JPH02256168A - Cooling device for fuel cell - Google Patents

Cooling device for fuel cell

Info

Publication number
JPH02256168A
JPH02256168A JP1076276A JP7627689A JPH02256168A JP H02256168 A JPH02256168 A JP H02256168A JP 1076276 A JP1076276 A JP 1076276A JP 7627689 A JP7627689 A JP 7627689A JP H02256168 A JPH02256168 A JP H02256168A
Authority
JP
Japan
Prior art keywords
outlet
manifold
inlet
cooling
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076276A
Other languages
Japanese (ja)
Inventor
Fumiyuki Asamizu
浅水 文幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1076276A priority Critical patent/JPH02256168A/en
Publication of JPH02256168A publication Critical patent/JPH02256168A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To ensure the equal distribution of reactive gas to cell stacks by providing an inlet manifold which is connected to the inlet header of each cooling plate inserted between the cell stacks and an outlet manifold which is connected to an outlet header. CONSTITUTION:An upright inlet manifold 19 which is connected to the inlet header 5 of each cooling plate 3 via a connection pipe 18 is provided to connect an inlet insulated pressure tight hose 9 between the lower portion of the inlet manifold 19 and an inlet pipe 14. Also, an outlet manifold 21 which is connected to an outlet header 6 via a connection pipe 20 is provided to connect an outlet insulated pressure tight hose 10 between the upper portion of the outlet manifold 21 and an outlet pipe 15. In this case, corresponding gas flows from a supply manifold 12 into the side faces of cell stacks 1 and passes through the cell stacks 1 into an exhaust manifold 13, however there is only one insulated pressure tight hose serving for a resistor of flow in front of the supply and exhaust sides of the cell stacks 1. It is thus possible to distribute reactive gas equally.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セルスタック内に冷却管が貫通する冷却板を
介挿し、この冷却管に冷却媒体を通流してセルスタック
の冷却を行なう燃料電池の冷却装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cell stack in which a cooling plate through which a cooling pipe passes is inserted into a cell stack, and a cooling medium is passed through the cooling pipe to cool the cell stack. This invention relates to a battery cooling device.

〔従来の技術〕[Conventional technology]

燃料電池は、通常単電池を複数積層してなる電池にて電
池反応を行なわせて発電をしている。この際燃料電池は
電池反応に伴って発熱するので、セルスタック内に介挿
された冷却板の冷却管に冷却媒体を通流し、前記発生し
た熱を冷却媒体により除熱し、燃料電池の運転温度を保
持している。
A fuel cell is usually made up of a plurality of stacked single cells, and generates electricity by performing a cell reaction. At this time, the fuel cell generates heat due to the cell reaction, so a cooling medium is passed through the cooling pipe of the cooling plate inserted in the cell stack, and the generated heat is removed by the cooling medium, so that the operating temperature of the fuel cell is increased. is held.

なお、冷却板は燃料電池の起動時の昇温、停止時の降温
にもそれぞれ熱媒体または冷却媒体によるセルスタック
の加熱または冷却に使用される。
Note that the cooling plate is also used for heating or cooling the cell stack using a heating medium or a cooling medium, respectively, to raise the temperature when starting up the fuel cell, and to lower the temperature when stopping the fuel cell.

以下図面を用いて従来技術について、説明する。The prior art will be described below with reference to the drawings.

第3図は従来の燃料電池の冷却装置を備えたセルスタッ
クの正面図、第4図は第3図の冷却装置の平面図である
。第3図、第4図においてlはセルスタックであり、単
電池2を複数積み重ねるごとに冷却板3を介挿している
。冷却板3はこれを貫通する複数の冷却管4を有し、冷
却板3の対向する端面からそれぞれ突出する冷却管部の
一方に接続する入口ヘッダ5と他方に接続する出口ヘッ
ダ6とを備えている。7はセルスタック1に沿って直立
する大口マニホールド、8は同様に直立する出口マユホ
ールドであり、セルスタック1に介挿された各冷却板3
の入口ヘッダ5と出口ヘッダ6とは入口絶縁耐圧ホース
9と出口絶縁耐圧ホース10とによりそれぞれ入口マニ
ホールド7と出口マニホールド8とに接続されている。
FIG. 3 is a front view of a cell stack equipped with a conventional fuel cell cooling device, and FIG. 4 is a plan view of the cooling device of FIG. 3. In FIGS. 3 and 4, l represents a cell stack, and a cooling plate 3 is inserted every time a plurality of single cells 2 are stacked. The cooling plate 3 has a plurality of cooling pipes 4 passing through it, and includes an inlet header 5 connected to one of the cooling pipe parts protruding from opposing end surfaces of the cooling plate 3, and an outlet header 6 connected to the other. ing. 7 is a large mouth manifold that stands upright along the cell stack 1, 8 is an outlet manifold that also stands upright, and each cooling plate 3 inserted in the cell stack 1.
The inlet header 5 and the outlet header 6 are connected to the inlet manifold 7 and the outlet manifold 8 by an inlet insulated pressure hose 9 and an outlet insulated pressure hose 10, respectively.

なお、入口マニホールド7.出口マニホールド8.絶縁
耐圧ホース9,10はセルスタック1の対向する側面に
覆って設けられる反応ガスの供給マニホールド12゜排
出マニホールド13内に配設され、冷却媒体としての冷
却水の入口管14と出口管15はそれぞれ供給マニホー
ルド12.排出マニホールド13を貫通して入口、出口
マニホールド7.8とに接続されている・      
           \このような構造により、燃料
電池の運転時、セルスタック1を冷却するときには、冷
却水を入口管14から入口マニホールド7に供給する。
Note that the inlet manifold 7. Outlet manifold8. The insulated and pressure-resistant hoses 9 and 10 are disposed within a reaction gas supply manifold 12 and a discharge manifold 13 that are provided to cover opposite sides of the cell stack 1, and an inlet pipe 14 and an outlet pipe 15 for cooling water as a cooling medium are provided. Supply manifold 12. It passes through the discharge manifold 13 and is connected to the inlet and outlet manifolds 7.8.
With such a structure, when cooling the cell stack 1 during operation of the fuel cell, cooling water is supplied from the inlet pipe 14 to the inlet manifold 7.

供給された冷却水は入口マニホールド7から各絶縁耐圧
ホース9を経て各入口ヘッダ5に流入し、入口ヘッダ5
からセルスタック内の各冷却板3の冷却管4に流入し、
冷却管内を通流する。通流する冷却水は燃料電池の電池
反応によりセルスタックにて発生する熱を各冷却板3を
介して除熱してセルスタックを冷却し、燃料電池の運転
温度に保持する。
The supplied cooling water flows into each inlet header 5 from the inlet manifold 7 through each insulated pressure hose 9, and then flows into each inlet header 5.
flows into the cooling pipes 4 of each cooling plate 3 in the cell stack,
Flow through the cooling pipe. The flowing cooling water cools the cell stack by removing heat generated in the cell stack by the cell reaction of the fuel cell through each cooling plate 3, and maintains the cell stack at the operating temperature of the fuel cell.

セルスタック1を冷却して低温になった冷却水は出口ヘ
ッダ6に集められ、各出口絶縁耐圧ホース10を経て出
口マニホールド8に集められて出口管15から外部に排
出される。
Cooling water that has cooled down the cell stack 1 is collected in the outlet header 6, passes through each outlet insulated pressure hose 10, is collected in the outlet manifold 8, and is discharged to the outside from the outlet pipe 15.

なお、燃料電池の停止時の降温時にも同様にして冷却水
を冷却板3の冷却管4に通流してセルスタックを冷却す
る。また燃料電池の起動時の昇温時には熱媒体を冷却板
3の冷却管4に通流してセルスタックを加熱する。
Note that when the temperature of the fuel cell is lowered when the fuel cell is stopped, cooling water is similarly passed through the cooling pipes 4 of the cooling plate 3 to cool the cell stack. Further, when the temperature rises during startup of the fuel cell, a heat medium is passed through the cooling pipe 4 of the cooling plate 3 to heat the cell stack.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように冷却板3の入口ヘッダ5.出口ヘッダ6に
は絶縁耐圧ホース9,10が各冷却板ごとに設けられて
いる。このため下記のような問題点がある。
The inlet header 5 of the cooling plate 3 as described above. The outlet header 6 is provided with insulated pressure hoses 9 and 10 for each cooling plate. This causes the following problems.

(1)  絶縁耐圧ホースの使用量が多くなるので、配
管接続部が多くなり、気密性に対する信頼が低くなると
ともにコストが高くなる。
(1) Since the amount of insulated and pressure-resistant hoses used increases, the number of piping connections increases, reliability in airtightness decreases, and costs increase.

(2)  多数の絶縁耐圧ホースは反応ガスの供給。(2) Numerous insulation and pressure hoses supply reactive gas.

排出用マニホールド内に設けられているので、反応ガス
がセルスタックに供給、排出される際、これらの絶縁耐
圧ホースが反応ガスの流れの抵抗体となり、反応ガスの
等配が確保できない。
Since these hoses are provided in the discharge manifold, when the reaction gas is supplied to and discharged from the cell stack, these insulated and pressure-resistant hoses act as a resistance to the flow of the reaction gas, making it impossible to ensure equal distribution of the reaction gas.

本発明の目的は、絶縁耐圧ホースを少なくすることによ
り、気密性に対する信頼性が高く、かつコストの低い燃
料電池の冷却装置を提供することである。
An object of the present invention is to provide a cooling device for a fuel cell that has high reliability in terms of airtightness and is low in cost by reducing the number of insulated and pressure-resistant hoses.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれば単電池を複
数積み重ねるごとに冷却管が貫通する冷却板を介挿し、
前記冷却管に接続する入口ヘッダと出口ヘッダとを介し
て冷却媒体を冷却管に通流してセルスタックを冷却する
冷却装置を備える燃料電池において、前記各冷却板の入
口ヘッダに接続する入口マニホールドと、出口ヘッダに
接続する出口マニホールドと、この入口マニホールドと
出口マニホールドとにそれぞれ接続し、冷却媒体を供給
、排出する入口絶縁耐圧ホースと出口絶縁耐圧ホースと
を備えるものとする。
In order to solve the above problems, according to the present invention, a cooling plate through which a cooling pipe passes is inserted every time a plurality of single cells are stacked,
In a fuel cell equipped with a cooling device that cools the cell stack by passing a cooling medium through the cooling pipes through an inlet header and an outlet header connected to the cooling pipes, an inlet manifold connected to the inlet header of each of the cooling plates; , an outlet manifold connected to the outlet header, and an inlet insulated pressure hose and an outlet insulated pressure hose connected to the inlet manifold and the outlet manifold, respectively, for supplying and discharging a cooling medium.

〔作用〕[Effect]

セルスタックに介挿された各冷却板の入口ヘッダを接続
する入口マニホールド、出口ヘッダを接続する出口マニ
ホールドを設けたことにより、電気絶縁用の絶縁耐圧ホ
ースは冷却板の入口ヘッダ側と出口ヘッダ側で各1本で
よいことになり、セルスタックの前面には反応ガスが通
流するときの抵抗体が少なくなるので、セルスタックへ
の反応ガスの等配を確保でき、また気密性に対する信頼
性も高くなる。
By providing an inlet manifold that connects the inlet header of each cooling plate inserted in the cell stack and an outlet manifold that connects the outlet header, the insulated pressure hose for electrical insulation can be connected to the inlet header side and the outlet header side of the cooling plate. This means that only one of each is required, and there are fewer resistors on the front side of the cell stack when the reactant gas flows, ensuring equal distribution of the reactant gas to the cell stack and improving reliability in terms of airtightness. It also becomes more expensive.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による燃料電池の冷却装置を備
えたセルスタックの正面図、第2図は第1図の冷却装置
の平面図である。なお、第1図、第2図において第3図
3第4図の従来例と同一部品には同じ符号を付し、その
説明を省略する。第1図、第2図において従来例と異な
るのは各冷却板3の入口ヘッダ5を連結管18を介して
接縁耐圧ホース9を接続し、また出口ヘッダ6を連結管
20を介して接続する出口マニホールド21を設け、出
ロマニホールド訪の上部と出口管15との間に出口絶縁
耐圧ホース10を接続したことである。
FIG. 1 is a front view of a cell stack equipped with a fuel cell cooling device according to an embodiment of the present invention, and FIG. 2 is a plan view of the cooling device of FIG. 1. In FIGS. 1 and 2, parts that are the same as those in the conventional example shown in FIGS. 3, 3, and 4 are given the same reference numerals, and their explanations will be omitted. 1 and 2, the difference from the conventional example is that the inlet header 5 of each cooling plate 3 is connected to a pressure-resistant hose 9 via a connecting pipe 18, and the outlet header 6 is connected via a connecting pipe 20. An outlet manifold 21 is provided, and an outlet insulated pressure-resistant hose 10 is connected between the upper part of the outlet manifold and the outlet pipe 15.

このような構成により冷却水は入口管14から入口絶縁
耐圧ホース9を経て入口マニホールド19に流入し、こ
こから各冷却板3の入口ヘッダ5に流入する。そして冷
却水は冷却板3の冷却管4を通流し、冷却板3を介して
セルスタック1にて電池反応により生じる熱を除熱して
燃料電池の運転温度に保持する。冷却板3にて除熱して
高温になった冷却水は各冷却板3の出口ヘッダ6を経て
出口マニホールド20に集められ、出口絶縁耐圧ホース
10を経て出口管15から外部に排出される。
With this configuration, cooling water flows from the inlet pipe 14 through the inlet insulated pressure hose 9 to the inlet manifold 19, and from there to the inlet header 5 of each cooling plate 3. The cooling water flows through the cooling pipe 4 of the cooling plate 3, removes heat generated by cell reaction in the cell stack 1 via the cooling plate 3, and maintains the temperature at the operating temperature of the fuel cell. Cooling water that has become high temperature by removing heat on the cooling plates 3 passes through the outlet header 6 of each cooling plate 3, is collected in the outlet manifold 20, passes through the outlet insulated pressure hose 10, and is discharged to the outside from the outlet pipe 15.

なお反応ガスは供給マニホールド12からセルスタック
1の側面に流入し、セルスタック1を通流して排出マニ
ホールド13に流れるが、セルスタック1の供給、排出
側の前面には従来のように流れの抵抗体となる絶縁耐圧
ホースが1本だけなので、反応ガスを等配することがで
きる。
Note that the reaction gas flows from the supply manifold 12 to the side surface of the cell stack 1, passes through the cell stack 1, and flows to the discharge manifold 13, but there is a flow resistance on the front surface of the cell stack 1 on the supply and discharge sides as in the conventional case. Since there is only one insulated and pressure-resistant hose, the reaction gas can be evenly distributed.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によればセルスタ
ックに介挿された各冷却板の入口ヘッダを接続する入口
マニホールド、出口ヘッダを接続する出口マニホールド
を設け、これらの入口、出口マニホールドに接続して絶
縁耐圧ホースを各1本設けることにより、反応ガスを供
給、排出するセルスタックの前面には流れの抵抗体とな
る絶縁耐圧ホースは従来の多数本と異なって各1本なの
で、反応ガスをセルスタックに等配することができる。
As is clear from the above description, according to the present invention, an inlet manifold connecting the inlet headers of each cooling plate inserted in the cell stack and an outlet manifold connecting the outlet headers are provided, and these inlet and outlet manifolds are connected to each other. By providing one insulated and pressure-resistant hose for each connection, there is only one insulated and pressure-resistant hose for each flow resistance at the front of the cell stack that supplies and discharges the reaction gas, unlike conventional systems, which have multiple insulated and pressure-resistant hoses. Gas can be evenly distributed throughout the cell stack.

また絶縁耐圧ホースも各1本なので、漏洩可能性のある
接続部数も従来より減小し、気密性に対する信頼性が高
く、かつ低コストになるという効果もある。
In addition, since there is only one insulated and pressure-resistant hose, the number of connections that can potentially leak is reduced compared to the conventional method, resulting in high reliability in airtightness and low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による燃料電池の冷却装置を備
えたセルスタ・ンクの正面図、第2図は第1図の燃料電
池の冷却装置の平面図、第3図は従来の燃料電池の冷却
装置を備えたセルスタックの正面図、第4図は第3図の
燃料電池の冷却装置の平面図である。 1:セルスタック、3:冷却板、4:冷却管、5:入口
ヘッダ、6:出口ヘッダ、7.19:人口マニホールド
、s、zi:出口マニホールド、9:入口絶縁耐圧ホー
ス、10:出口絶縁耐圧ホース。 〜 ′−l ン 〜
FIG. 1 is a front view of a cell tank equipped with a fuel cell cooling device according to an embodiment of the present invention, FIG. 2 is a plan view of the fuel cell cooling device of FIG. 1, and FIG. 3 is a conventional fuel cell tank. FIG. 4 is a front view of a cell stack equipped with a cooling device of FIG. 3, and FIG. 4 is a plan view of the cooling device of the fuel cell of FIG. 1: Cell stack, 3: Cooling plate, 4: Cooling pipe, 5: Inlet header, 6: Outlet header, 7.19: Population manifold, s, zi: Outlet manifold, 9: Inlet insulation pressure-resistant hose, 10: Outlet insulation Pressure resistant hose. ~ ′-l n~

Claims (1)

【特許請求の範囲】[Claims] 1)単電池を複数積み重ねるごとに冷却管が貫通する冷
却板を介挿し、前記冷却管に接続する入口ヘッダと出口
ヘッダとを介して冷却媒体を冷却管に通流してセルスタ
ックを冷却する冷却装置を備える燃料電池において、前
記各冷却板の入口ヘッダに接続する入口マニホールドと
、出口ヘッダに接続する出口マニホールドと、この入口
マニホールドと出口マニホールドとにそれぞれ接続し、
冷却媒体を供給、排出する入口絶縁耐圧ホースと出口絶
縁耐圧ホースとを備えたことを特徴とする燃料電池の冷
却装置。
1) Cooling in which a cooling plate through which a cooling pipe passes is inserted every time a plurality of cells are stacked, and a cooling medium is passed through the cooling pipe through an inlet header and an outlet header connected to the cooling pipe to cool the cell stack. an inlet manifold connected to the inlet header of each of the cooling plates, an outlet manifold connected to the outlet header, and connected to the inlet manifold and the outlet manifold, respectively;
A cooling device for a fuel cell, comprising an insulated pressure-resistant inlet hose and an insulated pressure-resistant outlet hose for supplying and discharging a cooling medium.
JP1076276A 1989-03-28 1989-03-28 Cooling device for fuel cell Pending JPH02256168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076276A JPH02256168A (en) 1989-03-28 1989-03-28 Cooling device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076276A JPH02256168A (en) 1989-03-28 1989-03-28 Cooling device for fuel cell

Publications (1)

Publication Number Publication Date
JPH02256168A true JPH02256168A (en) 1990-10-16

Family

ID=13600745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076276A Pending JPH02256168A (en) 1989-03-28 1989-03-28 Cooling device for fuel cell

Country Status (1)

Country Link
JP (1) JPH02256168A (en)

Similar Documents

Publication Publication Date Title
US7070874B2 (en) Fuel cell end unit with integrated heat exchanger
JPS61173470A (en) Positively cooling type cooler for electrochemical battery
JPH0158629B2 (en)
CN107004888B (en) Thermal management of fuel cell units and systems
US20220384836A1 (en) Fuel cell device
JPS6016705B2 (en) Fuel cell device and its operation method
CN112397810A (en) Fire control and integrative energy storage system of heat dissipation
CN108306072B (en) Parallel heat exchange battery pack
CN113194678B (en) Liquid drainage drying nitrogen charging device suitable for liquid cooling server
JP2017076609A (en) Fuel cell module including heat exchanger and method for actuating such module
JP4427105B2 (en) Fuel cell battery cooling device
JP2005078859A (en) Fuel cell system
CN218819633U (en) Integrated solid hydrogen storage and supply device
JPS58161272A (en) Stacked fuel cell
JPH02256168A (en) Cooling device for fuel cell
JPH1154140A (en) Fuel cell power generating device
JPS5975573A (en) Fuel cell
JP2002195777A (en) Heat exchanger
JPH0527954B2 (en)
CN216250871U (en) Liquid cooling heat dissipation structure of battery system and battery pack
CN218996772U (en) Multifunctional intercooler for fuel cell system
JPH0622149B2 (en) Fuel cell
JPH04190571A (en) Fuel cell
JPS63236273A (en) Fused carbonate type fuel cell stack
JPS5897272A (en) Fuel cell