JPH02255668A - Production of lactone compound - Google Patents

Production of lactone compound

Info

Publication number
JPH02255668A
JPH02255668A JP1075867A JP7586789A JPH02255668A JP H02255668 A JPH02255668 A JP H02255668A JP 1075867 A JP1075867 A JP 1075867A JP 7586789 A JP7586789 A JP 7586789A JP H02255668 A JPH02255668 A JP H02255668A
Authority
JP
Japan
Prior art keywords
catalyst
zinc
reaction
alkali metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1075867A
Other languages
Japanese (ja)
Inventor
Hiroshi Koyama
弘 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1075867A priority Critical patent/JPH02255668A/en
Publication of JPH02255668A publication Critical patent/JPH02255668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain lactone in suppressed side reaction and high selectivity by subjecting a diol having at least one primary hydroxyl group to vapor phase dehydrogenation reaction using a dehydrogenation catalyst consisting of copper, zinc and alkali metal. CONSTITUTION:A diol (e.g. 1,4-butane diol) having a primary hydroxyl group is subjected to vapor phase dehydrogenation reaction using a catalyst consisting of copper, zinc and alkali metal at 170300 deg.C to provide the lactone compound (e.g.; gamma-butylolactone) useful for solvent, chemical speciality raw material, resin raw material, etc. The above-mentioned catalyst consists of 20-60% (as copper oxide) zinc, 30-95% (as Zinc oxide) zinc and 10010000ppm alkali metal and is preferably prepared by absorbing an alkali metal ingredient as a diluted solution into a CuO-ZnO catalyst obtained by coprecipitation of copper salt and zinc salt, followed by filtration, water washing, drying, molding and calcining.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はラクトン化合物の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing lactone compounds.

本発明の製造方法によって、製造されるラクトン化合物
は環状のエステル化合物であり、溶剤、ファインケミカ
ルス原料、樹脂原料等に利用されている。
The lactone compound produced by the production method of the present invention is a cyclic ester compound, and is used as a solvent, a raw material for fine chemicals, a raw material for resin, etc.

特に、1.4−ブタンジオールの脱水素反応等によって
得られるγ−ブチロラクトンは、近年成長の著しい高性
能プラスチックスであるポリイミドやポリフェニレンス
ルフィド(pps)を重合する際に用いる溶媒として欠
かせないN−メチルピロリドンの原料等として需要が急
増している。
In particular, γ-butyrolactone, which is obtained through the dehydrogenation reaction of 1,4-butanediol, is an indispensable solvent used in the polymerization of polyimide and polyphenylene sulfide (pps), which are high-performance plastics that have grown rapidly in recent years. - Demand is rapidly increasing as a raw material for methylpyrrolidone.

[従来技術] これまでに、ラクトン化合物の製造方法として、(1)
水酸基、ハロゲン、または二重結合を持つカルボン酸の
環化反応 (2)環状ケトン、環状エーテルの酸化反応(3)環状
酸無水物の還元反応 (4)不飽和アルコールの分子内ヒドロカルボキシル化
反応 (5)ジオールの脱水素反応 等の方法が知られている[例えば、Jerry Mar
ch。
[Prior Art] So far, as a method for producing a lactone compound, (1)
Cyclization reaction of carboxylic acids with hydroxyl groups, halogens, or double bonds (2) Oxidation reaction of cyclic ketones and cyclic ethers (3) Reduction reaction of cyclic acid anhydrides (4) Intramolecular hydrocarboxylation reaction of unsaturated alcohols (5) Methods such as dehydrogenation of diols are known [for example, Jerry Mar
Ch.

”Advanced Organlc Chcvlst
ry、”2nd Editlon、McGRAW−旧L
L KOGAKUSHA、LTD、、(1977)]。
”Advanced Organlc Chcvlst
ry,” 2nd Editlon, McGRAW-old L
L KOGAKUSHA, LTD., (1977)].

本発明は、上記(5)のジオールの脱水素反応に関わる
The present invention relates to the diol dehydrogenation reaction described in (5) above.

脱水素触媒の存在下、ジオールから対応するラクトンを
製造する方法はよく知られている。
Methods for preparing the corresponding lactones from diols in the presence of dehydrogenation catalysts are well known.

例えば、岡[Bull、Chem、Soc、Japan
、Vol、34.1.12、(1981)]は、還元銅
触媒を用いて各種担体の評価を行い、A 10 (OH
) 、S iO2に比べて、MgOおよびZnO担体が
活性および選択性の点で優れていると報告している。
For example, Oka [Bull, Chem, Soc, Japan]
, Vol. 34.1.12, (1981)] evaluated various supports using a reduced copper catalyst, and A 10 (OH
) reported that compared to SiO2, MgO and ZnO supports are superior in terms of activity and selectivity.

しかしながら、最も優れているZnO担体を用いた場合
でも、その選択性は95%であり、工業的には十分とは
いえない。
However, even when the most excellent ZnO carrier is used, its selectivity is 95%, which is not industrially sufficient.

選択性が低いということは、目的物質以外の副生成物が
多いということであり、単に反応収率が低い故に原料コ
ストが高くなるということに加えて、多くの副生成物を
含む反応混合物から純粋な製品を得るための精製コスト
も高くなるという欠点がある。
Low selectivity means that there are many by-products other than the target substance, and in addition to high raw material costs due to low reaction yields, it also means that the reaction mixture containing many by-products The drawback is that the refining costs to obtain a pure product are also high.

かかる状況に鑑み、ジオールを脱水素触媒の存在下、反
応させて、対応するラクトンを製造する方法において、
その選択性を飛躍的に高めることを目的として、本研究
に着手した。
In view of this situation, in a method for producing a corresponding lactone by reacting a diol in the presence of a dehydrogenation catalyst,
We undertook this research with the aim of dramatically increasing that selectivity.

まず、従来から知られている銅−亜鉛触媒によるジオー
ルの脱水素反応を解析した結果、主な副反応は、脱水反
応であることが明らかになり、本発明者は、該脱水反応
は触媒中に含まれる微量の酸成分に起因するものと仮定
した。
First, as a result of analyzing the conventionally known dehydrogenation reaction of diol using a copper-zinc catalyst, it became clear that the main side reaction was a dehydration reaction. It was hypothesized that this was caused by a trace amount of acid components contained in the water.

そこで、本発明者は触媒中の微量の酸性分を除去する方
法について鋭意検討した結果、アルカリ金属成分を少量
添加することによって、副反応である脱水反応が大幅に
抑制され、主反応であるラクトン生成の選択性が著しく
向上することを見出だし、本発明に至った。
Therefore, the inventors of the present invention conducted intensive studies on a method for removing trace amounts of acidic content in the catalyst, and found that by adding a small amount of an alkali metal component, the dehydration reaction, which is a side reaction, can be significantly suppressed, and the lactone reaction, which is the main reaction, can be suppressed. It has been discovered that the selectivity of production is significantly improved, leading to the present invention.

[発明の目的] 本発明の目的は、ジオールの気相脱水素反応によって、
対応するラクトンを製造するにあたり、主に脱水反応等
の副反応を抑制して、高選択的にラクトンを製造するこ
との可能な技術を開発することにある。
[Object of the invention] The object of the present invention is to provide a gas-phase dehydrogenation reaction of diol,
In producing the corresponding lactones, the objective is to develop a technology that can produce lactones with high selectivity, mainly by suppressing side reactions such as dehydration reactions.

[発明の構成] 即ち1本発明は 「少なくとも一つの一級水酸基を有するジオールの気相
脱水素反応により、ラクトン化合物を製造する方法にお
いて、 (a)銅、 (b)亜鉛、および (C)アルカリ金属 からなる脱水素触媒を用いることを特徴とするラクトン
化合物の製造方法」 である。
[Structure of the Invention] That is, 1 the present invention provides a method for producing a lactone compound by a gas phase dehydrogenation reaction of a diol having at least one primary hydroxyl group, wherein (a) copper, (b) zinc, and (C) an alkali. A method for producing a lactone compound characterized by using a dehydrogenation catalyst made of a metal.

以下に本発明によるラクトンの製造方法について詳述す
る。
The method for producing lactone according to the present invention will be described in detail below.

(原料ジオール) 本発明のラクトン化合物の製造方法で使用される原料の
ジオールは、反応機構から考えて、2つの水酸基の内生
なくとも1つは、−級水酸基でなければならない。
(Raw material diol) Considering the reaction mechanism of the raw material diol used in the method for producing a lactone compound of the present invention, at least one of the two hydroxyl groups must be a -grade hydroxyl group.

また、2つの水酸基間の主鎖の炭素数は、生成するラク
トン環の安定性から考えて、3つ以上、好ましくは4つ
以上である必要がある。
Further, the number of carbon atoms in the main chain between two hydroxyl groups needs to be 3 or more, preferably 4 or more, considering the stability of the lactone ring to be produced.

とくに好ましくは4つ、または5つの場合である。また
、該主鎖には、本°反応に対して悪影響を与えない範囲
において、置換基が有ってもよい。
Particularly preferred is the case of four or five. Further, the main chain may have a substituent within a range that does not adversely affect the main reaction.

すなわち、好ましいジオールは、下記の一般式(I)で
示される1、4−ジオールまたは、一般式(II)で示
される1、5−ジオールZZH HO−C−C−C−C−OH・l) ZZH ZZZH HO−C−C−C−C−C−OH(IりZZZH [但し、上記一般式(1)、(II)中、Zは、水素原
子、アルキル基、アリール基、ハロゲン原子、水酸基、
アルキルオキシ基、アリールオキシ基、またはアミノ基
を示し、同一でも良く、また異なっていても良い]であ
る。
That is, preferred diols include 1,4-diol represented by the following general formula (I) or 1,5-diol represented by general formula (II) ZZH HO-C-C-C-C-OH.l ) ZZH ZZZH HO-C-C-C-C-C-OH (IriZZZH [However, in the above general formulas (1) and (II), Z is a hydrogen atom, an alkyl group, an aryl group, a halogen atom, hydroxyl group,
represents an alkyloxy group, an aryloxy group, or an amino group, and may be the same or different.

好ましい具体的なジオールは、1.4−ブタンジオル、
1,5−ベンタンジオール、l、6−ヘキサンジオール
、■、7−へブタンジオール、1.4−ヘキサンジオー
ル、  L、2.4−ブタントリオールなどである。
Preferred specific diols include 1,4-butanediol,
These include 1,5-bentanediol, 1,6-hexanediol, 1,7-hebutanediol, 1,4-hexanediol, L,2,4-butanetriol, and the like.

(脱水素触媒) 本発明のラクトン化合物の製造方法で用いられる脱水素
触媒は、 (a)銅、 (b)亜鉛、および (c)アルカリ金属 の3成分からなる。
(Dehydrogenation Catalyst) The dehydrogenation catalyst used in the method for producing a lactone compound of the present invention consists of three components: (a) copper, (b) zinc, and (c) an alkali metal.

銅および、亜鉛からなる脱水素触媒は上述したように、
よく知られている。
As mentioned above, the dehydrogenation catalyst consisting of copper and zinc is
well known.

したがって、本発明の特徴は、銅−亜鉛触媒に、さらに
アルカリ金属成分を添加した点にある。
Therefore, the feature of the present invention is that an alkali metal component is further added to the copper-zinc catalyst.

各成分の役割はそれぞれ、以下の通りである。The role of each component is as follows.

(a)銅は、還元銅として脱水素反応の触媒作用を示す
(a) Copper exhibits a catalytic action in the dehydrogenation reaction as reduced copper.

(b)亜鉛は、酸化亜鉛として(1)の銅の担体として
働く。
(b) Zinc acts as a carrier for copper in (1) as zinc oxide.

(c)アルカリ金属は、副反応抑制効果を示すものと考
えられる。
(c) Alkali metals are considered to exhibit side reaction suppressing effects.

脱水素触媒中の銅濃度(還元銅として)は、5%乃至7
0%の範囲で用いるのが良い。
The copper concentration (as reduced copper) in the dehydrogenation catalyst is between 5% and 7%.
It is preferable to use it in the range of 0%.

5%より低い場合は、反応活性が低く、70%より高い
場合は触媒の機械的強度が低下するという不都合がある
When it is lower than 5%, the reaction activity is low, and when it is higher than 70%, the mechanical strength of the catalyst is disadvantageously lowered.

とくに好ましくは、20%乃至60%の範囲である。Particularly preferred is a range of 20% to 60%.

一方、脱水素触媒中に添加すべきアルカリ金属は、副反
応抑制効果および価格の点から考えて、リチウム、ナト
リウム、またはカリウムが好ましく、単独で用いても良
いし、2種、または3種を併用しても良い。
On the other hand, the alkali metal to be added to the dehydrogenation catalyst is preferably lithium, sodium, or potassium from the viewpoint of side reaction suppressing effect and cost, and they may be used alone, or in combination of two or three. May be used together.

アルカリ金属の添加量は、銅−亜鉛触媒中の微量の酸成
分の種類やその量の多少に応じて、その必要量が定まる
ものであり、したがって、触媒中のアルカリ金属濃度を
一概に限定することは難しい。しかしながら、酸成分(
触媒調製時、および反応時に酸成分を生じる前駆体も含
む)の混入に注意を払って調製された触媒(たとえば、
後述の実施例で示すように専門の触媒メーカーの調製に
よる触媒など)は、そのなかに含有する酸成分量は極め
て微量であるのが通常である。
The amount of alkali metal added is determined depending on the type and amount of trace acid components in the copper-zinc catalyst, and therefore the alkali metal concentration in the catalyst is generally limited. That's difficult. However, the acid component (
Catalysts (including precursors that produce acid components during catalyst preparation and reaction) that are prepared with care are taken to avoid contamination (for example,
As shown in the Examples below, catalysts prepared by specialized catalyst manufacturers, etc.) usually contain an extremely small amount of acid component.

したがって、アルカリ金属量の添加量も少量で有効であ
る場合が多く、通常、脱水素触媒中のアルカリ金属濃度
は、50ppm乃至50.000ppmの範囲で、より
好ましくは、100 p p’ m乃至10,000p
pmの範囲で用いるのが良い。
Therefore, it is often effective to add a small amount of alkali metal, and the alkali metal concentration in the dehydrogenation catalyst is usually in the range of 50 ppm to 50.000 ppm, more preferably 100 ppm to 10.00 ppm. ,000p
It is best to use it within the pm range.

50ppmより低い場合は、副反応抑制効果が小さく、
また50,000ppmより高い場合は、触媒活性が低
下し、不都合である。
If it is lower than 50 ppm, the effect of suppressing side reactions is small;
Moreover, if it is higher than 50,000 ppm, the catalyst activity will decrease, which is disadvantageous.

また、亜鉛は酸化亜鉛の形態で担体として働いていると
考えられるので、脱水素触媒中の酸化亜鉛濃度として、
30%乃至95%の範囲で用いるのが良い。
In addition, since zinc is thought to work as a carrier in the form of zinc oxide, the concentration of zinc oxide in the dehydrogenation catalyst is
It is preferable to use it in the range of 30% to 95%.

脱水素触媒の形態は、気相反応が実施できる範囲であれ
ば、とくに制約はない。
There are no particular restrictions on the form of the dehydrogenation catalyst as long as the gas phase reaction can be carried out.

通常は、粉、粒、砕片、小塊、またはペレット等である
Usually, it is a powder, granules, crumbs, lumps, or pellets.

また、銅−亜鉛脱水素触媒は、通常、銅塩および亜鉛塩
の共沈後、濾過、水洗、乾燥、成型、焼成によって得ら
れるCuO−ZnO触媒を、水素気流下、還元すること
によって得られる。
In addition, a copper-zinc dehydrogenation catalyst is usually obtained by reducing a CuO-ZnO catalyst obtained by coprecipitation of a copper salt and a zinc salt, filtration, water washing, drying, molding, and calcination under a hydrogen stream. .

本発明の特徴である、アルカリ金属成分の添加は、上記
の一連の触媒調製のいずれの工程で行っても良い。
The alkali metal component, which is a feature of the present invention, may be added at any step of the series of catalyst preparation steps described above.

しかし、該アルカリ金属成分は、その添加1が少量であ
ること、および水溶性が高いことから、上記の一連の触
媒調製のうち、水洗工程以降、還元工程以前に行われる
のが好ましい。
However, since the alkali metal component is added in a small amount and has high water solubility, it is preferably carried out after the water washing step and before the reduction step in the above series of catalyst preparations.

また、アルカリ金属成分の添加方法については、とくに
制約はないが、例えば、アルカリ金属成分の稀薄溶液を
、水洗工程以降、還元工程以前の触媒に吸収させること
により必要量添加する方法などが考えられる。
There are no particular restrictions on the method of adding the alkali metal component, but for example, a method of adding the required amount by absorbing a dilute solution of the alkali metal component into the catalyst after the water washing step and before the reduction step can be considered. .

とくに、焼成で得られるCuO−ZnO触媒にアルカリ
金属成分を添加する方法は、焼成工程で発生する酸成分
の除去に対しても有効であり、より好ましい。
In particular, the method of adding an alkali metal component to the CuO-ZnO catalyst obtained by calcination is more preferable since it is also effective for removing acid components generated during the calcination step.

(反応条件) 本発明の反応条件については、従来の銅−亜鉛触媒によ
る脱水素反応と同様の範囲で行われる。
(Reaction Conditions) The reaction conditions of the present invention are the same as those for conventional dehydrogenation reactions using copper-zinc catalysts.

反応温度は、通常、170℃乃至300℃の範囲である
The reaction temperature is usually in the range of 170°C to 300°C.

170℃より低いと、活性が低く、300℃より高いと
、副反応が多く、また触媒寿命が短く不都合である。
If it is lower than 170°C, the activity is low, and if it is higher than 300°C, there will be many side reactions and the catalyst life will be short, which is disadvantageous.

反応圧力は、原料のジオール、および生成物のラクトン
が、反応条件下で、気体状態であるならば、常圧に限ら
ず、減圧、または加圧のいずれでも良い。
The reaction pressure is not limited to normal pressure, but may be reduced pressure or increased pressure, as long as the raw material diol and the product lactone are in a gaseous state under the reaction conditions.

しかしながら、特別な利点がない限り、設備的に安価な
、常圧付近の圧力下で反応させるのが良い。反応器の形
式にもとくに制約はなく、流動床、固定床のいずれでも
良い。
However, unless there is a special advantage, it is preferable to carry out the reaction under pressure near normal pressure, which is inexpensive in terms of equipment. There are no particular restrictions on the type of reactor, and either a fluidized bed or a fixed bed may be used.

触媒の還元銅の活性の維持、および原料・生成物(共に
ガス)の運搬のために、通常、原料のジオールと共に、
水素ガスを反応器に導入する。
In order to maintain the activity of the reduced copper of the catalyst and to transport the raw materials and products (both gases), together with the raw material diol,
Hydrogen gas is introduced into the reactor.

水素ガス仕込み速度は、通常、触媒ILに対し、1乃至
10.000 N L / Hr 、好ましくは、10
乃至1.000 N L / Hrである。
The hydrogen gas charging rate is usually 1 to 10.000 N L / Hr, preferably 10
to 1.000 NL/Hr.

また、該水素ガス中には、反応に悪影響を及ぼさない限
り、少量の不純物(例えば、N2、CH4、N20など
)が含まれていても良い。
Further, the hydrogen gas may contain a small amount of impurities (for example, N2, CH4, N20, etc.) as long as they do not adversely affect the reaction.

原料のジオールは、通常、ガス化された後、反応器に仕
込まれる。
The raw material diol is usually charged into a reactor after being gasified.

ジオールの仕込み速度は、とくに制約はないが、通常、
触媒ILに対して、1乃至10,0OONL / Hr
 、好ましくは、10乃至1.0OONL/Hr(いず
れもジオールをガスとして計算)である。
There is no particular restriction on the feeding speed of diol, but usually,
1 to 10,0OONL/Hr for catalyst IL
, preferably 10 to 1.0 OONL/Hr (all calculated assuming the diol as a gas).

(精製法) 本発明によって得られるラクトンは、反応選択性が極め
て高いので、上記反応器から出てくる反応ガスの冷却・
凝縮によって得られるラクトンの純度が非常に高い。
(Purification method) The lactone obtained by the present invention has extremely high reaction selectivity.
The purity of the lactone obtained by condensation is very high.

したがって、特に精製の必要がなく、そのままで工業的
用途に使用が可能である。
Therefore, there is no need for particular purification, and it can be used as is for industrial purposes.

しかし、さらに蒸留などの通常の精製法によって、容易
に、より高純度のラクトンを製造することができる。
However, higher purity lactones can be easily produced by further conventional purification methods such as distillation.

(反応装置) 試料気化管付き気相反応器(ステンレス製、触媒層内径
−5,15cm、同高さ一20cm)はナイター浴で加
熱きれ、ポンプで仕込まれた1、4−ブタンジオール(
以下、1.4−BGと略す)は試料気化管で気化し、キ
ャリアーガス(水素)によって、触媒層に導入される。
(Reactor) A gas phase reactor with a sample vaporization tube (made of stainless steel, catalyst layer inner diameter -5.15 cm, catalyst layer height -20 cm) was heated in a night bath, and 1,4-butanediol (
(hereinafter abbreviated as 1.4-BG) is vaporized in a sample vaporization tube and introduced into the catalyst layer by a carrier gas (hydrogen).

反応混合ガスは冷水トラップ、次いでドライアイス/ア
セトントラップを通り、主生成物のガンマー−ブチロラ
クトン(以下、GBLと略す)、未反応の1.4−BG
、副生成物のテトラヒドロフラン(以下、THFと略す
)、水等が、該トラップで捕獲される。
The reaction mixture gas passes through a cold water trap and then a dry ice/acetone trap to remove the main product gamma-butyrolactone (hereinafter abbreviated as GBL) and unreacted 1.4-BG.
, by-products such as tetrahydrofuran (hereinafter abbreviated as THF), water, etc. are captured in the trap.

(触媒の前処理) 全ての触媒は上記反応器に充填後、水素流通下(100
NL/H) 、300℃で水の生成がなくなるまで十分
に還元した後、反応(1,4−BG仕込み)を行った。
(Catalyst pretreatment) After filling all the catalysts into the above reactor, they were heated under hydrogen flow (100%
NL/H), and was sufficiently reduced at 300° C. until no water was produced, and then the reaction (1,4-BG charging) was carried out.

(評価) トラップで捕獲された生成物混合液は、秤量後、ガスク
ロマトグラフィーによって分析し、未反応1.4−BG
SGBL、THF等を定量し、転化率、選択性を算出し
た。
(Evaluation) The product mixture captured by the trap was weighed and analyzed by gas chromatography to determine whether unreacted 1.4-BG
SGBL, THF, etc. were quantified, and the conversion rate and selectivity were calculated.

(後処理) 1.4−BGの仕込みを停止し、トラップに捕獲される
液成分が、もはや反応器から出なくなってから、室温ま
で触媒を冷却した。
(Post-treatment) 1. After the charging of 4-BG was stopped and the liquid component captured in the trap no longer came out of the reactor, the catalyst was cooled to room temperature.

その後、キャリアーガスを水素から窒素に置換し、反応
器から触媒を取りだし、該触媒中の金属濃度を分析した
(塩酸塩に分解後、原子吸光法により測定)。
Thereafter, the carrier gas was replaced from hydrogen with nitrogen, the catalyst was taken out from the reactor, and the metal concentration in the catalyst was analyzed (measured by atomic absorption spectrometry after decomposition into hydrochloride).

本発明の具体的実施B様としては以下のものが考えられ
る。
The following can be considered as specific implementation B of the present invention.

(1)アルカリ金属が、リチウム、ナトリウム、または
カリウムから選ばれる少なくとも一種の元素である、特
許請求の範囲記載の方法。
(1) The method according to the claims, wherein the alkali metal is at least one element selected from lithium, sodium, or potassium.

(2)脱水素触媒中のアルカリ金属濃度が、50ppm
以上、50.000ppm以下である、特許請求の範囲
記載の方法。
(2) The alkali metal concentration in the dehydrogenation catalyst is 50 ppm
50.000 ppm or less.

(3)脱水素触媒中のアルカリ金属濃度が、1100p
p以上、10.000ppm以下である、特許請求の範
囲記載の方法。
(3) The alkali metal concentration in the dehydrogenation catalyst is 1100p
The method according to the claims, wherein the content of p is not less than 10.000 ppm.

(4)ジオールが、下記の一般式(1)で示される1、
4−ジオールまたは、一般式(11)で示される1、5
−ジオール ZZH HO−C−C−C−C−OH(1) ZZH ZZZH HO−C−C−C−C−C−OH(11)ZZZH [但し、上記一般式(1)、(I+)中、Zは、水素原
子、アルキル基、アリール基、ノ\ロゲン原子、水酸基
、アルキルオキシ基、アリールオキシ基、またはアミノ
基を示し、同一でも良く、また異なっていても良い] である特許請求の範囲記載の方法。
(4) 1 in which the diol is represented by the following general formula (1),
4-diol or 1,5 represented by general formula (11)
-Diol ZZH HO-C-C-C-C-OH (1) ZZH ZZZH HO-C-C-C-C-C-OH (11) ZZZH [However, in the above general formula (1), (I+) , Z represent a hydrogen atom, an alkyl group, an aryl group, a norogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, or an amino group, and may be the same or different. How to describe the range.

(5)脱水素触媒が、CuO−ZnO触媒にアルカリ金
属成分を添加する方法によって得られた組成物を、水素
還元処理した脱水素触媒である特許請求の範囲記載の方
法。
(5) The method according to the claims, wherein the dehydrogenation catalyst is a dehydrogenation catalyst obtained by hydrogen reduction treatment of a composition obtained by a method of adding an alkali metal component to a CuO-ZnO catalyst.

以下に実施例および比較例を示し、本発明の効果を具体
的に説明するが、本発明はこれらの実施例に限定される
ものではない。
EXAMPLES Examples and comparative examples are shown below to specifically explain the effects of the present invention, but the present invention is not limited to these examples.

[比較例1] アルカリ金属を脱水素触媒に添加しない場合の例として
、胴および亜鉛のみからなる脱水素触媒を使用して反応
を行った。
[Comparative Example 1] As an example in which no alkali metal was added to the dehydrogenation catalyst, a reaction was carried out using a dehydrogenation catalyst consisting only of a shell and zinc.

脱水素触媒として、Cu O/ Z n O触媒(8揮
(株)製 N  211.CuO含jil−48%、径
5mm84mmペレット)を用いて反応温度220℃、
水素仕込み速度を2ONL/Hr、1.4−BG仕込み
速度を20mL/Hr (21,0g/H「)として、
常圧で反応を行った。
As a dehydrogenation catalyst, a CuO/ZnO catalyst (manufactured by 8Ki Co., Ltd., N211.CuO-containing jil-48%, diameter 5mm 84mm pellets) was used at a reaction temperature of 220°C.
Assuming that the hydrogen charging rate is 2ONL/Hr and the 1.4-BG charging rate is 20mL/Hr (21,0g/H''),
The reaction was carried out at normal pressure.

8時間反応後、トラップで捕獲された生成物を分析した
結果、以下の成績を与えた。
After 8 hours of reaction, the products captured in the trap were analyzed and the following results were given.

1.4−BG転化率(以下、CBGと略す)−100,
0モル% GBL選択率(以下、5GBLと略す)−91,3モル
% THF選択率(以下、5THFと略す)−0,58モル
% また、反応後の触媒中の金属濃度は以下の通りであった
1.4-BG conversion rate (hereinafter abbreviated as CBG) -100,
0 mol% GBL selectivity (hereinafter abbreviated as 5GBL) - 91.3 mol% THF selectivity (hereinafter abbreviated as 5THF) - 0,58 mol% In addition, the metal concentration in the catalyst after the reaction is as follows. there were.

Cu−42% Znm46% Li−不検出(検出限界0.01%) Na−16ppm K  −11ppm 以上のように、アルカリ金属成分を添加しない触媒を用
いた場合、GBLへの選択性は、91゜3モル%と低く
、副反応生成物であるTHFへの選択性が0.58%と
高いことが判った。
Cu - 42% Znm 46% Li - Not detected (detection limit 0.01%) Na - 16ppm K - 11ppm As described above, when using a catalyst to which no alkali metal component is added, the selectivity to GBL is 91° It was found that the selectivity to THF, which is a side reaction product, was as low as 3 mol%, and as high as 0.58%.

[実施例1] Cu O/ Z n O触媒をそのまま使用する代わり
に、0.10%KOH水溶液に10秒間浸した以外は、
比較例1と同様の実験を繰り返し、以下の結果を得た。
[Example 1] Instead of using the CuO/ZnO catalyst as is, it was immersed in a 0.10% KOH aqueous solution for 10 seconds.
The same experiment as in Comparative Example 1 was repeated, and the following results were obtained.

C岬100.0モル% G S    −96,3モル% GBL STHF−0,24モル% K    −110pm 以上のように、カリウム成分を添加した触媒を用いた場
合GBLへの選択性は、96.3モル%に向上し、副反
応生成物であるTHFへの選択性が0.24%に抑制さ
れたことが判った。
Cape C 100.0 mol% G S -96.3 mol% GBL STHF-0.24 mol% K -110 pm As described above, when a catalyst containing a potassium component is used, the selectivity to GBL is 96.0 mol%. It was found that the selectivity to THF, which is a side reaction product, was suppressed to 0.24%.

[実施例2] KOH水溶液の濃度を0.33%に代えた以外は、実施
例1と同様の実験を繰り返し、以下の結果を得た。
[Example 2] The same experiment as in Example 1 was repeated except that the concentration of the KOH aqueous solution was changed to 0.33%, and the following results were obtained.

C−100,0モル% G SGBL糟99.6モル% 5THE−0,13モル% K    −320ppm [参考例1コ 0.10%KOH水溶液の代わりに、水を使用した以外
は実施例1と同様の実験を繰り返し、以下の結果を得た
C-100.0 mol% G SGBL 99.6 mol% 5 THE-0.13 mol% K -320 ppm [Reference Example 1 Same as Example 1 except that water was used instead of the 0.10% KOH aqueous solution. Similar experiments were repeated and the following results were obtained.

C−100,0モル% G SGBL−91,4モル% 5THE−0,57モル% Li−不検出(検出限界0.0ippm)Na−16p
pm K  −11ppm [実施例3] Cu O/ Z n O触媒をそのまま使用する代わり
に、0.30%NaOH水溶液に10秒間浸した以外は
、比較例1と同様の実験を繰り返し、以下の結果を得た
C-100,0 mol% G SGBL-91,4 mol% 5THE-0,57 mol% Li-Not detected (detection limit 0.0 ippm) Na-16p
pm K -11 ppm [Example 3] The same experiment as Comparative Example 1 was repeated except that instead of using the CuO/ZnO catalyst as it was, it was immersed in a 0.30% NaOH aqueous solution for 10 seconds, and the following results were obtained. I got it.

C−100,Oモル% G SGBL−99,7モル% 5THF−0,10モル% NNa−250pp [実施例4] Cu O/ Z n O触媒をそのまま使用する代わり
に、0,30%LiOH水溶液に10秒間浸した以外は
、比較例1と同様の実験を繰り返し、以下の結果を得た
C-100,0 mol% G SGBL-99,7 mol% 5THF-0,10 mol% NNa-250pp [Example 4] Instead of using CuO/ZnO catalyst as it is, 0,30% LiOH aqueous solution The same experiment as in Comparative Example 1 was repeated except that the sample was immersed in water for 10 seconds, and the following results were obtained.

CBG −100,0モ/し% 5GBL簡99.8モル% 5THE−0,07モル% Li   −110pDm [実施例5] Cu O/ Z n O触媒をそのまま使用する代わり
に、0.42%KOHエタノール溶液に10秒間浸した
以外は、比較例1と同様の実験を繰り返し、以下の結果
を得た。
CBG -100,0mol% 5GBL 99.8mol% 5THE-0,07mol% Li -110pDm [Example 5] Instead of using the CuO/ZnO catalyst as it is, 0.42%KOH The same experiment as Comparative Example 1 was repeated except that the sample was immersed in the ethanol solution for 10 seconds, and the following results were obtained.

C糟100.0モル% G SGBL−97,2モル% 5THF−0,18モル% K    −17Qppm [実施例1コ Cu O/ Z n O触媒をそのまま使用する代わり
に、0.10%KOH水溶液に10秒間浸した以外は、
比較例1と同様の実験を繰り返し、以下の結果を得た。
C 100.0 mol% G SGBL-97.2 mol% 5THF-0.18 mol% K -17Qppm [Example 1 Instead of using the CuO/ZnO catalyst as it was, 0.10% KOH aqueous solution Except for 10 seconds of soaking in
The same experiment as in Comparative Example 1 was repeated, and the following results were obtained.

C−100,0モル% G SGBL−96,0モル% S −r HF−0、24モル% Cu−37% Zn−40% Lf−0,1plp pmNa−18p p ■8pm [実施例2] KOH水溶液の濃度を0.33%に代えた以外は、実施
例1と同様の実験を繰り返し、以下の結果を得た。
C-100,0 mol% G SGBL-96,0 mol% S -r HF-0, 24 mol% Cu-37% Zn-40% Lf-0,1 plp pmNa-18p p ■8pm [Example 2] KOH The same experiment as in Example 1 was repeated except that the concentration of the aqueous solution was changed to 0.33%, and the following results were obtained.

C−100,0モル% G S    −99,6モル% BL S    −0,13モル% HF Cu−38% Z n−40% Li−0,3ppm Na=20ppm K   =290ppm [参考例1] 0.10%KOH水溶液の代わりに、水を使用した以外
は実施例1と同様の実験を繰り返し、以下の結果を得た
C-100,0 mol% G S -99,6 mol% BL S -0,13 mol% HF Cu-38% Z n-40% Li-0,3 ppm Na = 20 ppm K = 290 ppm [Reference Example 1] 0 The same experiment as in Example 1 was repeated except that water was used instead of the 10% KOH aqueous solution, and the following results were obtained.

C−100,0モル% G SGBL−91,6モル% s、HF−0,56モル% Cu鞠37% Zn鴫41% Li−不検出 Na”w16ppm K  =11ppm [実施例3] Cu O/ Z n O触媒をそのまま使用する代わり
に、0.30%NaOH水溶液に10秒間浸した以外は
、比較例1と同様の実験を繰り返し、以下の結果を得た
C-100.0 mol% G SGBL-91.6 mol% s, HF-0.56 mol% Cu ball 37% Zn 41% Li-undetectable Na"w 16 ppm K = 11 ppm [Example 3] Cu O/ The same experiment as Comparative Example 1 was repeated, except that instead of using the Z n O catalyst as it was, it was immersed in a 0.30% NaOH aqueous solution for 10 seconds, and the following results were obtained.

C−100,0モル% G 5GBL−99,7モル% 5THF−0,10モル% Cu−38% Zn鴫40% Li−Q、 ippm Na=270ppm K   −13ppm [実施例4] Cu O/ Z n O触媒をそのまま使用する代わり
に、0.30%LiOH水溶液に10秒間浸した以外は
、比較例1と同様の実験を繰り返し、以下の結果を得た
C-100.0 mol% G 5GBL-99.7 mol% 5THF-0.10 mol% Cu-38% Zn 40% Li-Q, ippm Na=270ppm K-13ppm [Example 4] Cu O/Z The same experiment as in Comparative Example 1 was repeated, except that instead of using the n 2 O catalyst as it was, it was immersed in a 0.30% LiOH aqueous solution for 10 seconds, and the following results were obtained.

C−100,0モル% G SGBL−93佛5モル% 5THF−0,22モル% Cu=38% Zn=41% Li=260ppm Na−18ppm K  −12ppm [実施例5] Cu O/ Z n O触媒をそのまま使用する代わり
に、0.42%KOHエタノール溶液に10秒間浸した
以外は、比較例1と同様の実験を繰り返し、以下の結果
を得た。
C-100,0 mol% G SGBL-93 5 mol% 5THF-0,22 mol% Cu=38% Zn=41% Li=260ppm Na-18ppm K-12ppm [Example 5] CuO/ZnO The same experiment as Comparative Example 1 was repeated, except that instead of using the catalyst as it was, it was immersed in a 0.42% KOH ethanol solution for 10 seconds, and the following results were obtained.

CBG ■1oo、oモル% 5GBL−93・5モル% 5THF−0,22モル% Cu−37%ppm Zn−41%ppm Li纏1.Oppm Na間18E)pm K  −150ppmCBG ■1oo, o mol% 5GBL-93.5 mol% 5THF-0.22 mol% Cu-37%ppm Zn-41%ppm Li coat 1. Oppm Between Na18E) pm K -150ppm

Claims (1)

【特許請求の範囲】  少なくとも一つの一級水酸基を有するジオールの気相
脱水素反応により、ラクトン化合物を製造する方法にお
いて、 (a)銅、 (b)亜鉛、および (c)アルカリ金属 からなる脱水素触媒を用いることを特徴とするラクトン
化合物の製造方法。
[Claims] A method for producing a lactone compound by gas phase dehydrogenation of a diol having at least one primary hydroxyl group, comprising: (a) copper, (b) zinc, and (c) an alkali metal. A method for producing a lactone compound, characterized by using a catalyst.
JP1075867A 1989-03-28 1989-03-28 Production of lactone compound Pending JPH02255668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075867A JPH02255668A (en) 1989-03-28 1989-03-28 Production of lactone compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075867A JPH02255668A (en) 1989-03-28 1989-03-28 Production of lactone compound

Publications (1)

Publication Number Publication Date
JPH02255668A true JPH02255668A (en) 1990-10-16

Family

ID=13588635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075867A Pending JPH02255668A (en) 1989-03-28 1989-03-28 Production of lactone compound

Country Status (1)

Country Link
JP (1) JPH02255668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014791A1 (en) * 1992-12-23 1994-07-07 Shell Internationale Research Maatschappij B.V. Process for preparing 2-para-dioxanones
EP0827956A1 (en) * 1996-09-05 1998-03-11 Basf Aktiengesellschaft Process for the dehydrogenation of 1,4-butanediol to gamma-butyrolactone
US6323347B2 (en) 2000-01-14 2001-11-27 Dairen Chemical Corporation Catalyst for preparing lactone and a method for preparing lactone
KR100464621B1 (en) * 1996-12-30 2005-04-06 에스케이 주식회사 How to prepare gamma butyrolactone (r-Butyrolactone)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014791A1 (en) * 1992-12-23 1994-07-07 Shell Internationale Research Maatschappij B.V. Process for preparing 2-para-dioxanones
EP0827956A1 (en) * 1996-09-05 1998-03-11 Basf Aktiengesellschaft Process for the dehydrogenation of 1,4-butanediol to gamma-butyrolactone
KR100464621B1 (en) * 1996-12-30 2005-04-06 에스케이 주식회사 How to prepare gamma butyrolactone (r-Butyrolactone)
US6323347B2 (en) 2000-01-14 2001-11-27 Dairen Chemical Corporation Catalyst for preparing lactone and a method for preparing lactone

Similar Documents

Publication Publication Date Title
DE69710472T2 (en) METHOD FOR THE DIRECT OXIDATION OF OLEFINES TO OLEFINOXIDES
JPS62258745A (en) Production of silver-containing catalyst
CN104275185B (en) A kind of cuprio hydrogenation catalyst preparation method without reduction activation
EP0352674B1 (en) Process for the preparation of ketones
Claeson et al. The Activation Energy of Inversion in Substituted 1, 2-Dithiane and 1, 2-Dioxane Measured by the Nuclear Magnetic Resonance Technique1
DE2413206B2 (en) Catalyst based on Mo-V-Cu-W for the production of acrylic acid from acrolein
JPH02255668A (en) Production of lactone compound
JPS62114649A (en) Preparation of compound having double bond at terminal
KR101086730B1 (en) Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same
JPS58131932A (en) Manufacture of anthraquinone
US3753678A (en) Substituted dioxanes as herbicides
US4544773A (en) Process for producing formaldehyde
CN111675613B (en) Preparation method of 4-acetoxyl-2-methyl-2-butenal
CN116217539A (en) Method for preparing vinyl sulfate by catalyzing hydrogen peroxide oxidation
CN106890652B (en) A kind of one step selective oxidation of methanol prepares the catalyst of dimethoxym ethane and methyl formate
CN114210365A (en) Catalyst for synthesizing methyl ethyl carbonate and diethyl carbonate and method thereof
JPS5899473A (en) Preparation of alpha-acetyl lactones
RU2004534C1 (en) Method of 2-bromoperfluoroethylhypofluoride synthesis
EP2995376A1 (en) Synthesis catalyst and synthesis method for unsaturated carboxylic acid and/or derivative thereof
CN106582661A (en) Metal load type catalyst and preparation method therefor, and application of catalyst in preparation of glycerol carbonate
NO327178B1 (en) Process for the preparation of 3,4-methylenedioxy-mandelic acid
US3862236A (en) Production of propionaldehyde
CN112371130A (en) Dehydrogenation catalyst and preparation method thereof
KR100341873B1 (en) Process for producing hydrogen cyanide
JPH026414A (en) Preparation of isobutylene