JPH02256034A - Camera provided with electromagnetic-driven shutter - Google Patents

Camera provided with electromagnetic-driven shutter

Info

Publication number
JPH02256034A
JPH02256034A JP7931789A JP7931789A JPH02256034A JP H02256034 A JPH02256034 A JP H02256034A JP 7931789 A JP7931789 A JP 7931789A JP 7931789 A JP7931789 A JP 7931789A JP H02256034 A JPH02256034 A JP H02256034A
Authority
JP
Japan
Prior art keywords
shutter
voltage
actuator
pulse
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7931789A
Other languages
Japanese (ja)
Other versions
JP2843866B2 (en
Inventor
Nobuo Katsumura
勝村 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1079317A priority Critical patent/JP2843866B2/en
Publication of JPH02256034A publication Critical patent/JPH02256034A/en
Application granted granted Critical
Publication of JP2843866B2 publication Critical patent/JP2843866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shutters For Cameras (AREA)

Abstract

PURPOSE:To prevent the effect of the variation of a power supply on an actuator by providing a voltage discrimination means and a pulse forming means which sets the duty ratio of a pulse whose effective current is made constant and driving the actuator with the aid of the pulse outputted from the pulse forming means. CONSTITUTION:The camera is provided with the voltage discrimination means 102-A for detecting the voltage level of the power-supply voltage and the pulse forming means 102-D which sets the duty ratio of the pulse whose effective current is made constant on the basis of voltage information from the voltage discrimination means 102-A. The actuator for shutter 101 is allowed to be driven with the aid of the pulse outputted from the pulse forming means 102-D. Thus, the effect of the variation of the power-supply voltage is prevented and exposure control with high accuracy is accomplished with the simple constitution of a circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電磁駆動シャッタ装置を備えたカメラに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a camera equipped with an electromagnetically driven shutter device.

〔従来の技術〕[Conventional technology]

電磁力により駆動する電磁装R(以下アクチェータと言
う)は、電流を通電する時間や電流量、あるいは電流の
方向を変化させることで駆動し制御でき、一般に構造が
簡単であるため、電気化された一カメラのシャッタ装置
や撮影レンズ駆動装置等、駆動力が必要で、かつ複雑な
制御を必要とする装置に多く用いられている。
Electromagnetic devices R (hereinafter referred to as actuators) that are driven by electromagnetic force can be driven and controlled by changing the current flow time, current amount, or current direction, and are generally simple in structure, so they are not electrified. It is often used in devices that require driving force and complex control, such as camera shutter devices and photographic lens drive devices.

しかしながら電磁力の強さが電流量に比例するという利
点は、カメラのように電源が電池である場合、使用する
に従って電池の電圧が経時的に低下するために必要な電
流を常にアクチェータに供給できないと、発生する電磁
力が変化することになり、逆に正確な作動を行わせるた
めの障害となってしまう欠点でもある。
However, the advantage that the strength of electromagnetic force is proportional to the amount of current is that if the power source is a battery, such as in a camera, the required current cannot always be supplied to the actuator because the voltage of the battery decreases over time as it is used. This causes the electromagnetic force that is generated to change, which is a disadvantage in that it becomes an obstacle to accurate operation.

そこで、電源電圧の変動に対する上記欠点を防止する方
法として一般には電源とアクチェータとの間に定電圧回
路を接続して定電圧回路の安定した出力電圧を使用する
方法と、電源電圧の変動に基づき通電時間を変化させる
方法、あるいは通電電流量を変化させる方法がある。
Therefore, two ways to prevent the above-mentioned disadvantages due to power supply voltage fluctuations are generally to connect a constant voltage circuit between the power supply and the actuator and use the stable output voltage of the constant voltage circuit; There is a method of changing the energization time or a method of changing the amount of energization current.

定電圧回路を用いる場合には、定電圧化するために電源
の電力損失を伴うため電源が電池であるような場合は特
に省エネルギーの問題が生じ、経時的な電圧低下も考慮
すると電源電圧に対して“アクチエiりへの供給電圧を
低く設定しておく必要があり、有効な電源の利用ができ
ずしかも回路構成が複雑になる欠点がある。
When using a constant voltage circuit, the problem of energy conservation arises especially when the power source is a battery because the constant voltage involves power loss in the power supply, and considering the voltage drop over time, Therefore, it is necessary to set the supply voltage to the actuator at a low level, which prevents effective use of the power source, and has the disadvantage that the circuit configuration becomes complicated.

通電時間を変化させる場合は、電源電圧が低下してくる
とアクチェータの駆動力も低下するので、アクチェータ
の駆動エネルギーが減少し作動中の摩擦損失等の影響を
受は作動が不安定になるばかりでなく、急制動−を行っ
た時のリバウンド状態が変化しt;す、また作動速度も
遅くなっているので作動開始時期を早める等、二次的な
補正を行うための制御が必要となる欠点がある。
When changing the energization time, as the power supply voltage decreases, the actuator's driving force also decreases, so the actuator's driving energy decreases and the operation becomes unstable due to friction loss during operation. However, the rebound condition changes when sudden braking is performed, and the operating speed is also slower, so control is required to perform secondary corrections such as advancing the start time of the brake. There is.

電流量を変化させる場合は、前記した定電圧回路の定電
圧出力を複数段に変化させるような回路が必要で回路構
成が一層複雑となりしかも複雑な制御も必要となる欠点
を有しているばかりでなく、電流量の変化に伴うアクチ
ェータの作動速度変化の微細な補正もむづかしくなる欠
点がある。
When changing the amount of current, a circuit is required to change the constant voltage output of the constant voltage circuit described above in multiple stages, which has the disadvantage that the circuit configuration becomes even more complicated and requires complicated control. Moreover, it has the disadvantage that it is difficult to make minute corrections for changes in the actuator's operating speed due to changes in the amount of current.

このようにアクチェータの電源変動を防止するための方
法はいくつかあったが、いずれも多少の欠点を有してい
たが、カメラに適用する場合は回路構成の簡単さおよび
アクチェータ個々の作動バラツキ等を勘案した時の制御
の容易さから特開昭63、−110431号公報に見ら
れるーように通電時間制御方法を用いることが多かった
。カメラのシャッタ装置にアクチェータを用いた実例を
挙げて更に詳述する。
There have been several methods to prevent actuator power fluctuations, but all of them have some drawbacks. Because of the ease of control in consideration of the above, an energization time control method is often used, as shown in Japanese Patent Laid-Open No. 110431/1983. This will be further explained in detail by giving an example in which an actuator is used in a camera shutter device.

第1図は一例として、かかるシャッタ装置のアクチェー
タとして利用される単安定形高速制御ソレノイドを示し
たものであり、その構成は永久磁石30Dとそれに隣合
うコイル30Cとコイル30Gのボビン内に揺動可能に
収められた可動鉄芯30A、該可動鉄芯30Aの先端に
取付けられた可動部材30Bからなっている。
FIG. 1 shows, as an example, a monostable high-speed control solenoid used as an actuator for such a shutter device, and its configuration includes a permanent magnet 30D and adjacent coils 30C and 30G that swing in a bobbin. It consists of a movable iron core 30A that can be housed in a movable iron core 30A, and a movable member 30B that is attached to the tip of the movable iron core 30A.

コイル30Gに通電が行われていない場合には可動鉄芯
30Aは永久磁石30Dに吸引されて可動部材30Bは
図示の第1位置にあるが、コイル30Cに通電が行われ
るとその電磁力は、電流の方向により永久磁石30Dの
吸引力と同じ方向に作用する場合と、永久磁石30Dの
吸引力を打ち消す方向に作用する場合がある。後者の場
合に通電電流があるレベルを超えると永久磁石300の
吸引力を上回る駆動力が発生し、可動部材30Bは支持
軸′30Fを支点として反時計方向に回動して図示の第
1位置に対向する図示の第2位置に至る。
When the coil 30G is not energized, the movable iron core 30A is attracted to the permanent magnet 30D and the movable member 30B is in the first position shown in the figure, but when the coil 30C is energized, the electromagnetic force is Depending on the direction of the current, the current may act in the same direction as the attractive force of the permanent magnet 30D, or may act in a direction that cancels out the attractive force of the permanent magnet 30D. In the latter case, when the energizing current exceeds a certain level, a driving force exceeding the attractive force of the permanent magnet 300 is generated, and the movable member 30B rotates counterclockwise around the support shaft '30F to the first position shown in the figure. to the second position shown opposite.

次にコイル30Cへの通電を断つと可動部材30Bは、
再び第1位置に復帰する。なお、今後はコイル30cの
電磁力が永久磁石300の吸引力を打ち消す方向に作用
するよう通電する場合に限定して記述する。
Next, when the power to the coil 30C is cut off, the movable member 30B
Return to the first position again. Note that from now on, the description will be limited to the case where electricity is applied so that the electromagnetic force of the coil 30c acts in a direction to cancel the attractive force of the permanent magnet 300.

従って、前記可動部材30Bに突設さ゛れた駆動ビン3
0Eをシャッタ羽根の長穴に嵌合せ”しめる等の手段に
より、前記プイル30Cに通電するとシャッタ羽根の開
閉動作が可能となり、そのときの露出量は、コイル30
Cへの通電時間により可変となることがわかる。
Therefore, the drive bin 3 protruding from the movable member 30B
When the pulley 30C is energized by fitting the coil 30C into the elongated hole of the shutter blade, the shutter blade can be opened and closed.
It can be seen that it is variable depending on the energization time to C.

このアクチェータは、作動が確実で高速であるため、シ
ャッタ装置に用いると確実な作動が期待でき、シャ゛ツ
タの開口速度は、従来より速くシャッタ効率の点で有利
になることが期待できる。
Since this actuator operates reliably and at high speed, it can be expected to operate reliably when used in a shutter device, and the opening speed of the shutter can be expected to be faster than conventional shutters, which is advantageous in terms of shutter efficiency.

特にシャッタ羽根がアクチェータに直接駆動される方式
でなお且つ、羽根の素材として合成樹脂製のものを使う
場合では、ソレノイドの負荷は非常に小さくなるため、
省電力のためにもいっそう有利である。
Especially when the shutter blades are driven directly by the actuator and the blades are made of synthetic resin, the load on the solenoid is very small.
This is even more advantageous in terms of power saving.

前記した単安定形高速制御ソレノイドをアクチェータと
して使用した場合のカメラ用絞り兼用シャッタ装置に基
づき説明する。第2図はその機構図を示しており、第7
図には、縦軸に開口径、横軸にアクチェータに通電を開
始した後の経過時間をとった、シャッタの開口特性の一
例を示す。図において曲線A 、B 、C、Dの順に通
電時間を長くしたことを示していて、tBは曲線Bに対
応する通電時間を示している。
A description will be given based on a camera diaphragm/shutter device in which the monostable high-speed control solenoid described above is used as an actuator. Figure 2 shows the mechanism diagram, and Figure 7
The figure shows an example of the aperture characteristics of the shutter, with the vertical axis representing the aperture diameter and the horizontal axis representing the elapsed time after the start of energization of the actuator. In the figure, curves A, B, C, and D indicate that the energization time is increased in the order, and tB indicates the energization time corresponding to curve B.

第7図から通電時間を変化させると、露出量が変化する
ことがわかるが、シャッタ装置の露出量に対応する被写
体輝度を縦軸にとり、横軸に通電時間をとって露出特性
を示したのが第8図の曲線Aである。ただし被写体輝度
はEV値で表した。
It can be seen from Figure 7 that the amount of exposure changes when the energization time is changed, but the exposure characteristics are shown by taking the subject brightness corresponding to the exposure amount of the shutter device on the vertical axis and the energization time on the horizontal axis. is curve A in FIG. However, the subject brightness was expressed as an EV value.

第8図のへ曲線かられかるように、通電時間を長くすれ
ば、露出量が増加して低輝度に対応してくるが曲線の傾
きはなだらかである。一方、通電時間が短く高輝度に対
応する領域は、通電時間に対する露出量の変化が極めて
大きく特性を揃えることが難しい領域である。
As can be seen from the curve in FIG. 8, if the energization time is increased, the amount of exposure increases and corresponds to low luminance, but the slope of the curve is gentle. On the other hand, in a region corresponding to high brightness with a short energization time, the change in exposure amount with respect to the energization time is extremely large, making it difficult to make the characteristics uniform.

次に、絞り開口径を規制するための規制部材を設けた場
合について述べる。
Next, a case will be described in which a regulating member for regulating the aperture diameter is provided.

通電時間が短いうちは、可動部材が規制部材の位置まで
到達しないで第1位置まで戻るので、規制部材を設けて
ないシャッタ装置と同様の挙動をするが、通電時間を長
くすると、成る長さから可動部材は規制部材に衝突をし
はじめ、その際発生する反発力によって、可動部材は第
1位置の方向へ戻される。
When the energization time is short, the movable member does not reach the position of the regulating member and returns to the first position, so it behaves the same as a shutter device without a regulating member, but as the energization time increases, the length increases. The movable member begins to collide with the regulating member, and the repulsive force generated at this time returns the movable member in the direction of the first position.

そこで、衝突が起こると同時に通電を断ったとすると、
可動部材は衝突による反発力と永久磁石の吸引力の両方
の作用により、永久磁石の吸引力の作用のみによって戻
るよりも速い速度で第1位置に戻る。
So, if we cut off the power at the same time as a collision occurs,
The movable member returns to the first position due to the effects of both the repulsive force due to the collision and the attractive force of the permanent magnet, at a faster speed than when returning due to the effect of the attractive force of the permanent magnet alone.

次に衝突が起こる直前に通電を断った場合には、その時
点で可動部材が有する慣性により、可動部材は規制部材
に衝突し、やはり永久磁石の吸引力の作用のみによって
戻るよりも速い速度で第1位置に戻る。
Next, if the power is cut off just before a collision occurs, the inertia of the movable member at that point will cause the movable member to collide with the regulating member, again at a faster speed than it would have returned solely due to the attraction force of the permanent magnet. Return to first position.

衝突が起こった直後に通電を断った場合には、衝突によ
る反発力の作用の一部はコイルによる駆動力の作用と相
殺されるが、大部分は残って、永久磁石の吸引力と大部
分の反発力の両方が作用し、永久磁石の吸引力の作用の
みによって戻るよりも速い速度で第1位置に戻る。
If the power is turned off immediately after a collision occurs, part of the repulsive force due to the collision will be canceled out by the driving force of the coil, but most of it will remain, and most of it will be combined with the attractive force of the permanent magnet. and the repulsive force of the permanent magnet, and returns to the first position at a faster rate than it would return due to the action of the attractive force of the permanent magnet alone.

さらに通電時間を長くした場合は、衝突による反発力の
作用に抗して、コイルの駆動力が働き、可動部材は、再
び第2位置の方向へ動き出し、シャッタ羽根は、再び開
き動作へ移行する。
If the energization time is further increased, the driving force of the coil acts against the repulsive force caused by the collision, the movable member starts moving toward the second position again, and the shutter blade shifts to the opening operation again. .

通電時間によっては、複数回の衝突が起こるが、衝突に
よって発生する反発力の影響は、はじめの衝突はど大き
くなく、次第に減少する。
Depending on the energization time, multiple collisions occur, but the influence of the repulsive force generated by the collisions is not very large at first and gradually decreases.

なお通電時間を長くすると、露出量は増加するので可動
部材と規制部材の衝突による露出量への影響程度は小さ
くなる。
Note that when the energization time is increased, the amount of exposure increases, so that the impact of collision between the movable member and the regulating member on the amount of exposure becomes smaller.

これらの様子を表したのが第9図であり、通電時間と輝
度の関係を示したのが第8図の曲線Bである。
FIG. 9 shows these situations, and curve B in FIG. 8 shows the relationship between energization time and brightness.

第8図の曲線Bにおいてtcは、通電したとき可動部材
と規制部材が衝突する最小時間であり、通電時間がtc
を超えると衝突が起こり衝突の反発力が加わってシャッ
タの閉じ時間が短くなる結果、露出量は減少しはじめる
In curve B of FIG. 8, tc is the minimum time for the movable member and the regulating member to collide when energized, and the energization time is tc
When this value is exceeded, a collision occurs and the repulsive force of the collision is added, which shortens the shutter closing time, and as a result, the amount of exposure begins to decrease.

そして、衝突による反発力が作用する時期と、通電を断
って永久磁石による吸引力が作用しはじめる時期が一致
したときに、シャッタ羽根は最も速く閉じ動作を行うが
、この場合に、シャッタの露出量は、この近傍での最小
値となる。この通電時間をLmとしLmを超えると再び
露出量は、増加しくまじめる。
The shutter blades close most quickly when the time when the repulsive force from the collision acts coincides with the time when the electricity is turned off and the attraction force from the permanent magnet begins to act.In this case, the shutter blade is exposed The quantity will be the minimum value in this neighborhood. This energization time is defined as Lm, and when it exceeds Lm, the exposure amount increases again.

このように、単安定形高速制御ソレノイドを利用したシ
ャッタ装置において、規制部材が無い場合、第8図の曲
線Aに示すように露出量に対応する輝度が通電時間に対
応して一様に低くなるが、規制部材を設けた場合には、
通電時間が短い高輝度領域で第8図の曲線Bのように特
異な挙動を示す。
In this way, in a shutter device using a monostable high-speed control solenoid, if there is no regulating member, the brightness corresponding to the exposure amount will uniformly decrease depending on the energization time, as shown by curve A in Figure 8. However, if a regulating member is installed,
In a high-brightness region where the energization time is short, a peculiar behavior is exhibited as shown by curve B in FIG.

第1O図は、規制部材を設ける替わりに、シャッタとは
独立した絞り機構を設けたシャッタ装置の開口特性の一
例を示したものであり、その場合の通電時間と被写体輝
度との関係を示したのが第8図の曲線Cである。
Figure 1O shows an example of the aperture characteristics of a shutter device that has an aperture mechanism independent of the shutter instead of a regulating member, and shows the relationship between the energization time and subject brightness in that case. This is curve C in FIG.

第11図は、アクチェータへの供給電圧が変化した時の
露出特性曲線を示したもので、曲線AとBが一致しない
ことがわかる。
FIG. 11 shows the exposure characteristic curve when the voltage supplied to the actuator changes, and it can be seen that curves A and B do not match.

第12図は第11図の曲線AとBとが一致するように曲
線Aの通電作動開始時期を約5ms早めたものである。
In FIG. 12, the energization operation start timing of curve A is advanced by about 5 ms so that curves A and B in FIG. 11 match.

この図で明らかなようにシャツタ開口の初期の時点で規
制部材を作動させアクチェータの可動部材と衝突した時
の影響によるバウンドによる特異現象は、電圧の差によ
る駆動エネルギーの差となって曲線AとBとが大きく相
異してしまうのがわかる。よって通電時開制御では充分
な露出特性曲線の補正が得られないのである。
As is clear from this figure, the peculiar phenomenon caused by the bounce caused by the impact of activating the regulating member at the initial stage of opening of the shutter and colliding with the movable member of the actuator is caused by the difference in driving energy due to the difference in voltage, and is shown in curve A. It can be seen that B is significantly different. Therefore, the exposure characteristic curve cannot be sufficiently corrected by the open control when energized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような問題を解決しようとするものであ
り、アクチェータに対する電源変動の影響をなくすと共
に駆動エネルギーの損失を防止し、高速で作動の安定し
た電磁駆動シャッタを備えたカメラを提供するものであ
る。
The present invention aims to solve these problems, and provides a camera equipped with an electromagnetically driven shutter that eliminates the influence of power fluctuations on the actuator, prevents loss of drive energy, and operates stably at high speed. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題は、電磁力により駆動する可動部材を有するア
クチェータと前記可動部材に係合するシャッタ羽根機構
とを備えた電磁駆動シャッタ装置において、電源電圧の
電圧レベルを検出する電圧判別手段と該電圧判別手段か
らの電圧情報に基づき実効電流が一定となるパルスのデ
ユーティ−比全設定するパルス形成手段とを備え、該パ
ルス形成手段から出力されるパルスにより前記アクチェ
ータを駆動するようにしたことを特徴とする電磁駆動シ
ャッタ装置を備えたカメラにより解決される。
The above problem is solved in an electromagnetically driven shutter device that includes an actuator having a movable member driven by electromagnetic force and a shutter blade mechanism that engages with the movable member. The actuator is characterized by comprising a pulse forming means for fully setting the duty ratio of the pulse so that the effective current is constant based on voltage information from the means, and the actuator is driven by the pulse output from the pulse forming means. The problem is solved by a camera equipped with an electromagnetically driven shutter device.

〔実施例〕〔Example〕

第5図は本発明による実効電流を一定とするシャッタ制
御回路を示す。(フィルム巻上げ等の他の回路は図示せ
ず) S W rはメインスイッチ、SW、はレリーズスイッ
チ、Vsは電源、Tr、、Tr、はシャッタ用のアクチ
ェータ、101を作動させるためのトランジスタ、Dは
逆流防止用ダイオード、Rl+ Rxは電圧レベル検出
用抵抗で、102はマイコンである。
FIG. 5 shows a shutter control circuit for keeping the effective current constant according to the present invention. (Other circuits such as film winding are not shown) S W r is a main switch, SW is a release switch, Vs is a power supply, Tr, Tr is an actuator for the shutter, a transistor for operating 101, D is a reverse current prevention diode, Rl+Rx is a voltage level detection resistor, and 102 is a microcomputer.

マイコン102にはA/Dコンバータを有する電圧判別
手段(102−A)、実効電流を一定とするパルスのデ
ユーティ比に基づきパルスを出力する信号形成手段(1
02−D)電圧レベルによりデユーティ比を設定するだ
めの情報や撮影のために必要な露出制御関連情報あるい
は撮影レンズ制御関連情報等を記憶するメモリ手段(1
02−B)および電圧情報に基づき実効電流が一定とな
るパルスのデユーティ比を選択したり、カメラ全体のシ
ーケンスを制御するCPU(102−C)で構成されて
いる。
The microcomputer 102 includes a voltage determining means (102-A) having an A/D converter, and a signal forming means (102-A) that outputs pulses based on a pulse duty ratio that keeps the effective current constant.
02-D) Memory means (1) for storing information for setting the duty ratio based on the voltage level, exposure control related information necessary for photography, photographic lens control related information, etc.
02-B) and a CPU (102-C) that selects a pulse duty ratio that makes the effective current constant based on voltage information and controls the sequence of the entire camera.

次に上記回路の作動を説明する。Next, the operation of the above circuit will be explained.

アクチェータ101は前述の単安定形高速制御ソレノイ
ドとする。メインスイッチSW、を閉成すると電源V8
がマイコン102に供給され、マイコン102は作動状
態となり、同時に抵抗R、、R、により電源電圧が電圧
判別手段(102−A)で検知される。
The actuator 101 is the aforementioned monostable high-speed control solenoid. When the main switch SW is closed, the power supply V8
is supplied to the microcomputer 102, the microcomputer 102 becomes operational, and at the same time, the power supply voltage is detected by the voltage determining means (102-A) by the resistors R, , R.

電圧判別手段(102−A)で検知された電圧情報はC
PU(102−C)に出力され、CPU(102−C)
は、前記電圧情報に基づき、メモリ手段(102−B)
より実効電流が一定となるパルスのデユーティ比を選択
し、パルスのデユーティ比設定情報が信号形成手段(1
02−D)に出力される。信号形成手段(102−D)
は前記設定情報に基づきパルスを形成することになる。
The voltage information detected by the voltage discrimination means (102-A) is C
Output to PU (102-C), CPU (102-C)
is a memory means (102-B) based on the voltage information.
The duty ratio of the pulse that makes the effective current more constant is selected, and the duty ratio setting information of the pulse is transmitted to the signal forming means (1
02-D). Signal forming means (102-D)
will form a pulse based on the setting information.

そこでレリーズスイッチ(SWt)が操作されると、 
CPU(102−c)により、図示せぬ測光手段や測距
手段が作動し露出制御が行われることになる。
Then, when the release switch (SWt) is operated,
The CPU (102-c) operates a photometering means and a distance measuring means (not shown) to perform exposure control.

CPU(102−C)からシャツタ開信号が出力される
とすでに設定されたパルスが信号形成手段(102−D
)より出力されトランジスタT rl、T r2が0N
10FF作動しアクチェータ(101)が開き動作を開
始する。
When the shutter open signal is output from the CPU (102-C), the already set pulse is output to the signal forming means (102-D).
) and the transistors T rl and T r2 are 0N.
10FF operates and the actuator (101) starts opening operation.

設定された露出制御プログラムによって開き動作が継続
された後、シャツタ閉信号が出力されると信号形成手段
(102−D)の作動が停止し、同時にトランジスタT
r、、Tr、への通電が遮断されアクチェータ101が
閉じ動作を行い露出制御が完了する。以後はフィルム給
送等の公知の作動が行われる。
After the opening operation continues according to the set exposure control program, when the shirt shutter close signal is output, the signal forming means (102-D) stops operating, and at the same time, the transistor T
The energization to r, Tr is cut off, the actuator 101 performs a closing operation, and the exposure control is completed. Thereafter, known operations such as film feeding are performed.

なお前記回路の作動説明では説明を簡略化するため電圧
判別手段(102−A)で検知された情報については単
に電圧情報と記したが、この情報はその時の電源の電圧
値でも電圧降下分の値でも良く、電圧の変動状態が検出
できる情報であれば特に限定されるものではない。
In the explanation of the operation of the circuit, the information detected by the voltage determining means (102-A) is simply referred to as voltage information in order to simplify the explanation, but this information does not include the voltage drop of the power supply at that time. It may be a value, and is not particularly limited as long as it is information that can detect voltage fluctuations.

また、パルスのデユーティ比の設定に関しても電圧値と
デユーティ比の関係をテーブル化してメモリしたり、プ
ログラム化しておいたりしても良いことは言うまでもな
い。
Furthermore, regarding the setting of the pulse duty ratio, it goes without saying that the relationship between the voltage value and the duty ratio may be made into a table and stored in memory or programmed.

第6図(a)は矩形波をもった場合の実効電圧値(Vつ
を示し、第6図(b)は実効電流値(1)を示したもの
である。しかし、デユーティ比を設定するために処理時
間の長くなる方式は迅速な制御を行うためには避けるこ
とが望ましい。
Figure 6(a) shows the effective voltage value (V) when the waveform has a rectangular wave, and Figure 6(b) shows the effective current value (1).However, setting the duty ratio Therefore, it is desirable to avoid methods that require long processing times in order to perform rapid control.

次に本発明のシャッタ装置とした場合の一実施例を第3
図に示す。なお、第3図は、シャッタ羽根、シャッタ羽
根押さえ板を省略している。これらについては、第2図
を参照されたい。第4図はシャッタ装置の制御部のブロ
ック回路図である。
Next, a third embodiment of the shutter device of the present invention will be described.
As shown in the figure. Note that, in FIG. 3, the shutter blade and the shutter blade pressing plate are omitted. For these, please refer to FIG. 2. FIG. 4 is a block circuit diagram of the control section of the shutter device.

第3図は、本発明のカメラ用シャッタ装置の外側部分に
取付けられる2つの電磁駆動部材を示したもので、20
はシャッタ装置を構成するシャッタ地板、20Aは撮影
用光路のための開口部、30はシャッタ羽根駆動用のア
クチェータたる奉安定形高速制御ソレノイドで、該奉安
定形高速制御ソレノイド30は前記シャッタ地板20に
対し、その突設する上下一対のフック部材20Bに弾性
的に係合して固定保持されている。
FIG. 3 shows two electromagnetic drive members attached to the outer part of the camera shutter device of the present invention.
20A is a shutter base plate constituting the shutter device, 20A is an opening for the photographing optical path, and 30 is a stabilized high-speed control solenoid that is an actuator for driving the shutter blades. , is elastically engaged with and fixedly held by a pair of upper and lower hook members 20B protruding from the hook member 20B.

前記奉安定形高速制御ソレノイド30における30Cは
、通電によって駆動力を得るためのコイル、30Aは該
コイル30Cのボビン内に揺動可能に軸受は支持された
可動鉄芯、30Bは該可動鉄芯30Aの先端に設けられ
た可動部材、さらに30Dは前記可動鉄芯30Aの付勢
手段となる永久磁石である。
In the stabilized high-speed control solenoid 30, 30C is a coil for obtaining driving force by energization, 30A is a movable iron core whose bearing is swingably supported in the bobbin of the coil 30C, and 30B is the movable iron core 30A. A movable member provided at the tip of the movable iron core 30A, and a permanent magnet 30D serving as a biasing means for the movable iron core 30A.

一方、40は一可動部材30Bの移動を途中で阻止する
規制部材であって、前記コイル30Cへの通電により可
動部材30Bが図示の第1位置から向い側の第2位置へ
移動するのを、途中で阻止する働きをする。
On the other hand, 40 is a regulating member that prevents the movement of one movable member 30B midway, and prevents the movable member 30B from moving from the first position shown in the figure to the second position on the opposite side by energizing the coil 30C. It acts as a stop on the way.

規制部材40は前記シャッタ地板20に軸着され、戻り
バネ43により時計方向に常時付勢される。付勢された
規制部材は規制部材駆動用アクチェータのプランジャソ
レノイド50の可動鉄芯50Bに付勢力を伝え、付勢さ
れた可動鉄芯50Bは、ストッパー44に係止される構
造になっている。
The regulating member 40 is pivotally attached to the shutter base plate 20, and is constantly biased clockwise by a return spring 43. The biased regulating member transmits biasing force to the movable iron core 50B of the plunger solenoid 50 of the regulating member driving actuator, and the biased movable iron core 50B is configured to be locked by the stopper 44.

40Aおよび40Bは何れも前記規制部材40に形成し
た折り曲げ部で、折り曲げ部40Aは前記可動鉄芯50
Bと係合して前記付勢力の伝達を行い、折り曲げ部40
Bは、規制部材40が可動部材30Bの移動を阻止する
ときの可動部材30Bが衝突する対象である。
40A and 40B are both bent portions formed on the regulating member 40, and the bent portion 40A is formed on the movable iron core 50.
B to transmit the biasing force, and the bending portion 40
B is an object with which the movable member 30B collides when the regulating member 40 prevents the movement of the movable member 30B.

23は該シャッタ地板20にネジ止めにより固定される
シャッタ羽根押さえ板21と前記シャッタ地板20との
間に形成されたスリット状のスペースに収められた左右
対称形の一対から成るシャッタ羽根であり、24は該シ
ャッタ羽根23の回転角に応じてその開口面積を定める
べく設けた曲線部である。
23 is a pair of symmetrical shutter blades housed in a slit-shaped space formed between the shutter blade holding plate 21 fixed to the shutter base plate 20 by screws, and 24 is a curved portion provided to determine the opening area according to the rotation angle of the shutter blade 23.

前記シャッタ羽根23は、シャッタ地板20の穴に嵌合
してその回動の支点となる軸25と前記可動部材30B
に突設した駆動ビン30Eを挿通して嵌合する長穴26
とをそれぞれ備えている。また、シャッタ地板20には
、前記可動部材30Bに突設した駆動ビン30Eが、前
記可動鉄芯30Aの揺動により移動し得るように、長大
20Cが設けである。
The shutter blade 23 is connected to a shaft 25 that fits into a hole in the shutter base plate 20 and serves as a fulcrum for its rotation, and the movable member 30B.
A long hole 26 into which the drive bottle 30E protruding from the hole 26 is inserted and fitted.
They each have the following. Further, the shutter base plate 20 is provided with an elongated shaft 20C so that the drive bin 30E protruding from the movable member 30B can be moved by the swinging motion of the movable iron core 30A.

一方、プランジャソレノイド50は、制御部によって通
電の制御が行われるが、通電がされない場合は、図示の
如く前記可動鉄芯50Bが右方向に突出していてその位
置でストッパー44により係止されて、前記規制部材4
0を図示位置に保持している。
On the other hand, the plunger solenoid 50 is controlled to be energized by the control section, but when it is not energized, the movable iron core 50B protrudes to the right as shown in the figure and is stopped at that position by the stopper 44. The regulating member 4
0 is held at the position shown.

プランジャソレノイド50に通電されると、可動鉄芯5
0Bが吸引されて左方向に移動し規制部材40は可動部
材30Bの移動軌跡から退避するため、可動鉄芯30A
が揺動しても、可動部材30Bが折り曲げ部40Bに衝
突しない構造になっている。
When the plunger solenoid 50 is energized, the movable iron core 5
0B is attracted and moves to the left, and the regulating member 40 retreats from the movement locus of the movable member 30B, so the movable iron core 30A
Even if the movable member 30B swings, the structure is such that the movable member 30B does not collide with the bent portion 40B.

前記奉安定形高速制御ソレノイド30のコイル30Cに
対し制御部による通電が行われていない場合、すなわち
露光作動前の状態では、前記可動部材30Aは前記永久
磁石30Dの吸引力によって安定な第1位置に付勢保持
され、前記シャッタ羽根23を閉止状態に保つ。
When the coil 30C of the stabilized high-speed control solenoid 30 is not energized by the control unit, that is, before the exposure operation, the movable member 30A is held in a stable first position by the attractive force of the permanent magnet 30D. The shutter blade 23 is kept in a closed state by being biased.

通常の撮影では、制御部は前記プランジャソレノイド5
0に通電せず前記規制部材40は第3図の位置にセット
され、コイル30Gへの通電によって前記可μ部材30
Bが移動しようとすると、前記規制部材40の折り曲げ
部41に衝突して前記可動部材30Bの第2位置への移
動が阻止される。
In normal photography, the control unit controls the plunger solenoid 5.
0, the regulating member 40 is set in the position shown in FIG. 3, and by energizing the coil 30G, the
When B attempts to move, it collides with the bending portion 41 of the regulating member 40, thereby preventing the movable member 30B from moving to the second position.

すると前記した特異現象が起こり、高輝度領域に有利な
露出特性となるので、コイル30Gに対する通電時間の
設定により適正露出が行われる。
Then, the above-mentioned peculiar phenomenon occurs, resulting in exposure characteristics that are advantageous for high-brightness regions, so that appropriate exposure can be achieved by setting the energization time for the coil 30G.

方、被写体が低輝度の場合は、通電時間の設定だけを低
輝度に合わせて長時間にすればよいが、露出時間が長く
なると撮影者の手振れの悪影響がでるため、時間を短く
して使ったほうがよい。
On the other hand, if the subject is in low brightness, you can simply set the energization time to a long time to match the low brightness, but if the exposure time is too long, the photographer's camera shake will have an adverse effect, so it is recommended to shorten the time. It's better.

そのようなときには、制御部からの信号により前記プラ
ンジャソレノイド50に通電して可動鉄芯50Bを左方
向に吸引させる。すると、前記規制部材40が戻りバネ
43に抗して反時計方向に回動し、前記折り曲げ部40
Bが前記可動部材30Bの移動軌跡内より退避し、この
後に単安定形高速制御ソレノイド30のコイル30Gに
通電を行うと、前記可動部材30Bは前述の第1位置か
ら第2位置に向かって移動し、前記駆動ピン30Eがシ
ャッタ羽根23を駆動して全開するまで回転し、開口部
2OAが絞りとして働いて露光が行われ、通電の終了を
まりで再び前記永久磁石300の吸引力によって第1位
置に復帰し露光を終える。
In such a case, the plunger solenoid 50 is energized by a signal from the control section to attract the movable iron core 50B to the left. Then, the regulating member 40 rotates counterclockwise against the return spring 43, and the bending portion 40
B retreats from within the movement trajectory of the movable member 30B, and then when the coil 30G of the monostable high-speed control solenoid 30 is energized, the movable member 30B moves from the first position to the second position. Then, the drive pin 30E drives the shutter blade 23 and rotates until the shutter blade 23 is fully opened, the opening 2OA acts as a diaphragm to perform exposure, and the end of energization is again caused by the attraction force of the permanent magnet 300 to close the first Return to position and finish exposure.

従って、前記規制部材で規制させない場合はシャッタ羽
根が全開となるため、同じ露光量を得るための通電時間
は短くてよい。
Therefore, since the shutter blades are fully open when the regulating member is not used to regulate the exposure, the current application time may be short to obtain the same amount of exposure.

ここまでに記述したシャッタ装置は、プランジャソレノ
イド50に通電すると、規制部材40の折り曲げ゛部′
40Bが可動部材30Bの移動軌跡から退避し、可動鉄
芯30Aが揺動しても、可動部材30Bが折り曲げ部4
0Bに衝突しない構造になっている。しかし、プランジ
ャソレノイド50を設けず、規制部材40を可動部材3
0Bの移動軌跡内に固定し、可動部材30Bが第1位置
力)ら第2位置方向へ移動する途中で、可動部材30B
が規制部材40に必ず衝突する構造にしてもよい。
In the shutter device described so far, when the plunger solenoid 50 is energized, the bending portion of the regulating member 40
40B retreats from the movement locus of the movable member 30B, and even if the movable iron core 30A swings, the movable member 30B moves away from the bending portion 4.
The structure is such that it does not collide with 0B. However, without providing the plunger solenoid 50, the regulating member 40 is
0B, and while the movable member 30B is moving from the first position force to the second position direction, the movable member 30B
It is also possible to adopt a structure that always collides with the regulating member 40.

また本発明のシャッタ装置により、例えば被写体輝度が
高いときおよび中程度のときには、前記した衝突現象を
利用して露出精度を確保し、被写体輝度が低いときには
衝突現象を利用しないで、露出精度を確保することもで
きる。そのようにしたい場合はプランジャソレノイド5
0の替わりに、3種の停止位置を有する規制部材駆動手
段を設け、該規制部材駆動手段の作動部に規制部材40
の折り曲げ部40Aを係合させ、シャッタ地板20に軸
着されている規制部材40が揺動して、前記した3種の
位置で停止するようにする。
Furthermore, with the shutter device of the present invention, for example, when the subject brightness is high or medium, exposure accuracy is ensured by utilizing the collision phenomenon described above, and when the subject brightness is low, exposure accuracy is ensured without using the collision phenomenon. You can also. If you want to do that, plunger solenoid 5
0, a regulating member driving means having three types of stop positions is provided, and a regulating member 40 is provided in the operating portion of the regulating member driving means.
The bending portion 40A is engaged so that the regulating member 40 pivoted to the shutter base plate 20 swings and stops at the three positions described above.

制御部からの信号によって、規制部材駆動手段が何れか
の位置に移動し停止すると、シャッタ地板20に軸着さ
れた規制部材40も回動して、折り曲げ部40Bに設け
た2種の衝突部のうちいずれかが、可動部材30Bと衝
突するか、規制部材40が可動部材30Bの移動軌跡か
ら退避して、折り曲げ部40Bと可動部材30Bが衝突
しないようにすればよい。同様にして、露出量の調節段
数をさらに増加したい場合は、前記した停止位置および
衝突部の種類をさらに増加すればよい。
When the regulating member driving means moves to any position and stops in response to a signal from the control section, the regulating member 40 pivoted to the shutter base plate 20 also rotates, and the two types of collision parts provided on the bending part 40B rotate. Either one of them collides with the movable member 30B, or the regulating member 40 retreats from the movement locus of the movable member 30B, so that the bending portion 40B and the movable member 30B do not collide. Similarly, if it is desired to further increase the number of exposure adjustment steps, the number of stop positions and types of collision portions described above may be further increased.

また、この発明のシャッタ装置には次に述べるような変
形があり、いずれの場合も、可動部材30Bと折り曲げ
部40Bの衝突に相当する効果を利用して、露出精度、
特Jこ高輝度被写体に対する露出精度を確保している点
では、同じである。
Further, the shutter device of the present invention has the following modifications, and in each case, the exposure accuracy is improved by utilizing the effect corresponding to the collision between the movable member 30B and the bent portion 40B.
The special J is the same in that it ensures exposure accuracy for high-brightness subjects.

前記のシャッタ装置では、単安定形高速制御ソレノイド
30の可動鉄芯3OAの揺動を可動部材30Bに突設し
た駆動ピン30Eをつうじてシャッタ羽根に伝達し、開
閉動作を行わせている。しかし、アクチェータとシャッ
タ羽根の間に別に設けたシャッタ羽根駆動部材を介在さ
せ、アクチェータの運動をシャッタ羽根駆動部材を通じ
てシャッタ羽根に伝達する構造となっているシャッタ装
置も多数存在する。
In the shutter device described above, the swinging motion of the movable iron core 3OA of the monostable high-speed control solenoid 30 is transmitted to the shutter blade through the drive pin 30E protruding from the movable member 30B, thereby causing the shutter blade to open and close. However, there are many shutter devices that have a structure in which a separately provided shutter blade driving member is interposed between the actuator and the shutter blade, and the movement of the actuator is transmitted to the shutter blade through the shutter blade driving member.

このようなシャッタ装置においては、単安定形高速制御
ソレノイドをアクチェータとして使用すると、例えば可
動部材30Bの揺動に追従してシャッタ羽根駆動部材が
回転往復運動、直線往復運動等を行い、シャッタ羽根駆
動部材の運動に追従してシャッタ羽根が開閉動作を行う
ようになっている。
In such a shutter device, when a monostable high-speed control solenoid is used as an actuator, the shutter blade driving member performs a rotational reciprocating motion, a linear reciprocating motion, etc. following the swinging of the movable member 30B, and the shutter blade is driven. The shutter blades open and close in accordance with the movement of the members.

この場合に、規制部材がシャッタ羽根駆動部材と衝突す
る構成にしても、得られる効果は同じである。さらに、
規制部材は、前述したのと同様な手段で、衝突位置から
退避したり、複数の衝突位置の何れかにおいて衝突させ
たりすることが出来る。また、ここまでの記述では、規
制部材の側に衝突部を複数設けたシャッタ装置について
述べたが規制部材の衝突部は、1カ所に設けておき例え
ば可動鉄芯30Aの可動部材30B或はシャッタ羽根駆
動部材のこれに相当する部分等に複数の衝突部を設け、
規制部材駆動手段により、衝突位置を選択でさる構造と
しても良い。
In this case, even if the regulating member collides with the shutter blade driving member, the same effect can be obtained. moreover,
The regulating member can be evacuated from the collision position or caused to collide with any one of a plurality of collision positions using the same means as described above. In addition, in the description up to this point, a shutter device is described in which a plurality of collision parts are provided on the side of the regulating member, but the collision part of the regulating member is provided at one place, and the collision part of the regulating member is provided at one place, for example, on the movable member 30B of the movable iron core 30A or the shutter device. A plurality of collision parts are provided in a corresponding part of the blade drive member,
A structure may be adopted in which the collision position can be selected by the regulating member driving means.

〔発明の効果〕 本発明により電源電圧の変動による影響を受けることな
く、かつ安定した駆動エネルギーでアクチェータを作動
させることができるので高精度の露出制御が、簡単な回
路構成で実現できることになった。
[Effects of the Invention] The present invention makes it possible to operate the actuator with stable drive energy without being affected by fluctuations in power supply voltage, making it possible to achieve high-precision exposure control with a simple circuit configuration. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単安定形高速制御ソレノイドの構成図。 第2図は単安定形高速制御ソレノイドを用いた絞り兼用
シャッタ装置の機構図。 第3図は本発明のシャッタ装置の一実施例を示す機構図
。 第4図は本発明のシャッタ装置の制御部のブロック回路
図。 第5図は本発明のシャッタ制御回路の一実施例を示す回
路図。 第6図(a )、(b )は夫々矩形波における実効電
圧値と実効電流値とを示す。 第7図は通電時間とシャッタの開口特性の1例を示すグ
ラフ。 第8図は被写体輝度と通電時間の関係を示すグラフ。 第9図および第10図は通電時間と開口径の関係を示す
グラフ。 第11図および第12図は供給電圧が変化したときの露
出特性曲線を示すグラフ。 20・・・シャッタ地板 21・・・シャッタ羽根押さえ板 23・・・シャッタ羽根 30・・・単安定形高速制御ソレノイド3OA・・・可
動鉄芯    30B・・・可動部材30G・・・コイ
ル     30D・・・永久磁石30E・・・駆動ビ
ン    40・・・規制部材44・・・ストッパ 50・・・プランジャソレノイド
Figure 1 is a configuration diagram of a monostable high-speed control solenoid. Figure 2 is a mechanical diagram of an aperture and shutter device using a monostable high-speed control solenoid. FIG. 3 is a mechanical diagram showing an embodiment of the shutter device of the present invention. FIG. 4 is a block circuit diagram of the control section of the shutter device of the present invention. FIG. 5 is a circuit diagram showing an embodiment of the shutter control circuit of the present invention. FIGS. 6(a) and 6(b) show the effective voltage value and effective current value in a rectangular wave, respectively. FIG. 7 is a graph showing an example of energization time and shutter opening characteristics. FIG. 8 is a graph showing the relationship between subject brightness and energization time. FIGS. 9 and 10 are graphs showing the relationship between current application time and aperture diameter. FIGS. 11 and 12 are graphs showing exposure characteristic curves when the supply voltage changes. 20... Shutter base plate 21... Shutter blade holding plate 23... Shutter blade 30... Monostable high-speed control solenoid 3OA... Movable iron core 30B... Movable member 30G... Coil 30D. ...Permanent magnet 30E...Drive bin 40...Restriction member 44...Stopper 50...Plunger solenoid

Claims (1)

【特許請求の範囲】[Claims] 電磁力により駆動する可動部材を有するアクチェータと
前記可動部材に係合するシャッタ羽根機構とを備えた電
磁駆動シャッタ装置において、電源電圧の電圧レベルを
検出する電圧判別手段と該電圧判別手段からの電圧情報
に基づき実効電流が一定となるパルスのデューティー比
を設定するパルス形成手段とを備え、該パルス形成手段
から出力されるパルスにより前記アクチェータを駆動す
るようにしたことを特徴とする電磁駆動シャッタを備え
たカメラ。
In an electromagnetically driven shutter device comprising an actuator having a movable member driven by electromagnetic force and a shutter blade mechanism engaging the movable member, a voltage discriminating means for detecting a voltage level of a power supply voltage and a voltage from the voltage discriminating means are provided. and a pulse forming means for setting a duty ratio of a pulse such that an effective current is constant based on information, and the actuator is driven by a pulse output from the pulse forming means. equipped camera.
JP1079317A 1989-03-29 1989-03-29 Camera with electromagnetically driven shutter Expired - Fee Related JP2843866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1079317A JP2843866B2 (en) 1989-03-29 1989-03-29 Camera with electromagnetically driven shutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079317A JP2843866B2 (en) 1989-03-29 1989-03-29 Camera with electromagnetically driven shutter

Publications (2)

Publication Number Publication Date
JPH02256034A true JPH02256034A (en) 1990-10-16
JP2843866B2 JP2843866B2 (en) 1999-01-06

Family

ID=13686493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079317A Expired - Fee Related JP2843866B2 (en) 1989-03-29 1989-03-29 Camera with electromagnetically driven shutter

Country Status (1)

Country Link
JP (1) JP2843866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125168A (en) * 1999-10-27 2001-05-11 Nidec Copal Corp Shutter for camera
US6547457B2 (en) 2000-09-22 2003-04-15 Nidec Copal Corporation Camera shutter unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163027A (en) * 1986-01-13 1987-07-18 Seiko Koki Kk Speed control device for camera shutter driving motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163027A (en) * 1986-01-13 1987-07-18 Seiko Koki Kk Speed control device for camera shutter driving motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125168A (en) * 1999-10-27 2001-05-11 Nidec Copal Corp Shutter for camera
JP4505048B2 (en) * 1999-10-27 2010-07-14 日本電産コパル株式会社 Camera shutter
US6547457B2 (en) 2000-09-22 2003-04-15 Nidec Copal Corporation Camera shutter unit

Also Published As

Publication number Publication date
JP2843866B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US4326786A (en) Electromagnetically driven shutter
JPH02256034A (en) Camera provided with electromagnetic-driven shutter
US4505568A (en) Shutter mechanism for camera
JPS6311652B2 (en)
US6343881B1 (en) Camera shutter apparatus
US5325148A (en) Camera having an exposure control device for minimizing heating and power consumption of a driving device
US4306798A (en) Electromagnetically driven slit exposure shutter
JP2002099023A (en) Shutter for camera
US4505567A (en) Electromagnetically driven shutter with focus adjusting function
JPH02197827A (en) Shutter device for camera
JPH0923695A (en) Motor controller and shutter device and lens barrel using the same
JP2767452B2 (en) camera
US4211480A (en) Electromagnetic shutter controlling device for camera
JPH02242240A (en) Camera provided with shutter device used also as variable diaphragm
US5081481A (en) Camera with a shutter
US4012751A (en) Photographic camera with electromagnetic actuator of the shutter segments
US4173403A (en) Single lens reflex camera with automatic diaphragm control mechanism
JP3192043B2 (en) Exposure control device
US4579439A (en) Automatic stop control circuit for camera
JPS6161368B2 (en)
US3589251A (en) Shutter speed control
JPH02234138A (en) Stroboscope incorporating camera
JPS63133884A (en) Constant-speed controller
JPS623790Y2 (en)
JPH033207B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees