の成長速度との関係はない
と考えられ、核生成数と溶存酸素濃度の関数が他の条件
が一定ならば一義的に定まる。
Next, regarding the dissolved oxygen concentration, it is thought that the number of oxide crystal nuclei generated is inversely affected by the temperature, and there is no relationship with the growth rate of the nuclei. If the conditions are constant, it is uniquely determined.

第三に、pHについては、pH−’M1位ダイヤグラム
(PourvaiX線図)にみられるように、各電位で
の金属の安定な状態(M化物かカチオンか、あるいは、
金属そのままである等)は知ることができるので、高温
水中腐食電位における金属の相を求め、p Hの変化で
基準(pH7とする)と比較して、溶出し易い領域に近
づくか、あるいは、酸化物形成域に近づく等を線図中の
距離を用いて定量的に評価することができる。
Thirdly, regarding pH, as seen in the pH-'M1 diagram (Pourvai X diagram), the stable state of the metal at each potential (M oxide, cation, or
Therefore, we can determine the phase of the metal at the corrosion potential in high-temperature water, and compare it with the standard (pH 7) based on the change in pH to find out whether it approaches the region where it is easy to elute. Approaching the oxide formation region, etc. can be quantitatively evaluated using the distance in the diagram.

このような高温の各種条件を計算機記憶装置部に取り込
み、関数の数を次元の数とした1次ベクトル変数を用い
て、時間(シ)後の酸化皮膜量と金属溶出量とを求める
These various high-temperature conditions are loaded into the computer storage unit, and the amount of oxide film and the amount of metal eluted after a period of time are determined using a linear vector variable in which the number of functions is the number of dimensions.

次に、酸化物の溶出量を同様の関数グループを用いて計
算し、これにより、時間(1)後の腐食量を予測する。
Next, the amount of oxide elution is calculated using a similar function group, and the amount of corrosion after time (1) is thereby predicted.

最後に、その他の因子(材料因子、流速、な位の変化等
)についても関数系を作り同様のベクトル計算を行う。
Finally, a function system is created for other factors (material factors, flow velocity, changes in position, etc.) and similar vector calculations are performed.

ここで、特に、既に腐食量の実測値が二点以上束まって
いる場合は、前述の計算結果と照合し、誤差を縮少する
ことができる。
Here, in particular, if the actual measured values of the amount of corrosion are already grouped together at two or more points, the error can be reduced by comparing them with the above-mentioned calculation results.

〔作用〕[Effect]

高温水に接する金属材料の表面に形成される酸化物の結
晶の個数、及び、粒径の変化を予測するために、温度、
溶存酸素濃度、pHのベクトル関数は合成され、特定条
件における酸化物結晶の個数、及び、粒径の経時変化は
一定の範囲をもつ一組の変数となり、表面が酸化物で覆
われるまで、漸次増加する。ここで、酸化物の粒径と個
数とから酸化皮膜の体積を求める。これに密度を乗じ酸
化皮膜量を計算する。次に、酸化物結晶の分布、及び1
体積から酸化皮膜中の空孔の存在割合(空孔率)を求め
、金属の溶出(拡散移動量)が求まる。なお、前述のベ
クトル関数は、酸化物結晶を母材金属を基にして形成す
る酸化剤(Oz、0H−)の酸化皮膜中の拡散速度を求
めるために、再び。
Temperature,
Vector functions of dissolved oxygen concentration and pH are synthesized, and the number of oxide crystals under specific conditions and changes in particle size over time become a set of variables with a fixed range, and gradually change until the surface is covered with oxide. To increase. Here, the volume of the oxide film is determined from the particle size and number of oxide particles. Multiply this by the density to calculate the amount of oxide film. Next, the distribution of oxide crystals and 1
The proportion of pores in the oxide film (porosity) is determined from the volume, and the metal elution (diffusion transfer amount) is determined. Note that the vector function described above is used again to determine the diffusion rate in the oxide film of the oxidizing agent (Oz, 0H-) that forms the oxide crystal based on the base metal.

ベクトル関数自体を生じることになる。すなわち、繰り
返し関数を関数中に取り込むことにより、より現実を再
現したモデルとなり誤差が減少する。
This will result in the vector function itself. That is, by incorporating the repetitive function into the function, the model becomes a model that more accurately reproduces reality, and errors are reduced.

〔実施例〕〔Example〕

〈実施例1〉 第1表の化学組成(重量%)をもつJISSTS42炭
素鋼を、溶存酸素濃度を調整した288℃の純水(液体
)中に浸漬し、腐食させた場合の腐食量を予測するため
に、炭素鋼表面に形成された酸化物結晶の粒径と表面密
度を本発明により求めた。その結果を第1図に示す。ま
た、この結果から求めた酸化皮膜中の細孔の半径と細孔
長さについての計算結果を各Doごとに示したものが第
2図である。1は酸化物粒径、2は酸化物数、3は刺孔
半径、4は細孔長さ。
<Example 1> Predict the amount of corrosion when JISSTS42 carbon steel having the chemical composition (wt%) shown in Table 1 is immersed in pure water (liquid) at 288°C with adjusted dissolved oxygen concentration and corroded. In order to do this, the grain size and surface density of oxide crystals formed on the surface of carbon steel were determined according to the present invention. The results are shown in FIG. Further, FIG. 2 shows calculation results for each Do of the radius and length of the pores in the oxide film determined from these results. 1 is the oxide particle size, 2 is the number of oxides, 3 is the puncture radius, and 4 is the pore length.

これらの結果を基に一千時間後の各Doでの腐食量を求
めた結果を第3図に示す。
Based on these results, the amount of corrosion at each Do after 1,000 hours was determined and the results are shown in FIG.

第   1   表 〈実施例2〉 第1表の化学組成(重量%)をもつJISSTS42炭
素鋼を溶存酸素濃度を脱気条件及び1000ppbとし
た場合の腐食量を本発明によす予測し、実測値と比較し
た。その結果を第2表に示す。1000時間経過時の腐
食量は実測値と比較し±20%以内の範囲で予測できる
ことがわかる。
Table 1 <Example 2> The amount of corrosion of JISSTS42 carbon steel having the chemical composition (wt%) shown in Table 1 under degassing conditions and with a dissolved oxygen concentration of 1000 ppb was predicted according to the present invention, and the actual measured values were calculated. compared with. The results are shown in Table 2. It can be seen that the amount of corrosion after 1000 hours can be predicted within a range of ±20% compared to the actual measured value.

第  2  表 〈実施例3〉 金属表面に形成される酸化皮膜を球形とし、その成長を
次の微分方程式で求める。
Table 2 (Example 3) The oxide film formed on the metal surface is assumed to be spherical, and its growth is determined using the following differential equation.

t t dt (1)式は最外層、(2)、 (3)式は金属側へ成長
しA1−A3は定数で、tは高温水に接する時間を示す
t t dt Equation (1) represents the outermost layer, Equations (2) and (3) represent growth toward the metal side, A1-A3 are constants, and t represents the time of contact with high-temperature water.

次に、この粒径の経時変化から、酸化皮膜中の細孔の半
径と長さが求まり、酸化剤の拡散定数とこの細孔での移
動量から腐食量が求まる。
Next, the radius and length of the pores in the oxide film are determined from the change in particle size over time, and the amount of corrosion is determined from the diffusion constant of the oxidizing agent and the amount of movement in the pores.

〈実施例4〉 鉄が高温流動水中で腐食する時、入口側溶存酸素濃度と
出口側溶存酸素を測定したところ、溶存酸素の減少量と
腐食量の間の一次線形係数を見い出した。第3図に溶存
酸素の減少量と腐食量の関係を示す。これより、腐食量
を表示する式として次式が得られた。単位は重量(g)
である。
<Example 4> When iron corrodes in high-temperature flowing water, the dissolved oxygen concentration on the inlet side and the dissolved oxygen on the outlet side were measured, and a linear linear coefficient between the amount of decrease in dissolved oxygen and the amount of corrosion was found. Figure 3 shows the relationship between the amount of reduction in dissolved oxygen and the amount of corrosion. From this, the following formula was obtained as a formula to display the amount of corrosion. Unit is weight (g)
It is.

Wre = 2 、33 Wo + aWFI!:鉄重
量 Wo :酸素重量 ここで、αは0以上の定数で高温はど数値が増加するが
、純鉄の100℃付近の値は0.1 程度に低く、他の
合金のように他のパラメータの導入が不要である。
Wre = 2, 33 Wo + aWFI! : Iron weight Wo : Oxygen weight Here, α is a constant greater than 0, and the value increases at high temperatures, but the value of pure iron near 100°C is as low as 0.1, and like other alloys, No need to introduce parameters.

〈実施例5〉 原子カプラント冷却系配管(炭素III)の腐食量を予
測するために、移動酸素量計算プログラム及び腐食予測
表示プログラムを設計した。酸素量についての計算方法
は拡散方程式の解法を基にし、腐食予測表示は、Xy 
yの二次元作図プログラムによる。
<Example 5> In order to predict the amount of corrosion of the atomic couplant cooling system piping (carbon III), a transferred oxygen amount calculation program and a corrosion prediction display program were designed. The calculation method for the amount of oxygen is based on the solution of the diffusion equation, and the corrosion prediction display is based on the Xy
Based on the y two-dimensional drawing program.

第3表に入力及び出力項目を示す。加速因子列とは腐食
速度の変化に対し一単位での寄与が大きいものの順列を
示す。
Table 3 shows the input and output items. The acceleration factor sequence indicates the permutation of factors that make a large contribution per unit to changes in corrosion rate.

第  3 表 他のプラントでも配管破断の防止や交換時期の設定に好
適である。
Table 3 This method is suitable for preventing pipe breakage and setting the replacement period in other plants as well.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラント構成部材内面の直接測定が不
可能な部分での腐食量が簡便な計算により予測される。
According to the present invention, the amount of corrosion in a portion of the inner surface of a plant component that cannot be directly measured can be predicted by simple calculation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の酸化物結晶の粒径と表面密
度の予測図、第2図はその時に形成された細孔の半径と
長さの溶存酸素濃度依存性の予測図、第3図は溶存酸素
の減少量と腐食量の関係を示す図である。 1・・・酸化物の粒径、2・・・酸化物数、3・・・細
孔半径、4・・・細孔の長さ。 また、要測定域前後の酸素消費量や、材料表面への酸素
の到達量を測定することにより、腐食量を知ることがで
きる。これによって、原子カプラントの被ばく線量率の
予測や、低減が可能どなり、(≧− 第 図 溶分西交素ノ友l爬 (PPb) 隋 図 遺rJ−M粱;1/岐ppb)
FIG. 1 is a predicted diagram of the grain size and surface density of an oxide crystal according to an example of the present invention, and FIG. 2 is a predicted diagram of the dependence of the radius and length of the pores formed at that time on dissolved oxygen concentration. FIG. 3 is a diagram showing the relationship between the amount of reduction in dissolved oxygen and the amount of corrosion. 1... Particle size of oxide, 2... Number of oxides, 3... Pore radius, 4... Pore length. Furthermore, the amount of corrosion can be determined by measuring the amount of oxygen consumed before and after the measurement area and the amount of oxygen reaching the material surface. This makes it possible to predict and reduce the exposure dose rate of the atomic couplant (≧- PPb)

Claims (1)

【特許請求の範囲】 1、100℃を越える加熱水と接する金属材料の接水面
の腐食量を、前記接水面の表面に形成される酸化皮膜の
空隙部を移動する酸素量から求めることを特徴とする高
温水接触金属の腐食予測方法。 2、特許請求の範囲第1項において、 酸化物結晶が前記金属材料の表面に一次元で、相互に接
触するまで成長した後に、より金属内部へと酸素が酸化
物の空隙を移動することにより腐食が進行するという推
論を用いたことを特徴とする高温水接触金属の腐食予測
方法。 3、特許請求の範囲第2項において、 接水側の前記酸化物層から第n層まで腐食が進行した場
合には、前記酸化物結晶粒径の比が1:2^−^1^/
^3:3^−^1^/^3……:(n−1)^−^1^
/^3:n^−^1^/^3となり、酸素の移動経路が
縮少し腐食速度の減少を示すことを可能にしたモデルを
有することを特徴とする高温水接触金属の腐食予測方法
。 4、特許請求の範囲第1項において、 前記金属材料の前記腐食量を表示する装置を用いること
を特徴とする高温水接触金属の腐食予測方法。 5、特許請求の範囲第4項において、 前記腐食量を表示する装置の画面構成が、接水温度、流
速、溶存酸素濃度及びpHを入力する環境因子群と、合
金組成及び接水面積を入力する材料因子群から成る入力
部と、酸化皮膜量と溶出量の時間推移を示す腐食予測図
と材料厚さの時間推移を示す材料減肉予測図から成る出
力部とから成ることを特徴とする高温水接触金属の腐食
予測方法。 6、特許請求の範囲第4項において、 前記腐食量を表示する装置の画面構成が、前記金属材料
の表面での前記酸化皮膜の成長を示す前記酸化物結晶の
形状変化を、前記金属材料の表面を上部から目視し拡大
することにより得られる像を経時的に示す出力部を含む
ことを特徴とする高温水接触金属の腐食予測方法。 7、特許請求の範囲第1項において、 前記酸化皮膜を介し前記金属材料表面へ移動する酸素量
を検知するために、前記接水金属の両端に酸素量を測定
する装置を設置し、一定流量の高温水を表面上を通過さ
せ溶存酸素濃度の減少量を測定する機能を持たせること
を特徴とする高温水接触金属の腐食予測方法。 8、特許請求の範囲第1項において、 前記金属材料の表面に100mV以下の電圧を印加し、
腐食反応の進行による電子移動がもたらす迷走電流の発
生による電圧変化を測定し、電圧変化量の絶対値を時間
微分して電子移動量を予測することにより移動酸素量の
予測をすることを特徴とする高温水接触金属の腐食予測
方法。 9、特許請求の範囲第1項において、 前記金属材料がFe、Ni、Coのいずれかが基になつ
ている合金により構成されていることを特徴とする高温
水接触金属の腐食予測方法。
[Claims] 1. The amount of corrosion on the water contact surface of a metal material that comes into contact with heated water exceeding 100°C is determined from the amount of oxygen that moves through the voids of the oxide film formed on the surface of the water contact surface. A method for predicting corrosion of metals in contact with high temperature water. 2. In claim 1, after the oxide crystals have grown one-dimensionally on the surface of the metal material until they are in contact with each other, oxygen moves further into the metal through the voids of the oxide. A method for predicting corrosion of metals in contact with high-temperature water, characterized by using inference that corrosion will progress. 3. In claim 2, if corrosion progresses from the oxide layer on the water contact side to the n-th layer, the ratio of the oxide crystal grain sizes is 1:2^-^1^/
^3: 3^-^1^/^3...: (n-1)^-^1^
/^3:n^-^1^/^3, and a method for predicting corrosion of metals in contact with high-temperature water, characterized by having a model that makes it possible to show a reduction in the corrosion rate due to a reduction in the movement path of oxygen. 4. A method for predicting corrosion of a metal in contact with high temperature water, as set forth in claim 1, comprising using a device that displays the amount of corrosion of the metal material. 5. In claim 4, the screen configuration of the device for displaying the amount of corrosion includes a group of environmental factors for inputting water contact temperature, flow rate, dissolved oxygen concentration, and pH, and alloy composition and water contact area for input. an input section consisting of a material factor group, and an output section consisting of a corrosion prediction diagram showing the time course of the oxide film amount and elution amount, and a material thinning prediction diagram showing the time course of the material thickness. Method for predicting corrosion of metals in contact with high temperature water. 6. Claim 4, wherein the screen configuration of the device for displaying the amount of corrosion displays changes in the shape of the oxide crystals indicating the growth of the oxide film on the surface of the metal material. A method for predicting corrosion of a metal in contact with high-temperature water, the method comprising: an output section that displays over time an image obtained by visually observing and enlarging the surface from above. 7. In claim 1, in order to detect the amount of oxygen moving to the surface of the metal material through the oxide film, a device for measuring the amount of oxygen is installed at both ends of the metal in contact with water, and a constant flow rate is provided. A method for predicting corrosion of metals in contact with high-temperature water, characterized by having a function of passing high-temperature water over the surface and measuring the amount of decrease in dissolved oxygen concentration. 8. In claim 1, applying a voltage of 100 mV or less to the surface of the metal material,
The method is characterized in that the amount of transferred oxygen is predicted by measuring the voltage change due to the generation of stray current caused by electron transfer due to the progress of the corrosion reaction, and predicting the amount of electron transfer by differentiating the absolute value of the voltage change with time. A method for predicting corrosion of metals in contact with high temperature water. 9. A method for predicting corrosion of a metal in contact with high temperature water according to claim 1, wherein the metal material is made of an alloy based on any one of Fe, Ni, and Co.
JP17504188A 1988-07-15 1988-07-15 Method of predicting corrosion of metal in contact with high-temperature water Pending JPH0225729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17504188A JPH0225729A (en) 1988-07-15 1988-07-15 Method of predicting corrosion of metal in contact with high-temperature water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17504188A JPH0225729A (en) 1988-07-15 1988-07-15 Method of predicting corrosion of metal in contact with high-temperature water

Publications (1)

Publication Number Publication Date
JPH0225729A true JPH0225729A (en) 1990-01-29

Family

ID=15989183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17504188A Pending JPH0225729A (en) 1988-07-15 1988-07-15 Method of predicting corrosion of metal in contact with high-temperature water

Country Status (1)

Country Link
JP (1) JPH0225729A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2393781A (en) * 2002-10-01 2004-04-07 Lattice Intellectual Property Corrosion prediction based on the detection of temperature and fluids by fibre optics
CN112735538A (en) * 2020-12-09 2021-04-30 中国电器科学研究院股份有限公司 Metal atmospheric corrosion rate prediction algorithm based on substance transfer dynamics model

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2393781A (en) * 2002-10-01 2004-04-07 Lattice Intellectual Property Corrosion prediction based on the detection of temperature and fluids by fibre optics
GB2393781B (en) * 2002-10-01 2006-01-11 Lattice Intellectual Property Corrosion prediction
CN112735538A (en) * 2020-12-09 2021-04-30 中国电器科学研究院股份有限公司 Metal atmospheric corrosion rate prediction algorithm based on substance transfer dynamics model
CN112735538B (en) * 2020-12-09 2022-01-21 中国电器科学研究院股份有限公司 Metal atmospheric corrosion rate prediction algorithm based on substance transfer dynamics model

Similar Documents

Publication Publication Date Title
Gröbner et al. Experimental investigation and thermodynamic calculation of ternary Al–Ca–Mg phase equilibria
Schwind et al. σ-phase precipitation in stabilized austenitic stainless steels
Anderko et al. A general model for the repassivation potential as a function of multiple aqueous solution species
Sun et al. Point defect model for passivity breakdown on hyper-duplex stainless steel 2707 in solutions containing bromide at different temperatures
Cho et al. Quantitative analysis of repassivation kinetics of ferritic stainless steels based on the high field ion conduction model
Katona et al. Prediction of maximum pit sizes in elevated chloride concentrations and temperatures
Shoesmith Kinetics of aqueous corrosion
Wu et al. Effect of hydrogen trapping on hydrogen permeation in a 2205 duplex stainless steel: Role of austenite–ferrite interface
Ilinčev Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb–Bi on structural materials with and without corrosion inhibitors
Sk et al. The effects of Cr/Mo micro-alloying on the corrosion behavior of carbon steel in CO2-saturated (sweet) brine under hydrodynamic control
Chen et al. Oxidation behavior of 304 stainless steel during crevice corrosion in high-temperature pure water
French et al. Molecular dynamics studies of grain boundary mobility and anisotropy in BCC γ-uranium
Rosa et al. Cellular growth during transient directional solidification of Pb–Sb alloys
Yi et al. Study on anisotropic oxide formation rate in the initial corrosion stage of 90Cu-10Ni alloy in alkaline NaCl solution by experiments and first-principles calculation
JPH0225729A (en) Method of predicting corrosion of metal in contact with high-temperature water
Anderson et al. Carburization of austenitic stainless steel in liquid sodium
Soma et al. Multilayered surface oxides within crevices of Type 316L stainless steels in high-temperature pure water
Boettinger et al. Development of multicomponent solidification micromodels using a thermodynamic phase diagram data base
Zhang et al. Understanding the relationship between slag crystallization behaviour and electrical conductivity under isothermal conditions for online slag solidification monitoring in slag recycling
Ganesan et al. Analysis of CREVONA sodium loop material
Sugden et al. Thermodynamic estimation of liquidus, solidus Ae 3 temperatures, and phase compositions for low alloy multicomponent steels
Nagumo Solid solution
Cui et al. Assessment of atomic mobilities in fcc Al-Zn and Ni-Zn alloys
Ferreira A Non-equilibrium nucleation model to calculate the density of state and its application to the heat capacity of stoichiometric UO2
Singh et al. Influence of temperature and sulphate ion on corrosion of mild steel in molten NaNO3