JPH0225673A - Thermos bottle having mechanism to make cold water - Google Patents

Thermos bottle having mechanism to make cold water

Info

Publication number
JPH0225673A
JPH0225673A JP17576988A JP17576988A JPH0225673A JP H0225673 A JPH0225673 A JP H0225673A JP 17576988 A JP17576988 A JP 17576988A JP 17576988 A JP17576988 A JP 17576988A JP H0225673 A JPH0225673 A JP H0225673A
Authority
JP
Japan
Prior art keywords
water
cooled
cooling
waterway
thermo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17576988A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hatake
畠 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURONTEIA FUIIRUDO PROD KK
Original Assignee
FURONTEIA FUIIRUDO PROD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FURONTEIA FUIIRUDO PROD KK filed Critical FURONTEIA FUIIRUDO PROD KK
Priority to JP17576988A priority Critical patent/JPH0225673A/en
Publication of JPH0225673A publication Critical patent/JPH0225673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To reduce the thermal resistance existing between the thermo module and water to be cooled by disposing a cooling water passage having a large area integrally in a radiator block which is tightly in contact with the heat absorbing jointed surface of the thermo module so as to allow a direct heat exchange with water to be cooled. CONSTITUTION:Water W to be cooled is fed in a thermo bottle 3, and a radiator block 4 whose lower part works as a plug is inserted into the mouth of the thermo bottle. When the power switch S1 is closed after a DC power source is connected to the DC power source terminal PS with the polarity matched, the DC power is applied to the thermo module Th with the predetermined polarity to cause the first jointed surface 23 to absorb the heat so as to cool the radiator block 4. At the same time, a pump M is operated at a low speed to draw the water to be cooled in the thermo bottle 3 through a suction pipe 22 and a suction passage 17 and deliver same from its delivery side. The water exchanges heat and is cooled as it enters a cooling water passage 7 having a large area in the cooled radiator block 4 at a low speed through a Y-shaped pipe 12 and a circulating water rubber tube 13, and is pushed up to the water surface in the thermo bottle 3 as cold water jets WJ. Thereafter, the water becomes water W to be cooled and is again circulabed and cooled.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はサーモモジュールを用いて冷却水を造る機構を
持つ魔法瓶に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a thermos flask having a mechanism for producing cooling water using a thermo module.

(ロ)従来の技術 従来、金属製水容器を用いサーモモジュールによって冷
水を造る装置が公知であり、新しいところでは本出願人
の先願特願昭63−122291号に係る「冷水を造る
ことができる卓上型ポットj及び、特願昭63 143
857号に係る「同時に冷水と熱湯を分離して造ること
ができる卓上用デュアルタイプ保冷保温ポットAなども
あるが、そのどれもが断熱材によって外界と熱遮断され
た金属製水容器を用いているが、通常の断熱材は断熱効
果か余り良好でない。又、サーモモジュールを、二重に
介して水容器内部の水を冷却する従来の冷却機構では、
その間の熱抵抗も大きい。又1、保温保冷能力に関して
は、今もって他の追随を許さない魔法瓶を冷却n横の一
要素として用いるには、瓶口が狭いこと、脆弱で加工が
効かないことなどから極めて難しい9又、人口衛星など
に用いられている断熱材は極めて優秀な断熱効果を有し
ているが、その用途の性格」−極めで高価で、かつ民生
用としては入手不可能である。などと、従来のこの種の
物では、種々の悪材料が相俟つで冷却効率の低いものと
なっていた。
(B) Conventional technology Conventionally, devices for producing cold water using a thermo module using a metal water container have been known. Tabletop pot j that can be made and patent application No. 143, 1983
No. 857 states, ``There are tabletop dual-type cold/warm pots A that can separate cold water and hot water at the same time, but all of them use a metal water container that is heat-insulated from the outside world by an insulating material. However, the insulation effect of ordinary insulation materials is not very good.Also, with the conventional cooling mechanism that cools the water inside the water container through double thermo modules,
The thermal resistance between them is also large. 1. Regarding the ability to keep warm and cold, it is extremely difficult to use a thermos flask, which is unrivaled even today, as a cooling element because the mouth of the bottle is narrow, and it is fragile and cannot be processed. The heat insulating materials used in artificial satellites and the like have an extremely excellent heat insulating effect, but due to the nature of their intended use, they are extremely expensive, and are not available for civilian use. Conventional devices of this type have low cooling efficiency due to a combination of various negative factors.

(ハ)発明が解決しようとする課題 本発明は、保冷保温能力の高い狭口の魔法瓶を一要素と
してそのままの形で用いるための冷却機構、及び、サー
モモジュールと被冷却水との間に介在する熱抵抗を極力
小さくする冷却機構とを、併せて新規に開発することを
解決しようとする課題とする。
(c) Problems to be Solved by the Invention The present invention provides a cooling mechanism for using a narrow-mouthed thermos flask with high cold and heat retention ability as one element, and a cooling mechanism for using a thermos flask with a high ability to retain heat and cold, and a cooling mechanism that is provided between a thermo module and water to be cooled. The problem to be solved is to develop a new cooling mechanism that minimizes the thermal resistance.

(ニ)課題を解決するための手段 ここで本発明は、狭口の魔法瓶の口栓部分を用いる冷却
i横として、下部の外径が栓径の範囲内であるラジェー
タブロックを設けて口栓に置き換えるとともに、サーモ
モジュールの吸熱接合面に直接密着したラジェータブロ
ックと同体に延べ面積の大きい冷却水路を設け、被冷却
水と直接熱交換して循環冷却させるようにしたものであ
りこれは上述の課題を解決する。以下、一実施例を添付
の図に従ってその構成を詳細に説明する。
(d) Means for Solving the Problems Here, the present invention provides cooling using the spout part of a narrow-mouthed thermos flask, and provides a radiator block whose lower part has an outer diameter within the range of the stopper diameter. At the same time, a cooling channel with a large total area is installed in the radiator block that is in direct contact with the heat-absorbing joint surface of the thermo module, and it is possible to directly exchange heat with the water to be cooled and circulate cooling. solve problems. Hereinafter, the configuration of one embodiment will be described in detail with reference to the accompanying drawings.

第1図は一実施例要部の縦断面図で一部投影して併記し
たもの。第2図は同じく回路図で一部ブロックで示した
ものである。
FIG. 1 is a longitudinal cross-sectional view of the main part of one embodiment, with some parts projected and shown together. FIG. 2 is also a circuit diagram, partially shown in blocks.

第1図で1は本体下部、2は本体上部、3は魔法瓶、T
hはサーモモジュールで第2図示23がその第一接合面
、24が第二接合面である。4はラジェータブロックで
、延べ面積の大きな冷却水路7と、吸水路17を同体に
備えた熱伝導の良好な素材、一実施例ではアルミニュー
ムから成り、延べ面積の大きな冷却水路7内を緩速で通
過する被冷却水Wとの間で熱交換が行われるようにした
もので、サーモモジュールエ九の吸熱する第一接合面2
3に熱抵抗小さく密着して設けられている。
In Figure 1, 1 is the bottom of the main unit, 2 is the top of the main unit, 3 is a thermos flask, and T
h is a thermo module, and 23 in the second figure is its first joint surface, and 24 is its second joint surface. Reference numeral 4 designates a radiator block, which is made of a material with good heat conduction, aluminum in one embodiment, and has a cooling channel 7 with a large total area and a suction channel 17 in the same body, and is made of a material with good heat conduction, such as aluminum in one embodiment. The first joint surface 2 of the thermo module E9 which absorbs heat exchanges heat with the water to be cooled W passing through
3 in close contact with low thermal resistance.

5は放熱板で同じくサーモモジュールThの発熱する第
二接合面24に密着して設けられており、電動送風機M
1によって強制空冷される。6はその回転翼、参考矢線
AJはその空気流を現す。M2は電動ポンプで、一実施
例では血液用ポンプなどで公知であるペルスタボンブの
小型で簡略なものを用いており、これはギアドモータの
回転軸に固着された回転腕8の先端に設けられている搾
りローラ9によって、搾り管10を押圧壁11に押圧し
ながら進行方向に搾り、搾りローラ9の所在位置から後
方にある搾り管10内部の圧力が負圧となり、進行方向
のそれは加圧される。この形式のポンプは、内部がゴム
管だけで成立しているので、被冷却水Wの清浄を完全に
確保できる。又、この電動ポンプM2として、外部と遮
蔽されたケーシング内部に独立する羽根車の軸と、外部
の電動機の回転軸との間の動力の伝達に、永久磁石によ
る磁気結合手をもつ磁気結合羽根車ポンプを用いても被
冷却水Wの清浄が保てる。又、電動ポンプM2は、常時
は第2図示の低速駆動用電源28から電源を供給され低
速で駆動されるようになっている。12はY形管で一水
路を三水路に分岐し、入水側が電動ポンプM2の吐水側
に接続され、分岐された出水側には、外枠27内側に並
設された循環水路ゴム管13と給水路ゴム管14が接続
され、該ゴム管13・14の間にはプランジャ15先端
部に固着されている閉塞ピン16が設けられてあり、常
時は付勢された押圧バネ18によって閉塞ピン16が給
水路ゴム管14を外枠27に押圧閉塞しており、給水ボ
タン1つを押すと、連動する給水スイッチS3が閏じら
れ、接続されたソレノイドSoの電磁力により、プラン
ジャ15が付勢された押圧バネ18に打ち勝って吸引さ
れ、閉塞ピン16の位置が切り替わって給水路ゴム管1
4を開通させ、循環水路ゴム管13を押圧閉塞する。給
水ボタンの押圧を解除すると給水スイッチS3が開かれ
、ソレノイドSoが消磁されて閉塞ピン16が復旧する
。このY形管12と循環水路ゴム管13と給水路ゴム管
14と閉塞ピン16及び押圧バネ18と外枠27とで水
路切り替えゴム管バルブを構成する。該バルブは内部が
ゴム管のみで構成されているからバルブ内部の水の清浄
を確保できる。これは又、常時はAの水路を開通させB
の水路を閉塞し、必要に応じて電気的あるいは手動的に
Aの水路を閉塞しBの水路を開通させることができる汎
用の水路切り替えバルブを用いても全体の作用に変わり
はないが、この場合バルブ内部の水の清浄を確保できる
物であることが必要である。又、本−実施例では閉塞ピ
ン16の操作をプランジャ15とソレノイドSoによる
電動で行っているが、給水ボタン19と機械的に連動す
る手動で行っても良い。2oはサーモスイッチでラジェ
ータブロック4に密着して設けられており、第一接合面
23の温度の上限を設定してあり、これを超えると回路
を開きサーモモジュール工」、の破壊を防止する。21
は給水パイプ、22は吸水管、Wは被冷却水、WJは冷
却水流群を示す。25はリミッタで放熱板5に密着して
設けられており、第二接合面24の温度の上限を設定し
てあり、設定値を超えると回路を開きサーモモジュール
Thの破壊を防止する。26は断熱材である。第2図で
psは直流電源端子、Slは電源スィッチ、fはヒユー
ズ、S2は電源極性切替スイッチで、サーモモジュール
エ上に印加する直流電源の極性を切り替え、第一接合面
で吸熱し第二接合面を発熱させ、又は第一接合面で発熱
し第二接合面を吸熱させたりする。矢線Cは冷却(吸熱
)の位置、矢線Hは加熱(発熱)の位置、Dlは冷却表
示発光ダイオード、D2は加熱表示発光ダイオードで、
冷却加熱はそれぞれ第一接合面の作用を基準としたもの
である。28は低速駆動用電源で電動ポンプM2に電源
を供給する。D3・D4は逆流阻止ダイオード、他は第
1図と共通である。
Reference numeral 5 denotes a heat sink, which is also provided in close contact with the heat-generating second joint surface 24 of the thermo module Th, and is connected to the electric blower M.
1 for forced air cooling. 6 represents its rotor blade, and reference arrow AJ represents its airflow. M2 is an electric pump, and in one embodiment, a small and simple Persta Bomb, which is well known as a blood pump, is used, and this is provided at the tip of a rotating arm 8 fixed to the rotating shaft of a geared motor. The squeezing roller 9 squeezes the squeezing tube 10 in the traveling direction while pressing it against the pressing wall 11, and the pressure inside the squeezing tube 10 located behind the squeezing roller 9 becomes negative pressure, and that in the traveling direction is pressurized. . Since the inside of this type of pump is made up of only rubber tubes, it is possible to completely ensure the cleanliness of the water to be cooled W. In addition, this electric pump M2 includes a magnetic coupling impeller having a magnetic coupling hand using a permanent magnet for transmitting power between an independent impeller shaft inside a casing shielded from the outside and a rotating shaft of an external electric motor. Even if a car pump is used, the cleanliness of the cooled water W can be maintained. Further, the electric pump M2 is normally supplied with power from a low-speed drive power source 28 shown in the second diagram, and is driven at a low speed. 12 is a Y-shaped pipe that branches one waterway into three waterways, the inlet side is connected to the water discharge side of the electric pump M2, and the branched water outlet side has a circulation waterway rubber pipe 13 installed in parallel inside the outer frame 27. A rubber water supply pipe 14 is connected, and a closing pin 16 fixed to the tip of the plunger 15 is provided between the rubber tubes 13 and 14. The closing pin 16 is normally closed by a biased pressing spring 18. presses and closes the water supply channel rubber pipe 14 against the outer frame 27, and when one water supply button is pressed, the linked water supply switch S3 is engaged, and the plunger 15 is energized by the electromagnetic force of the connected solenoid So. It overcomes the applied pressure spring 18 and is attracted, and the position of the closing pin 16 is switched to close the water supply waterway rubber pipe 1.
4 is opened, and the circulation waterway rubber pipe 13 is pressed and closed. When the pressure on the water supply button is released, the water supply switch S3 is opened, the solenoid So is demagnetized, and the closing pin 16 is restored. This Y-shaped pipe 12, the circulation waterway rubber pipe 13, the water supply waterway rubber pipe 14, the closing pin 16, the pressing spring 18, and the outer frame 27 constitute a waterway switching rubber pipe valve. Since the inside of the valve is made up of only a rubber tube, it is possible to ensure that the water inside the valve is clean. This also means that A's waterway is always open and B's waterway is always open.
Even if a general-purpose waterway switching valve is used, which can block the waterway A and open the waterway B electrically or manually as needed, the overall operation will not change. In this case, it is necessary to ensure that the water inside the valve is clean. Further, in this embodiment, the closing pin 16 is operated electrically by the plunger 15 and the solenoid So, but it may also be operated manually by mechanically interlocking with the water supply button 19. 2o is a thermoswitch provided in close contact with the radiator block 4, and has an upper limit set for the temperature of the first joint surface 23, and when this exceeds the upper limit, the circuit is opened to prevent the thermomodule from being destroyed. 21
22 is a water supply pipe, 22 is a water suction pipe, W is water to be cooled, and WJ is a cooling water flow group. A limiter 25 is provided in close contact with the heat sink 5, and sets an upper limit for the temperature of the second bonding surface 24. When the temperature exceeds the set value, the circuit is opened to prevent the thermo module Th from being destroyed. 26 is a heat insulating material. In Fig. 2, ps is a DC power supply terminal, SL is a power switch, f is a fuse, and S2 is a power supply polarity switch to change the polarity of the DC power applied to the thermo module. The bonding surface may generate heat, or the first bonding surface may generate heat and the second bonding surface may absorb heat. Arrow C is the cooling (heat absorption) position, arrow H is the heating (heat generation) position, Dl is the cooling display light emitting diode, D2 is the heating display light emitting diode,
The cooling and heating are each based on the action of the first joint surface. Reference numeral 28 is a low-speed drive power source that supplies power to the electric pump M2. D3 and D4 are backflow blocking diodes, and the others are the same as in FIG.

(ホ)作用 今、魔法瓶3内に被冷却水Wを入れ、ラジェータブロッ
ク4の下部を栓として魔法瓶3の口に挿入し、直流電源
端子PSに極性を合致させて直流電源を接続し、電源ス
ィッチS1を関しると、電源プラス→電源スイッチS1
→ヒユーズf−+極性切り替えスイッチS2→リミッタ
25→サーモモジュールエ互→極性切り替えスイッチS
2→サーモスイツチ20→電源マイナスと電流が流れて
、サーモモジュールエ九に予め設定された極性の直流電
源が印加され、第一接合面23が吸熱し、ラジェータブ
ロック4を冷却する。同時に電源に接続されている低速
駆動用電源28から逆流阻止ダイオードD3を介して電
動ポンプM2に低速駆動用電源が供給され、該ポンプM
2が低速で駆動されることによって、魔法瓶3内部の被
冷却水Wが、吸水管22から吸水路17を介して電動ポ
ンプM2の吸水側という径路で吸い上げられ吐水側がら
押出されて、Y形管12と循環水路ゴム管13を介して
、冷却されたラジェータブロック4の延べ面積の大きな
冷却水N7に緩速で流入しつつ熱交換されて冷却され、
冷却水流群WJと成って魔法瓶3内の水面上に押出され
、魔法瓶3底部に向って下降対流し、その後再び被冷却
水Wとなって吸水管22から吸水され、上述の径路で循
環冷却される。給水時には給水ボタン19を押すと、連
動した給水スイッチS3が閉じられ、ソレノイドSOに
電源が供給されて電磁石と成り、押圧バネ18の付勢を
打ち消してプランジャ15を吸引し先端に固着された閉
塞ビン16によって循環水路ゴム管13が閉塞され、給
水路ゴム管14が開通し、同時に、閉じられた給水スイ
ッチS3から逆流阻止ダイオードD4を介して電動ポン
プM2に電源が供給され、該ポンプM2が高速で駆動さ
れて速やかに冷水を外部に給水する9給水ボタン19を
解除すると、水路切り替えゴム管バルブが復旧し、被冷
却水Wも循環冷却の径路に復帰する。
(e) Operation Now, put the water to be cooled W into the thermos flask 3, insert the lower part of the radiator block 4 into the mouth of the thermos flask 3 using the stopper, match the polarity with the DC power supply terminal PS, connect the DC power supply, and then connect the Regarding switch S1, power supply plus → power switch S1
→Fuse f-+Polarity changeover switch S2 →Limiter 25→Thermo module E →Polarity changeover switch S
2 -> thermo switch 20 -> power supply negative, a DC power supply with a preset polarity is applied to the thermo module E9, the first joint surface 23 absorbs heat, and the radiator block 4 is cooled. At the same time, low-speed drive power is supplied to the electric pump M2 from the low-speed drive power supply 28 connected to the power supply via the backflow blocking diode D3, and the pump M
2 is driven at low speed, the cooled water W inside the thermos flask 3 is sucked up from the water suction pipe 22 through the suction channel 17 through the water suction side of the electric pump M2, and is pushed out from the water discharge side, forming a Y-shape. Through the pipe 12 and the circulation waterway rubber pipe 13, the cooled water flows slowly into the cooling water N7 having a large total area of the cooled radiator block 4, and is cooled by heat exchange.
It forms a cooling water flow group WJ and is pushed out onto the water surface in the thermos flask 3, convects downward toward the bottom of the thermos flask 3, and then becomes cooled water W again and is absorbed from the water suction pipe 22, where it is circulated and cooled through the above-mentioned path. Ru. When water is supplied, when the water supply button 19 is pressed, the linked water supply switch S3 is closed, power is supplied to the solenoid SO, which becomes an electromagnet, cancels the bias of the pressure spring 18, attracts the plunger 15, and removes the blockage fixed to the tip. The circulation waterway rubber pipe 13 is closed by the bottle 16, the water supply waterway rubber pipe 14 is opened, and at the same time, power is supplied from the closed water supply switch S3 to the electric pump M2 via the backflow prevention diode D4, and the pump M2 is activated. When the 9 water supply button 19, which is driven at high speed and promptly supplies cold water to the outside, is released, the water channel switching rubber tube valve is restored and the cooled water W is also returned to the circulation cooling path.

次に、電源極性切り替えスイッチS2を矢線Hの位置に
切り替え、サーモモジュールエhに印加する電源の極性
を逆にすると、サーモモジュールTh内部に逆方向の電
子の流れを生じさせて第一接合面23か発熱することに
より、冷却動作が加熱動作に置き換わり、魔法瓶3内部
の被冷却水Wを逆に加熱し、熱湯を造ることが可能とな
る。この場合、吸熱から発熱、冷却から加熱、吸熱から
放熱、強制空冷から強制空温、冷水から熱湯などと、単
語の入れ代わりはあるが、上述の冷水を造る作用の説明
から当業者には容易に理解できると推察し、以下熱湯を
造る作用についての詳細な説明は繁雑になるのでここで
止どめる。
Next, when the power supply polarity changeover switch S2 is switched to the position indicated by the arrow H and the polarity of the power applied to the thermomodule Th is reversed, a flow of electrons in the opposite direction is generated inside the thermomodule Th, and the first junction When the surface 23 generates heat, the cooling operation is replaced with a heating operation, and the water to be cooled W inside the thermos flask 3 can be heated inversely to make hot water. In this case, words may be interchanged, such as heat absorption to heat generation, cooling to heating, heat absorption to heat radiation, forced air cooling to forced air temperature, cold water to hot water, etc., but it is easy for those skilled in the art to understand from the above explanation of the action of producing cold water. I assume that you can understand this, and since a detailed explanation of the process of producing hot water would be complicated, I will stop here.

(へ)発明の効果 以上詳述したように、本発明一実施例の冷水を造る機構
を持つ魔法瓶は、従来品の有する、断熱材を用いた金属
製水容器の熱遮断効果が悪かったこと及びサーモモジュ
ールの第一接合面から被冷却水までの間に介在する熱抵
抗か高かったこと、などの諸欠点を一掃して冷却効率を
大きく改善し得るものであり、これの実施効果は大であ
る。
(F) Effects of the Invention As detailed above, the thermos with a mechanism for producing cold water according to one embodiment of the present invention has a disadvantage that the heat insulation effect of the conventional metal water container using a heat insulating material is poor. This method can greatly improve cooling efficiency by eliminating various drawbacks such as the high thermal resistance between the first joint surface of the thermo module and the water to be cooled, and the effect of implementing this is significant. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例要部の縦断面図で一部投影して併記し
たもの。第2図は同じく回路図で一部ブロックで示した
ものである。 第1図で3は魔法瓶、Thはサーモモジュール、4はラ
ジェータブロック、Mlは電動送風機、7は冷却水路、
M2は電動ポンプ、13は循環水路ゴム管、14は給水
路ゴム管、16は閉塞ビン、18は押圧ハネ、Soはソ
レノイド、15はプランジャ、17は吸水路、1つは給
水ボタン、22は吸水管、Wは被冷却水、WJは冷却水
流群、26は断熱材、第2図で82は電源極性切替スイ
ッチ、矢線Cは冷却の位置、矢線Hは加熱の位置、S3
は給水スイッチ、23は第1接合面、24は第2接合面
、2′8は低速駆動用電源、他は第1図と共通。
FIG. 1 is a longitudinal cross-sectional view of the main part of one embodiment, with some parts projected and shown together. FIG. 2 is also a circuit diagram, partially shown in blocks. In Figure 1, 3 is a thermos flask, Th is a thermo module, 4 is a radiator block, Ml is an electric blower, 7 is a cooling waterway,
M2 is an electric pump, 13 is a circulation waterway rubber pipe, 14 is a water supply waterway rubber pipe, 16 is a blocking bottle, 18 is a pressure spring, So is a solenoid, 15 is a plunger, 17 is a suction channel, 1 is a water supply button, 22 is Water suction pipe, W is water to be cooled, WJ is a cooling water flow group, 26 is a heat insulator, 82 is a power supply polarity switch in Fig. 2, arrow C is a cooling position, arrow H is a heating position, S3
2 is a water supply switch, 23 is a first joint surface, 24 is a second joint surface, 2'8 is a low-speed drive power source, and the other parts are the same as in FIG. 1.

Claims (1)

【特許請求の範囲】 1、冷却用熱電素子対群(以下サーモモジュールと称す
る)の第一接合面に、延べ面積の大きな冷却水路と吸水
路を備えたラジエータブロックを密着させて設けるとと
もに、吸水管から吸水路を介して吸水し必要に応じて駆
動速度を可変できる電動ポンプと、この吐水側に接続さ
れ給水時には給水ボタンと連動し、通常は循環水路が開
通し給水路が閉塞されている水路切り替えバルブとを設
け、該バルブの循環水路を冷却水路に、給水路を給水パ
イプにそれぞれ接続した本体上部構造物のラジエータブ
ロック下部を、栓として本体下部内に設けられた魔法瓶
の口に挿入して成る物のサーモモジュールに、予め設定
された極性の直流電源を印加するこにより第一接合面で
吸熱させラジエータブロックを冷却し、同時に電動ポン
プを低速で駆動させることによって、魔法瓶内部から吸
い上げた被冷却水が冷却されたラジエータブロックの、
延べ面積の大きな冷却水路に緩速で流入しつつ熱交換さ
れて冷却され、魔法瓶内の水面上に冷却水となって押出
され、魔法瓶底部に向って下降対流し、その後再び被冷
却水となつて吸水管で吸水されて上述の径路で循環冷却
され、給水時には給水ボタンを押すと、連動した水路切
り替えバルブが切り替わり、循環水路が閉塞され給水路
が開通し、同時に電動ポンプを高速で駆動し、速やかに
冷却水を外部に給水できるように構成した冷却水を造る
機構を持つ魔法瓶。 2、電源極性切り替えスイッチを設け、サーモモジュー
ルに印加する電源の極性を切替え、第一接合面を発熱さ
せることにより、冷却動作を加熱動作に置き換え、魔法
瓶内部の水を加熱し熱湯を造ることを兼用できるように
構成した特許請求の範囲第1項記載の冷却水を造る機構
を持つ魔法瓶。 3、電動ポンプとして、ペルスタポンプ又は磁気結合羽
根車ポンプを用い、内部の被冷却水の清浄を確保するよ
うに構成した特許請求の範囲第1項〜第2項記載の冷水
を造る機構を持つ魔法瓶。 4、水路切り替えバルブとして、水路切り替えゴム管バ
ルブを用い、内部の被冷却水の清浄を確保するように構
成した特許請求の範囲第1項〜第3項記載の冷却水を造
る機構を持つ魔法瓶。
[Claims] 1. A radiator block equipped with cooling channels and suction channels having a large total area is provided in close contact with the first joint surface of a cooling thermoelectric element pair group (hereinafter referred to as thermo module), and a water absorption An electric pump that sucks water from a pipe through a suction channel and can vary its driving speed as needed, is connected to this water discharge side and works in conjunction with a water supply button when water is supplied.Normally, the circulation channel is open and the supply channel is blocked. A waterway switching valve is installed, and the lower part of the radiator block of the upper structure of the main body, in which the circulation waterway of the valve is connected to the cooling waterway and the water supply waterway is connected to the water supply pipe, is inserted as a stopper into the mouth of the thermos flask provided in the lower part of the main body. By applying a DC power supply with a preset polarity to the thermo module, the first joint surface absorbs heat and cools the radiator block, and at the same time, by driving the electric pump at low speed, suction is drawn from inside the thermos flask. of the radiator block where the cooled water is cooled.
The water slowly flows into the large cooling channel, where it exchanges heat and is cooled. It is pushed out onto the water surface in the thermos as cooling water, convects downward toward the bottom of the thermos, and then becomes cooled water again. Water is absorbed by the water suction pipe and circulated and cooled through the above-mentioned path. When water is to be supplied, when the water supply button is pressed, the linked waterway switching valve is switched, the circulation waterway is blocked and the supply waterway is opened, and at the same time the electric pump is driven at high speed. , a thermos flask with a mechanism for producing cooling water that is configured to quickly supply cooling water to the outside. 2. A power polarity switch is installed to change the polarity of the power applied to the thermo module and generate heat on the first joint surface, replacing the cooling operation with a heating operation, heating the water inside the thermos flask and creating hot water. A thermos flask having a mechanism for producing cooling water according to claim 1, which is constructed so that it can be used for both purposes. 3. A thermos flask having a mechanism for producing cold water according to claims 1 to 2, which uses a peristaltic pump or a magnetically coupled impeller pump as the electric pump and is configured to ensure the purity of the water to be cooled inside. . 4. A thermos flask having a mechanism for producing cooling water according to claims 1 to 3, which uses a water passage switching rubber pipe valve as the water passage switching valve and is configured to ensure the purity of the water to be cooled inside. .
JP17576988A 1988-07-14 1988-07-14 Thermos bottle having mechanism to make cold water Pending JPH0225673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17576988A JPH0225673A (en) 1988-07-14 1988-07-14 Thermos bottle having mechanism to make cold water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17576988A JPH0225673A (en) 1988-07-14 1988-07-14 Thermos bottle having mechanism to make cold water

Publications (1)

Publication Number Publication Date
JPH0225673A true JPH0225673A (en) 1990-01-29

Family

ID=16001938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17576988A Pending JPH0225673A (en) 1988-07-14 1988-07-14 Thermos bottle having mechanism to make cold water

Country Status (1)

Country Link
JP (1) JPH0225673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266409A (en) * 1989-04-28 1993-11-30 Digital Equipment Corporation Hydrogenated carbon compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266409A (en) * 1989-04-28 1993-11-30 Digital Equipment Corporation Hydrogenated carbon compositions

Similar Documents

Publication Publication Date Title
US9310110B2 (en) Thermoelectric drinking apparatus and thermoelectric heat pump
CN100531534C (en) Cooling device
US5072590A (en) Bottled water chilling system
RU2005124720A (en) PERSONAL COOLING AND HEATING SYSTEM
JPH0225673A (en) Thermos bottle having mechanism to make cold water
WO1993008433A1 (en) Water cooler
US20030230300A1 (en) Solar energy collecting device with a thermal conductor, and water heating apparatus using the solar energy collecting device
KR101341334B1 (en) Micro-climate control device
CN205331129U (en) Adopt gravity type to concentrate heat radiation structure's hydraulic system
CN216535497U (en) Unhairing instrument
CN105953524B (en) A kind of quick cooling device of fluid
JP3682059B1 (en) Local air conditioning system for human body
CN210050927U (en) Fan
CN111595100A (en) Temperature-adjusting type separable storage drinking liquid refrigerating system and refrigerating equipment
JPH07260186A (en) Cold air apparatus
JPH07101497A (en) Cool/hot liquid container utilizing peltier effect
CN111839230A (en) Instant-cooling and instant-heating water dispenser and instant-cooling and instant-heating control method
JP2706429B2 (en) Thermoelectrically cooled drinking water can cooler
US3242680A (en) Device for suppressing the thermal backflow from a heat-exchanger to the cooling space of a cooling device equipped especially with a thermoelectric cooling element
CN213718561U (en) Heat radiation structure of electric vehicle controller
JPH09201380A (en) Affected part cooling device
ES2054536B1 (en) APPARATUS FOR DEFROSTING THE EXTERNAL HEAT EXCHANGER OF A REVERSIBLE HEAT PUMP SYSTEM.
CN210129456U (en) Waterproof relay with heat dissipation seat
CN100358456C (en) Heat radiation structure of vacuum cleaner
KR102324430B1 (en) Modular chiller and Infrared heater using the same