JPH02256900A - Bubble pump utilizing electrolytically produced bubble of electrolytic solution - Google Patents

Bubble pump utilizing electrolytically produced bubble of electrolytic solution

Info

Publication number
JPH02256900A
JPH02256900A JP7521089A JP7521089A JPH02256900A JP H02256900 A JPH02256900 A JP H02256900A JP 7521089 A JP7521089 A JP 7521089A JP 7521089 A JP7521089 A JP 7521089A JP H02256900 A JPH02256900 A JP H02256900A
Authority
JP
Japan
Prior art keywords
bubbles
bubble
flow
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7521089A
Other languages
Japanese (ja)
Inventor
Teruo Kumagai
熊谷 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7521089A priority Critical patent/JPH02256900A/en
Publication of JPH02256900A publication Critical patent/JPH02256900A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To smoothly flow-transfer solids of various sizes ranging from minute to the size almost equal to the inner diameter of a tube by applying the principle of electrolysis to an electrolytic solution to utilize the buoyancy of bubbles easily produced. CONSTITUTION:A cathode 13, a diaphragm 12 and an anode 11 are annularly disposed in an electrolytically producing bubble pump 14 connected via a flange 21 to a water lifter tube 17. When the pump is installed in an electrolytic solution such as seawater, and a dc voltage is applied between the cathode 13 and the anode 14 through a dc power source 23 connected via a cable 22, hydrogen is produced from the cathode and chlorine is produced from the anode in proportion to the amount of the current. The diaphragm 12 is provided to efficiently utilize the hydrogen bubbles. The hydrogen bubbles going up within the annular passage are pushed out through a bubble flow nozzle 16 to the water lifter tube 17 in the flow direction, get together to form larger bubbles 18, push up water column 19 between the bubbles, and lift water through an outlet port 20.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解質水溶液の揚水ポンプに関するもので、そ
の応用例として例えば港湾底に堆積する砂泥等の微小な
固体や、破砕された岩石塊や深海底に堆積するマンガン
団塊等の比較的大きな固体群を電気分解で発生する気泡
を利用した気液混和流を固体流送管の外側から流送方向
に導入して、それらの固体群を回収することに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a water pump for aqueous electrolyte solutions. A relatively large solid group such as manganese nodules deposited on the seabed is collected by introducing a gas-liquid mixed flow from the outside of the solid flow pipe in the flow direction using bubbles generated by electrolysis. Regarding things.

従来の技術 第1図は、従来の気泡ポンプの実施例を示したもので空
気圧縮機(1・)で加圧された空気を空気導入管(2)
を経て水タンク(3)内に設置された揚水管(4)の下
部に位置する空気ノズルから水タンク中に吹き出す。空
気は浮力をうけて揚水管(4)中を上昇しながら相互に
合体して大きな気泡(5)となって上昇する。この大き
な気泡は上下にある気泡との間に液柱(6)を封じこめ
て上昇し、ピストン流を形成し上部タンク(7)に水を
吐出口(8)から揚水することができる。このような気
泡ポンプは空気圧縮機(1)以外に可動部分をもたない
ため非常に簡便であるという特徴があり広範囲に利用さ
れている。
Conventional technology Figure 1 shows an example of a conventional bubble pump, in which air pressurized by an air compressor (1) is pumped through an air introduction pipe (2).
The air is blown into the water tank from an air nozzle located at the bottom of a lifting pipe (4) installed in the water tank (3). The air rises in the water pump (4) under the influence of buoyancy, coalesces into large air bubbles (5), and rises. This large bubble traps a liquid column (6) between the bubbles above and below, rises, forms a piston flow, and can pump water into the upper tank (7) from the discharge port (8). Such a bubble pump has no moving parts other than the air compressor (1), and is therefore very simple and widely used.

発明が解決しようとする問題点 しかしながら、このような気泡ポンプにあっては空気を
圧縮機により管路下端から吹出させる必要があるため、
水深が大きい場合には水深10m当たり約1気圧の加圧
を必要とするという問題点があった。このため高圧に加
圧する圧縮機が大形で高価となり、特に水深が大きい場
合には空気の吹き出しが困難となる事態も生じていた。
Problems to be Solved by the Invention However, in such a bubble pump, air needs to be blown out from the lower end of the pipe by a compressor;
When the water depth is large, there is a problem in that it requires pressurization of about 1 atmosphere per 10 m of water depth. For this reason, the compressor that pressurizes the water to high pressure is large and expensive, making it difficult to blow out air, especially when the water depth is large.

問題点を解決するための手段 本発明は圧縮機により加圧した空気を揚水管下部から吹
き込む従来の気泡ポンプの代わりに電解質水溶液の電気
分解により発生する気泡を利用して前記問題点を解決す
るためのものであって、以下にその内容を実施例に対応
する第2図を用いて説明する。
Means for Solving the Problems The present invention solves the above problems by using bubbles generated by electrolysis of an electrolyte aqueous solution instead of the conventional bubble pump that blows pressurized air from the lower part of the pumping pipe with a compressor. The contents thereof will be explained below using FIG. 2 corresponding to the embodiment.

電解質水溶液中に環状に陰極(13)隔g(12)陽極
(11)を設け、陰pi(13)と陽1m(11)に直
流電圧をかけると電流量に比例して陰極(13)から水
素気泡が発生して環状流路(15)内を浮上していく。
A cathode (13), an anode (11) separated by a gap g (12) are arranged in an annular manner in an electrolyte aqueous solution, and when a DC voltage is applied between the anode (13) and the anode (11), a current flows from the cathode (13) in proportion to the amount of current. Hydrogen bubbles are generated and float inside the annular channel (15).

この気泡流乞気泡流ノズル(16)より揚水管(17)
内に流送方向に噴出させると、気泡は流送管内で合体し
て大気泡(18)となり、大気泡間の液柱(19)を押
し上げていき吐出口(20)より揚水させることができ
る。揚水管(17)内には固体流送を妨げるものが何も
ないので、揚水管直径に近い大きさまでの大きな固体を
吸入口(9)から吐出口(20)まで流送することが可
能である。
From this bubble flow nozzle (16) to the pumping pipe (17)
When the air bubbles are ejected in the flow direction, the bubbles coalesce in the flow pipe to form large bubbles (18), which pushes up the liquid column (19) between the large bubbles and lifts water from the discharge port (20). . Since there is nothing inside the lift pipe (17) that obstructs solid flow, it is possible to flow large solids up to a size close to the lift pipe diameter from the suction port (9) to the discharge port (20). be.

作用 このように構成された電解質水溶液の電気分解発生気泡
を利用した気泡ポンプにおいては、m2図に示す陰極(
13)から発生する水素気泡を利用するものであるから
圧縮機のような大型の設備を必要とせずに単に直流電源
、電線と電極を用いるだけで直接気泡を発生させること
ができる。また1機械的操作を必要としないので機械的
損失がないという利点がある。さらに、第2図に示すよ
うに流送管内に流送を妨げる部分がないので、例えば海
底からの固体群の回収のように電解質水溶液中の固体群
の流送も可能である。
Function: In a bubble pump configured as described above that utilizes bubbles generated by electrolysis of an electrolyte aqueous solution, the cathode (
13) Since it utilizes hydrogen bubbles generated from hydrogen, bubbles can be generated directly by simply using a DC power source, electric wires, and electrodes, without requiring large equipment such as a compressor. Furthermore, since no mechanical operation is required, there is an advantage that there is no mechanical loss. Furthermore, as shown in FIG. 2, since there is no part in the flow pipe that obstructs the flow, it is also possible to transport solids in an electrolyte aqueous solution, such as recovering solids from the seabed.

実施例 以下、図面に示した実施例に基づいて本発明を説明する
EXAMPLES The present invention will be described below based on examples shown in the drawings.

第2図において揚水管(17)にフランジ(10)を介
して接続する電解発生気泡ポンプ本体(14)内には環
状に陰極(13)隔1I(12)111極(11)が設
けられている。本ポンプを例えば海水などの電解質水溶
液中に設置し、電線ケーブル(22)を介して直流型1
(23)に接続して陰極(13)と陽fi%(11)間
に直流電圧をかけると電流量に比例して陰極から水素、
陽極から塩素が発生する。これらの気泡の内、尿素気泡
を効率良く利用するために隔膜(12)を設けである。
In Fig. 2, an electrolytic bubble pump body (14) connected to a pumping pipe (17) via a flange (10) is provided with a cathode (13), a gap 1I (12), and a pole (11) arranged in an annular manner. There is. This pump is installed in an electrolyte aqueous solution such as seawater, and the DC type 1
(23) and apply a DC voltage between the cathode (13) and anode fi% (11), hydrogen flows from the cathode in proportion to the amount of current.
Chlorine is generated from the anode. A diaphragm (12) is provided to efficiently utilize urea bubbles among these bubbles.

第4図に電流量I (A)に対する水素気泡発生tQg
(1/m1n)の測定例を示す。かくして環状流路内を
浮上していく水素気泡流を気泡流ノズル(16)より揚
水管(17)内に流送方向に噴出させると気泡は揚水管
(17)内で合体して大気泡(18)となり、大気泡間
の液柱(19)を押上げ−ていき吐出口(20)より揚
水する。電解発生気泡流の写真例を第5図−二示す、吸
入口(9)から吐出口(20)に至る揚水管内には固体
流送を妨げるものが何もないので、揚水管内径に近い大
きさまでの各種固体を流送することができる。
Figure 4 shows hydrogen bubble generation tQg versus current amount I (A).
An example of measurement of (1/m1n) is shown. When the hydrogen bubbles floating in the annular channel are ejected from the bubble flow nozzle (16) into the lift pipe (17) in the flow direction, the bubbles coalesce inside the lift pipe (17) and form air bubbles ( 18), and the liquid column (19) between the air bubbles is pushed up and pumped out from the discharge port (20). A photographic example of the electrolytically generated bubble flow is shown in Figure 5-2.There is nothing in the pumping pipe from the suction port (9) to the discharge port (20) that obstructs solid flow, so the diameter of the pumping pipe is close to that of the internal diameter. Various types of solids can be transported.

第3図は電解発生気泡ポンプ(14)によって作られる
気泡流を駆動流として曲管部をもつ固体流送管(25)
の外側から流送方向に噴出させて例えば海底などに堆積
している固体を流送する場合の実施例を示したものであ
る。
Figure 3 shows a solid flow pipe (25) with a curved pipe section using the bubble flow created by the electrolytically generated bubble pump (14) as the driving flow.
This figure shows an example in which solids deposited on the seabed or the like are transported by ejecting them from the outside in the transport direction.

発明の効果 本発明は以上説明したように、電解質水溶液に電気分解
の原理を応用して簡便に発生する気泡の浮力を利用する
もので、電解質水溶液の揚水の効果ばかりでなく、微小
な固体から管径に近い大きさまでの各種サイズの固体を
滑らかに流送する効・果がある。参考のため本発明によ
る電解発生気泡ポンプの浸水率σ、電流ff1I (A
)に対する揚水効率ηPの測定例を第5図に示す。
Effects of the Invention As explained above, the present invention utilizes the buoyancy of air bubbles that are easily generated by applying the principle of electrolysis to an electrolyte aqueous solution. It has the effect of smoothly transporting solids of various sizes up to a size close to the pipe diameter. For reference, the water immersion rate σ and current ff1I (A
) is shown in FIG. 5.

【図面の簡単な説明】 第1図番よ従来の気泡ポンプの一実施例を示す断面図、
第2図は本発明の一実施例を示す断面図、第3図は本発
明の別の実施例を示す新面図、第4図は本発明による電
解発生気泡ポンプの気泡発生量を示す測定例、第5図は
本発明による電解発生気泡ポンプの揚水効率の測定例を
示す説明図である。 1:空気圧縮機、2:空気導入管、3:水タンク、4:
揚水管、5:気泡、6:液柱、7:上部水タンク、8:
吐出口、9:吸入口、10:フランジ、11:環状陽極
、12:環状隔膜、13:環状陰極、14:電解発生気
泡ポンプ本体、15:環状流路、16:気泡流ノズル、
17:揚水管18:大気泡、19:液柱、20:吐出口
、21:フランジ、22:電線ケーブル、23:直流電
源、24:曲管部をもつ固体流送管。
[Brief explanation of the drawings] Figure 1 is a sectional view showing an embodiment of a conventional bubble pump.
FIG. 2 is a sectional view showing one embodiment of the present invention, FIG. 3 is a new view showing another embodiment of the present invention, and FIG. 4 is a measurement showing the amount of bubbles generated by the electrolytically generated bubble pump according to the present invention. For example, FIG. 5 is an explanatory diagram showing an example of measuring the pumping efficiency of the electrolytically generated bubble pump according to the present invention. 1: Air compressor, 2: Air introduction pipe, 3: Water tank, 4:
Lifting pipe, 5: Air bubbles, 6: Liquid column, 7: Upper water tank, 8:
discharge port, 9: suction port, 10: flange, 11: annular anode, 12: annular diaphragm, 13: annular cathode, 14: electrolytically generated bubble pump body, 15: annular channel, 16: bubble flow nozzle,
17: Lifting pipe 18: Air bubble, 19: Liquid column, 20: Discharge port, 21: Flange, 22: Electric wire cable, 23: DC power supply, 24: Solid flow pipe having a curved pipe section.

Claims (2)

【特許請求の範囲】[Claims] (1)電解質水溶液の電気分解で発生する気泡を用いた
気泡ポンプ
(1) Bubble pump using bubbles generated by electrolysis of electrolyte aqueous solution
(2)上記(1)項記載の気泡ポンプによって作られる
気泡流を駆動流として固体流送管の外側から流送方向に
噴出させて、たとえば海底などに堆積する固体を流送す
る装置。
(2) A device that uses the bubble flow generated by the bubble pump described in item (1) above as a driving flow to eject from the outside of a solid flow pipe in the flow direction to flow solids deposited on, for example, the seabed.
JP7521089A 1989-03-29 1989-03-29 Bubble pump utilizing electrolytically produced bubble of electrolytic solution Pending JPH02256900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7521089A JPH02256900A (en) 1989-03-29 1989-03-29 Bubble pump utilizing electrolytically produced bubble of electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7521089A JPH02256900A (en) 1989-03-29 1989-03-29 Bubble pump utilizing electrolytically produced bubble of electrolytic solution

Publications (1)

Publication Number Publication Date
JPH02256900A true JPH02256900A (en) 1990-10-17

Family

ID=13569609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7521089A Pending JPH02256900A (en) 1989-03-29 1989-03-29 Bubble pump utilizing electrolytically produced bubble of electrolytic solution

Country Status (1)

Country Link
JP (1) JPH02256900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213199A (en) * 1992-10-19 1994-08-02 Hughes Aircraft Co Electrolytic pump
JP2011001918A (en) * 2009-06-19 2011-01-06 Kubota Corp Air lift pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213199A (en) * 1992-10-19 1994-08-02 Hughes Aircraft Co Electrolytic pump
JP2011001918A (en) * 2009-06-19 2011-01-06 Kubota Corp Air lift pump device

Similar Documents

Publication Publication Date Title
CN1133594C (en) Method and apparatus for electrocoagulation of liquids
CN104192953B (en) A kind of electricity flocculation wastewater treatment electrode
JPH06213199A (en) Electrolytic pump
JPH02256900A (en) Bubble pump utilizing electrolytically produced bubble of electrolytic solution
JPWO2010137581A1 (en) Fuel supply device mixer and fuel supply system
US20170057847A1 (en) Composite water purification apparatus and method thereof
US20060011472A1 (en) Deep well geothermal hydrogen generator
JP3770533B2 (en) Hypochlorite production equipment
CN212293021U (en) Micro-nano bubble generator
CN101288813A (en) Gas-water separation device of ozone water
CN104176860B (en) A kind of electricity flocculation Waste Water Treatment
CN205654552U (en) Automatic exhaust vacuum diversion jar
JPH1015580A (en) Float type water area purifying apparatus
CN218709677U (en) Saturated dissolved oxygen aeration device
JPS6316086A (en) Apparatus for removing dissolved oxygen in liquid
CN2153666Y (en) Multi-passage water-gas jet pump
CN209841802U (en) Liquid chromatograph
EP0623098B1 (en) Apparatus for the oxidation of water
JP2899685B2 (en) Bubble pump device using water electrolysis
RU149713U1 (en) JET PUMP
CN213623439U (en) Air lifting device
CN209396907U (en) A kind of automatic cycle container
JPH0744800Y2 (en) Intermittent air pumping device for shallow layers
JPH01207535A (en) Vacuum air lift mud pumping device
CN206126921U (en) Electrolytic gas floating waste water complete set processing apparatus