JPH02257005A - Phase shifted lateral deviation speckle polarization interferometer - Google Patents

Phase shifted lateral deviation speckle polarization interferometer

Info

Publication number
JPH02257005A
JPH02257005A JP7985589A JP7985589A JPH02257005A JP H02257005 A JPH02257005 A JP H02257005A JP 7985589 A JP7985589 A JP 7985589A JP 7985589 A JP7985589 A JP 7985589A JP H02257005 A JPH02257005 A JP H02257005A
Authority
JP
Japan
Prior art keywords
deformation
speckle
measured
image
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7985589A
Other languages
Japanese (ja)
Inventor
Suezo Nakatate
中楯 末三
Ichiro Yamaguchi
一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP7985589A priority Critical patent/JPH02257005A/en
Publication of JPH02257005A publication Critical patent/JPH02257005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To quantitatively analyze the deformation quantity and strain quantity of an object to be measured with a simple measuring system by inserting a double refraction wedge which is movable in parallel and a polarizing plate between the image pickup system of the lateral deviation interferometer and the surface to be measured. CONSTITUTION:The double refraction wedge plate 14 which is movable in parallel and the polarizing plate 15 are inserted between the object 13 to be measured of the lateral deviation interferometer and an image-forming lens 16. The two laterally deviated object speckle images of the object 13 to be measured are recorded in a computer 19 before and after the deformation. The computer calculates the square of the difference of the images to obtain the stripe patterns of the object deformation quantity. The wedge plate 14 is then moved laterally and the speckle images changed in the phase between the orthogonally polarized light rays are taken into the computer 19 which calculates the square of the difference from the speckle image before the deformation to obtain the speckle interference fringes shifted in the phase. A Fourier coeffts. are calculated by using the interference fringes and the physical properties of a new stock etc., by the deformation thereof are quantitatively evaluated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、位相シフト横ずらしスペックル偏光干渉計に
より、粗面物体の変形量を自動測定する測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a measuring device that automatically measures the amount of deformation of a rough surface object using a phase shift laterally shifted speckle polarization interferometer.

(従来技術) 粗面物体の変形量を計測することは、工学、医学、歯学
などの広範囲の学問分野ばかりでなく、電気・電子機器
、航空や複合材料などの製造業にとっても、極めて重要
な計測項目となっている。
(Prior art) Measuring the amount of deformation of rough objects is extremely important not only in a wide range of academic fields such as engineering, medicine, and dentistry, but also in manufacturing industries such as electrical and electronic equipment, aviation, and composite materials. This is a measurement item.

特に製造業では、構造物の変形解析は、目標物の基本的
な設計思想をも決定するものであるので、実時間で簡便
な計測法に対する要求は強い。現在の変形測定の主流は
、歪ゲージからの多次元電気信号を処理・解析するもの
であるが、物体変形が複雑になる場合でも、このような
多点計測では不十分であり、面情報を得ることが不可欠
となる。
Particularly in the manufacturing industry, deformation analysis of structures also determines the basic design concept of the target object, so there is a strong demand for a simple measurement method in real time. The current mainstream method of deformation measurement is to process and analyze multidimensional electrical signals from strain gauges, but even when object deformation is complex, such multi-point measurement is insufficient, and it is necessary to analyze surface information. It is essential to obtain it.

また医学などの分野では対象物が柔らかく、歪ゲージを
張り付けるのが不可能となる。このような要求を満たす
測定法としてスペックル干渉法があリ、変形量の等高線
を表す縞模様を実時間観察することができる。さらに、
参照光の位相をシフトさせて画像を取り込み、計算機で
処理・解析する位相シフト法を用いると変形量を定量的
に測定することができることを本発明者はすでに特開昭
60202984号に提案した。
Furthermore, in fields such as medicine, objects are soft and it is impossible to attach strain gauges to them. Speckle interferometry is a measurement method that satisfies these requirements, and allows real-time observation of striped patterns representing contour lines of the amount of deformation. moreover,
The present inventor has already proposed in Japanese Patent Laid-Open No. 60202984 that the amount of deformation can be measured quantitatively by using a phase shift method in which an image is captured by shifting the phase of a reference light and then processed and analyzed by a computer.

(発明が解決しようとする問題点) しかし、従来この方法をマイケルソン型の干渉計に適応
していたために、外部からの振動や熱変形の影響を受は
易い欠点があった。一方外乱に強い方法として、スペッ
クル横ずらし干渉計がある。
(Problems to be Solved by the Invention) However, since this method has conventionally been applied to a Michelson type interferometer, it has the disadvantage that it is easily influenced by external vibrations and thermal deformation. On the other hand, a speckle lateral displacement interferometer is a method that is resistant to external disturbances.

これは結像系により被測定物体の画像を横にずらせて干
渉させ、被測定物体の変形量の1次微分を縞の等高線と
して得るものである。この手法は画像を横ずらしするだ
けであるので外乱に強い特徴がある。しかし、この横ず
らしスペックル干渉計で得られる干渉縞を定量解析する
ために位相シフト法を導入しようとすると、新たに画像
の横ずらし用のマイケルソン干渉計を構成する必要があ
り、横ずらし干渉計の特徴が失われてしまう。また、画
像の横ずらし素子として偏光を利用したサバール板を用
いる方法も提案されているが、この素子を用いる手法で
は位相シフト法を導入することができない。
In this method, images of the object to be measured are laterally shifted using an imaging system to interfere with each other, and the first derivative of the amount of deformation of the object to be measured is obtained as contour lines of fringes. Since this method only shifts the image laterally, it is resistant to external disturbances. However, when trying to introduce a phase shift method to quantitatively analyze the interference fringes obtained with this lateral-shifting speckle interferometer, it is necessary to construct a new Michelson interferometer for lateral-shifting the image, and The characteristics of the interferometer will be lost. Furthermore, a method using a Savart plate that uses polarization as an image lateral shifting element has been proposed, but a method using this element does not allow the introduction of a phase shift method.

(課題を解決するための手段) 本発明は、横ずらし偏光干渉計を用い、被測定物体の画
像を横にずらすと同時に、その横ずらし画像を作る直交
偏光間の位相をシフトさせることを特徴とし、これによ
り例えば複数枚のスペックル像を計算機に取り込み、演
算・処理することにより、被測定物体の変形量や歪量を
自動的に定量解析するシステムが提供される。
(Means for Solving the Problems) The present invention uses a laterally shifted polarization interferometer to laterally shift an image of an object to be measured, and at the same time shifts the phase between orthogonal polarized lights that form the laterally shifted image. This provides a system that automatically quantitatively analyzes the amount of deformation and strain of an object to be measured by, for example, importing a plurality of speckle images into a computer, calculating and processing them.

本発明を具体的に説明すると、被測定物体にレーザー光
を照射し、その被測定物体から拡散反射して来た光を結
像レンズでテレビカメラの感光面上に結ぶようにするが
、この時結像レンズ系の内、前または後に複屈折ウェッ
ジ板と偏光板を挿入し、被測定物体の2つの横ずらしし
た物体スペックル像を得る。このスペックル像を物体変
形前と後で計算機に記録し、それらの画像の差の2乗を
計算すると、物体変形量の空間1次微分の等高線を表ず
縞模様が得られる。次に結像系に入れた複屈折ウェッジ
板を横に移動させ、横ずらし像を作る直交偏光間の位相
を変えてスペックル像を計算機に取り込み、変形前のス
ペックル像との差の2乗を計算すると、位相のずれたス
ペックル干渉縞を作ることができる。この位相のずれた
スペックル干渉縞を用いてフーリエ係数を計算し、計算
した余弦と正弦成分を用いて逆正接を計算すると、物体
変形量の1次微分値を定量的かつ自動的に求めることが
できる。この複屈折ウェッジの移動は、ステッピングモ
ーターやDCモータ−、ビゾエ素子やボイスコイルなど
の通常の駆動系を用いて行うことができる。
To explain the present invention in detail, a laser beam is irradiated onto an object to be measured, and the light that is diffusely reflected from the object is focused onto the photosensitive surface of a television camera using an imaging lens. A birefringent wedge plate and a polarizing plate are inserted in the front or rear of the imaging lens system to obtain two laterally shifted object speckle images of the object to be measured. When this speckle image is recorded on a computer before and after object deformation and the square of the difference between these images is calculated, a striped pattern is obtained that does not represent the contour line of the spatial first derivative of the amount of object deformation. Next, the birefringent wedge plate placed in the imaging system is moved laterally to change the phase between the orthogonal polarized lights that create the laterally shifted image, and the speckle image is imported into a computer. By calculating the power, it is possible to create out-of-phase speckle interference fringes. By calculating the Fourier coefficient using this out-of-phase speckle interference pattern and calculating the arctangent using the calculated cosine and sine components, it is possible to quantitatively and automatically obtain the first derivative of the amount of object deformation. I can do it. This birefringent wedge can be moved using a conventional drive system such as a stepping motor, a DC motor, a Vizoet element, or a voice coil.

さらに物体照明方向を、物体表面垂直方向に対して対称
な2方向とし、各方向から得られたスペックル干渉縞を
用いると、物体変形の傾きと歪量を分離して測定するこ
ともできる。
Further, by setting the object illumination direction to two directions symmetrical to the direction perpendicular to the object surface and using speckle interference fringes obtained from each direction, it is also possible to separately measure the inclination of object deformation and the amount of strain.

画像の横ずらしと光の位相シフトとの両方の機能を兼ね
備える偏光素子としては、前記の複屈折ウェッジ板が最
も簡単な素子であるが、ウォラストンプリズムやソレイ
ユ・ビバネ補償板とサバール板の組合せや、ウォラスト
ンプリズムの絹合せなどのように偏光素子の組合せが考
えられる。特にウォラストンプリズムの組合せは、画像
の横ずらし量を可変できる特徴がある。
As a polarizing element that has both the functions of horizontally shifting an image and shifting the phase of light, the birefringent wedge plate described above is the simplest element, but a combination of a Wollaston prism, a Soleil-Vivanet compensator, and a Savard plate is also available. Alternatively, combinations of polarizing elements can be considered, such as a combination of Wollaston prisms and silk. In particular, the combination of Wollaston prisms has the characteristic that the amount of lateral shift of the image can be varied.

(作用) 本発明を図面を用いてさらに説明する。第4図には本発
明の測定原理を表す基本的な光学系を示した。レーザー
照明された粗面物体41を、複屈折ウェッジ板42とレ
ンズ43を用いて結像しスペックル像を得る。この時複
屈折ウェッジ板の主軸は図中に矢印(−)で示しである
。また、aはウェッジ角である。したがって複屈折ウェ
ッジ板肉で常光線と異常光線の屈折率が異なるために、
物体面上の2点PとQとで拡散反射したそれぞれの直交
偏光が結像面上44の1点pで合わさることになる。し
たがってこの結像系ではX軸方向にδXだけずれた2つ
の画像が観察される。次に光の干渉項を得るために複屈
折ウェッジ板とレンズの間に偏光板45を挿入し、その
偏光角はウェッジ板の主軸に対して45°となるように
する。この偏光板を調節することによって、横ずれした
2画像の強度を等しくするようにできる。このようにし
て物体上の2点が干渉してスペックル像を形成している
ので、この画像をテレビカメラを用いて撮像し、A/D
変換した後、計算機に記録する。
(Function) The present invention will be further explained using the drawings. FIG. 4 shows a basic optical system representing the measurement principle of the present invention. A rough surface object 41 illuminated with a laser is imaged using a birefringent wedge plate 42 and a lens 43 to obtain a speckle image. At this time, the main axis of the birefringent wedge plate is indicated by an arrow (-) in the figure. Further, a is a wedge angle. Therefore, since the refractive index of the ordinary ray and the extraordinary ray are different in the birefringent wedge plate,
The respective orthogonal polarized lights diffusely reflected at two points P and Q on the object plane are combined at one point p on the image plane 44. Therefore, in this imaging system, two images shifted by δX in the X-axis direction are observed. Next, in order to obtain a light interference term, a polarizing plate 45 is inserted between the birefringent wedge plate and the lens, and its polarization angle is set to 45° with respect to the principal axis of the wedge plate. By adjusting this polarizing plate, the intensities of the two laterally shifted images can be made equal. In this way, the two points on the object interfere and form a speckle image, so this image is captured using a television camera, and the A/D
After conversion, record it on the computer.

物体変形前のこの画像をS。とじ、物体変形後のスペッ
クル像をS、とする。物体変形後に複屈折ウェッジ板を
X軸方向に移動すると、ウェッジの厚みが変化し、それ
にともなって2画像の形成する直交偏光間の位相差も変
化する。したがって例えば偏光間の位相差が90°、1
80°、270゜となるようにウェッジを移動してスペ
ックル像S2、S3、S4を計算機に記録し、計算機に
よりそれらの画像の差の2乗(Si  5o)J+ =
1〜4)を計算するとスペックル干渉縞■1〜I4を作
ることができる。干渉縞I、は物体変形の空間1次微分
の等直線を表す。また得られた干渉縞の位相はそれぞれ
90°ずつずれているので、干渉縞の余弦成分CをII
   I3で、正弦成分SをT=   I2で求めるこ
とができる。したがってこの正弦成分と余弦成分を用い
て逆正接を計算すると、物体変形の空間1次微分に比例
した光の位相を直接求めることができる。以上述べた方
法では4枚の干渉縞を用いたが、N(≧3)枚の干渉縞
1、  (i=1〜N)を用いてフーリエ係数を計算し
、干渉縞の正弦と余弦成分を求めて逆正接を計算すると
、物体変形量の空間1次微分を求めることができる。
This image before object deformation is S. Let S be the speckle image after binding and object deformation. When the birefringent wedge plate is moved in the X-axis direction after the object is deformed, the thickness of the wedge changes, and the phase difference between the orthogonal polarized lights formed by the two images changes accordingly. Therefore, for example, the phase difference between polarized lights is 90°, 1
Move the wedge so that the angles are 80° and 270°, record speckle images S2, S3, and S4 on a computer, and use the computer to calculate the square of the difference between these images (Si 5o) J+ =
By calculating 1 to 4), speckle interference fringes 1 to 14 can be created. The interference fringes I represent the isolines of the spatial first derivative of object deformation. Also, since the phases of the obtained interference fringes are shifted by 90°, the cosine component C of the interference fringes is defined as II
At I3, the sine component S can be found at T=I2. Therefore, by calculating the arctangent using these sine and cosine components, it is possible to directly determine the phase of light that is proportional to the spatial first derivative of object deformation. In the method described above, four interference fringes were used, but the Fourier coefficients are calculated using N (≧3) interference fringes 1, (i = 1 to N), and the sine and cosine components of the interference fringes are calculated. By calculating the arctangent, the spatial first derivative of the amount of object deformation can be found.

(実施例) 実施例1 このような装置は第1図に示すような、主に面外変形を
起こす物体の変形の傾きを測定する干渉計に応用するこ
とができる。レーザー11からの光をレンズ12で広げ
た後被測定物体13に照射し、その物体面を複屈折ウェ
ッジ板14と偏光板15および結像レンズ16を通して
、テレビカメラ17の感光面上に物体像を結像する。こ
こでは複屈折ウェッジ板には水晶を用い、その移動は、
ウェッジ板駆動装置20により行われ、主軸はXX′方
向でありウェッジ角は12°である。テレビカメラから
の画像をディジタルフレームメモリ18により記録した
後計算機19に転送し記録する。次に物体が2軸方向に
w (x、y)で変形した後に、スペックル像を計算機
に記録するが、この時複屈折ウェッジ板のX軸方向の移
動回数がiの時、直交偏光間の位相が360° ・i/
Nとなるようにウェッジ板の移動距離を調節する。ここ
でNは物体変形後に記録するスペックル像の総枚数であ
り、この時のスペックル像をS、とする。
(Examples) Example 1 Such a device can be applied to an interferometer as shown in FIG. 1, which mainly measures the slope of deformation of an object that causes out-of-plane deformation. The light from the laser 11 is spread by the lens 12 and then irradiated onto the object to be measured 13, and the object surface is passed through the birefringent wedge plate 14, the polarizing plate 15, and the imaging lens 16, and an object image is formed on the photosensitive surface of the television camera 17. image. Here, a quartz crystal is used as the birefringent wedge plate, and its movement is
This is performed by a wedge plate drive device 20, the main axis is in the XX' direction, and the wedge angle is 12 degrees. An image from a television camera is recorded by a digital frame memory 18 and then transferred to a computer 19 for recording. Next, after the object is deformed by w (x, y) in two axial directions, a speckle image is recorded on a computer. At this time, when the number of times the birefringent wedge plate is moved in the X-axis direction is i, the difference between orthogonal polarized light The phase of is 360° ・i/
Adjust the moving distance of the wedge plate so that it becomes N. Here, N is the total number of speckle images recorded after the object is deformed, and the speckle image at this time is S.

物体変形前後の画像を用いて計算機で差の2乗(Si 
 −3゜)2を計算すると位相が360° ・l/Nず
れた干渉縞■、を得ることができる。次にこれらの干渉
縞を用いて余弦成分C−Σ■、・cos(2πi/N)
と正弦成分S−ΣIt  ・cos  (2πi/N)
を計算するが、Σはiについて1〜Nまでの総和を求め
ることを表わす。これらSとCとを用いて逆正接jan
−’ (S / C)を計算すると、変形量の空間1次
微分w/x・δXに比例した光の位相差を求めることが
できる。ごこでδXは物体面上の2画像の横ずれ量であ
る。したがって得られたデータは物体変形の傾きに比例
することになり、また得られたデータを積分することに
よって面外変形量を求めることもできる。
Using images before and after object deformation, a computer calculates the square of the difference (Si
-3°)2, it is possible to obtain interference fringes (2) whose phase is shifted by 360°·l/N. Next, using these interference fringes, the cosine component C−Σ■,・cos(2πi/N)
and the sine component S-ΣIt ・cos (2πi/N)
is calculated, and Σ represents calculating the sum of 1 to N for i. Using these S and C, the arctangent jan
-' (S/C), it is possible to obtain the phase difference of light that is proportional to the spatial first derivative w/x·δX of the amount of deformation. Here, δX is the amount of lateral shift between the two images on the object plane. Therefore, the obtained data is proportional to the slope of object deformation, and the amount of out-of-plane deformation can also be determined by integrating the obtained data.

上記第1図では、1枚の複屈折ウェッジ板を用いたが、
いくつかの偏光素子を組み合わせることにより、横ずら
し量を変えることができたりする。
In Figure 1 above, one birefringent wedge plate was used, but
By combining several polarizing elements, it is possible to change the amount of lateral shift.

まず第2A図にはウォラストンプリズム21を用いた横
ずらし素子を示した。この素子は同図に示したように結
晶の主軸が直交したウェッジ板を重ね合わせたものであ
り、こうすることにより2画像を作る偏光の曲がり角が
、光軸に対して対称になる特徴がある。偏光間の位相シ
フトは2つのうちのどちらか1つのプリズムを紙面に平
行に移動(・→)することで行える。このウォラストン
プリズムでは2偏光の偏向角が一定なので2画像の横ず
らし量を可変することはできない。そこで第2B図に示
すように、ウォラストンプリズムを2個21.21′用
いると、2つのプリズムの間隔dを変えることにより、
画像の横ずらし量を変えることができる。この場合では
4個の複屈折ウェッジ板のうちどれか1つを紙面に平行
に移動(・−)させることにより、干渉する偏光間の位
相差を変えることができる。
First, FIG. 2A shows a lateral shift element using a Wollaston prism 21. As shown in the figure, this element consists of overlapping wedge plates with the main axes of the crystals perpendicular to each other, and by doing so, the bending angle of the polarized light that creates the two images is symmetrical with respect to the optical axis. . A phase shift between polarized lights can be achieved by moving one of the two prisms parallel to the plane of the paper (·→). In this Wollaston prism, the deflection angle of the two polarized lights is constant, so the amount of lateral shift between the two images cannot be varied. Therefore, as shown in Fig. 2B, if two Wollaston prisms 21.21' are used, by changing the distance d between the two prisms,
You can change the amount of horizontal shift of the image. In this case, the phase difference between the interfering polarized lights can be changed by moving any one of the four birefringent wedge plates parallel to the plane of the paper (.-).

実施例 実施例1で述べた方法は、被測定物体が主に面外変形を
する場合である。物体が主に面内に変形する場合でも、
光学系の測定感度が面外変位に対して大きいので、歪成
分のみを先に述べた測定系で得ることはできない。そこ
でここでは2光束照明により、変形量の測定面に垂直な
方向の傾きと、面内変形の1次微分である歪成分とを分
離測定する手法を提供する。第3図に本実施例の測定シ
ステムの概要を示した。レーザーからの光を半透鏡31
で2つに分け、物体13′の法線方向からレンズ12.
12′で対称に照射するように配置する。この照明光を
IL、とIL2とする。画像の取り込みは以下のように
して行う。物体変形前にIL、とIL2とで交互に物体
を照明し、それぞれのスペックル像S、。とShoを記
録する。次に物体変形後に照明光IL、とIL2とで交
互に物体を照明するが、その時複屈折ウェッジ板をN回
移動させての位相の異なるスペックル像を各方向でN枚
記録する。2つの照明光によるスペックル像をそれぞれ
311〜SINとS21〜S2Nとし、それらの画像の
差の2乗を計算して位相のシフ1−シた干渉縞I++−
(S++  S+o)2とI Zi−(s2i  5z
o)”(i=1〜N)を計算で得ることができる。これ
らのスペックル干渉縞を用いて、それぞれの照明光によ
る正弦成分St、Szと余弦成分C1、C2を実施例1
の場合と同様にフーリエ係数として求め、それぞれ逆正
接を計算すると、光の位相差φ5、φ2が求められる。
Embodiment The method described in Embodiment 1 is used when the object to be measured mainly undergoes out-of-plane deformation. Even if the object deforms mainly in the plane,
Since the measurement sensitivity of the optical system is large with respect to out-of-plane displacement, it is not possible to obtain only the distortion component with the measurement system described above. Therefore, here we provide a method of separately measuring the inclination in the direction perpendicular to the measurement surface of the amount of deformation and the strain component, which is the first derivative of the in-plane deformation, using two-beam illumination. FIG. 3 shows an overview of the measurement system of this embodiment. Semi-transparent mirror 31 for light from the laser
The lens 12. is divided into two parts from the normal direction of the object 13'.
12' to irradiate symmetrically. These illumination lights are designated as IL and IL2. Images are imported as follows. Before object deformation, the object is illuminated alternately with IL and IL2, and each speckle image S, is obtained. and records Sho. Next, after the object is deformed, the object is alternately illuminated with the illumination lights IL and IL2, and at this time, the birefringent wedge plate is moved N times to record N speckle images with different phases in each direction. Let the speckle images of the two illumination lights be 311~SIN and S21~S2N, respectively, and calculate the square of the difference between those images to obtain the interference fringe I++- with a phase shift of 1-.
(S++ S+o)2 and I Zi-(s2i 5z
o)" (i = 1 to N) can be obtained by calculation. Using these speckle interference fringes, the sine components St, Sz and cosine components C1, C2 due to each illumination light can be calculated as shown in Example 1.
As in the case of , the optical phase differences φ5 and φ2 are obtained by calculating the Fourier coefficients and calculating the respective arc tangents.

この光の位相は、物体の変形量を(x、y、z)座標で
(u、v、W)とすると、φ+=2π(sinθ・uZ
x+(1+CO8θ)・w/x)/λ・δXとなり、φ
2= 2yc (−sinθ・u/ x+ (1+co
sθ)−w/x)/λ・δXとなる。ここでθは対称な
照明光の法線方向に対する角である。したがって位相の
和φ、+φ2を求めると2π/λ・(1+cosθ)・
w/x・δXとなり、面外変位の傾きのみが求められる
。さらに位相の差φ、−φ2を求めると2π/λ・si
nθ・u / x・δXとなり、歪成分が分離測定でき
る。
The phase of this light is φ+=2π(sinθ・uZ
x+(1+CO8θ)・w/x)/λ・δX, and φ
2= 2yc (-sinθ・u/ x+ (1+co
sθ)-w/x)/λ·δX. Here, θ is the angle with respect to the normal direction of the symmetrical illumination light. Therefore, finding the sum of phases φ, +φ2 is 2π/λ・(1+cosθ)・
w/x·δX, and only the slope of the out-of-plane displacement is determined. Furthermore, finding the phase difference φ, -φ2, 2π/λ・si
nθ・u/x・δX, and the distortion component can be measured separately.

位相の差及び和は、先はど求めたフーリエ係数C4、C
2、S6、S2を用いて新たに和の場合の正弦s、−3
,C2+C,S2と余弦成分をC9−ClC25IS2
として求め、差の場合は正弦S=S + C2CIS 
2と余弦成分をC−−C,C2S、S、とじて求め、そ
れぞれ逆正接jan−’(S+/C,)とtan−’ 
(S−/C−)とを計算することにより直接求められる
The phase difference and sum are the Fourier coefficients C4 and C obtained earlier.
2, S6, S2 to create a new sum sine s, -3
, C2+C, S2 and the cosine component as C9-ClC25IS2
In the case of difference, sine S=S + C2CIS
2 and the cosine component as C--C, C2S, S, and find the arctangent jan-'(S+/C,) and tan-', respectively.
It can be directly obtained by calculating (S-/C-).

(発明の効果) 以上のように本発明によって、位相シフト横ずらしスペ
ックル偏光干渉計が構成でき、粗面物体の変形量の空間
1次微分が自動的に定量解析できる。特に、物体画像の
横ずらしと光の位相シフトが1つの偏光素子で行えるの
で、測定系がきわめて簡単になる特徴がある。また、偏
光素子を組合せてを使うことにより、画像の横ずらし量
を可変にすることもできる。この干渉計は共通光路干渉
計であるので、外乱に強く安定して測定が行える特徴が
ある。さらに、物体面に対して対称な方向からの照明を
使うと、変位の傾きと歪量を分離して測定することもで
き、従来不可能であった歪の2次元分布を直接測定する
ことができる。このように物体変形量が安定して測定で
きると、複合材料や新素材の物理的性質を定量的に評価
できるようになり、素材産業ばかりでなくシステム設計
においても重要なデータを提供できるようになる。
(Effects of the Invention) As described above, according to the present invention, a phase shift laterally shifted speckle polarization interferometer can be configured, and the spatial first derivative of the amount of deformation of a rough surface object can be automatically quantitatively analyzed. In particular, since the lateral shift of the object image and the phase shift of the light can be performed with a single polarizing element, the measurement system is extremely simple. Furthermore, by using a combination of polarizing elements, the amount of lateral shift of the image can be made variable. Since this interferometer is a common optical path interferometer, it has the characteristic that it is resistant to external disturbances and can perform stable measurements. Furthermore, by using illumination from a direction symmetrical to the object plane, the slope of displacement and the amount of strain can be measured separately, making it possible to directly measure the two-dimensional distribution of strain, which was previously impossible. can. If the amount of object deformation can be measured stably in this way, it will become possible to quantitatively evaluate the physical properties of composite materials and new materials, providing important data not only for the materials industry but also for system design. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、物体の面外変形の傾き測定に好適な本発明の
第1の実施例を示すシステム構成図、第2A図、第2B
図は、第1図に用いた複屈折ウェッジ板に代わるウォラ
ストンプリズムを用いた横ずらし素子の構成図、 第3図は、2光束照明による物体の面内変形の歪成分測
定に好適な本発明の第2の実施例を示すシステム構成図
、 第4図は、本発明の測定原理を表す光学系の構成因であ
る。 (符号の説明) 11・・・レーザー光源、12.12′、43・・・レ
ンズ、13.13′・・・被測定物体、14.42・・
・複屈折ウェッジ、15.45・・・偏光板、16・・
・結像レンズ、17・・・テレビカメラ、19・・・計
算機、1B・・・ディジタルフレームメモリ、20・・
・ウェッジ板駆動装置、21.21′・・・ウォラスト
ンプリズム、31・・・半透鏡、44・・・結像面。
FIG. 1 is a system configuration diagram showing a first embodiment of the present invention suitable for measuring the inclination of out-of-plane deformation of an object, FIG. 2A, and FIG. 2B.
The figure shows the configuration of a transverse shift element using a Wollaston prism instead of the birefringent wedge plate used in Figure 1. Figure 3 shows a book suitable for measuring strain components of in-plane deformation of an object using two-beam illumination. FIG. 4, a system configuration diagram showing a second embodiment of the invention, shows the components of an optical system showing the measurement principle of the invention. (Explanation of symbols) 11... Laser light source, 12.12', 43... Lens, 13.13'... Measured object, 14.42...
・Birefringent wedge, 15.45...Polarizing plate, 16...
・Imaging lens, 17...TV camera, 19...Computer, 1B...Digital frame memory, 20...
- Wedge plate drive device, 21.21'...Wollaston prism, 31...semi-transparent mirror, 44...imaging surface.

Claims (1)

【特許請求の範囲】[Claims] 被測定物体面にレーザー光を照射するレーザー装置、前
記被測定物体面に焦点を合わせられる撮像装置、前記被
測定面と前記撮像装置との間に挿入された平行移動可能
な複屈折ウェッジおよび偏光板から構成される位相シフ
ト横ずらしスペックル偏光干渉計。
A laser device that irradiates a laser beam onto a surface of an object to be measured, an imaging device that focuses on the surface of the object to be measured, a birefringent wedge that can be moved in parallel and polarized light inserted between the surface to be measured and the imaging device. A phase-shifted side-shifting speckle polarization interferometer consisting of a plate.
JP7985589A 1989-03-30 1989-03-30 Phase shifted lateral deviation speckle polarization interferometer Pending JPH02257005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7985589A JPH02257005A (en) 1989-03-30 1989-03-30 Phase shifted lateral deviation speckle polarization interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7985589A JPH02257005A (en) 1989-03-30 1989-03-30 Phase shifted lateral deviation speckle polarization interferometer

Publications (1)

Publication Number Publication Date
JPH02257005A true JPH02257005A (en) 1990-10-17

Family

ID=13701810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7985589A Pending JPH02257005A (en) 1989-03-30 1989-03-30 Phase shifted lateral deviation speckle polarization interferometer

Country Status (1)

Country Link
JP (1) JPH02257005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249837A (en) * 2003-01-28 2010-11-04 Ultratech Inc Light-measuring method for surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249837A (en) * 2003-01-28 2010-11-04 Ultratech Inc Light-measuring method for surface

Similar Documents

Publication Publication Date Title
Brock et al. Dynamic interferometry
US7777895B2 (en) Linear-carrier phase-mask interferometer
US7230717B2 (en) Pixelated phase-mask interferometer
JP3517903B2 (en) Interferometer
JP5349739B2 (en) Interferometer and interferometer calibration method
US8351048B2 (en) Linear-carrier phase-mask interferometer
US5218424A (en) Flying height and topography measuring interferometer
CN108061515B (en) Phase shift interferometer
CN109163673B (en) A kind of multi-wavelength and the bisynchronous surface method for real-time measurement of phase shift interference and system
US5995224A (en) Full-field geometrically-desensitized interferometer employing diffractive and conventional optics
Zhong et al. 3D digital image correlation using a single 3CCD colour camera and dichroic filter
Kemao et al. Real-time polarization phase shifting technique for dynamic deformation measurement
US6741356B1 (en) Method for detecting physical amount of object and optical apparatus using the same
Arai Simultaneous in-plane and out-of-plane deformation measurement by speckle multi-recording method
JP3714854B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JPH0915504A (en) Differential interference microscope
JPH02257005A (en) Phase shifted lateral deviation speckle polarization interferometer
JPH02287107A (en) Two-dimensional information acquisition device
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP4072190B2 (en) Differential interference microscope
JPH0587541A (en) Two-dimensional information measuring device
Bhadra et al. Coherent moire technique for obtaining slope and curvature of stress patterns
JP3000518B2 (en) Polarized wavefront three-segment optical device
JP3054469B2 (en) Method and apparatus for evaluating linearity of diffraction grating
Krishnakumar et al. Opto-digital system for curvature measurement