JPH0225558A - Thermal spraying method - Google Patents

Thermal spraying method

Info

Publication number
JPH0225558A
JPH0225558A JP63174799A JP17479988A JPH0225558A JP H0225558 A JPH0225558 A JP H0225558A JP 63174799 A JP63174799 A JP 63174799A JP 17479988 A JP17479988 A JP 17479988A JP H0225558 A JPH0225558 A JP H0225558A
Authority
JP
Japan
Prior art keywords
inert gas
sprayed
thermal spraying
thermally sprayed
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63174799A
Other languages
Japanese (ja)
Inventor
Gunji Ueno
植野 軍二
Kazuhiro Ishikawa
石川 量大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANMETA ENG KK
Original Assignee
KANMETA ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANMETA ENG KK filed Critical KANMETA ENG KK
Priority to JP63174799A priority Critical patent/JPH0225558A/en
Publication of JPH0225558A publication Critical patent/JPH0225558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a film having a low content of oxides and having low porosity on the surface of a base material while preventing the inclusion of oxygen and moisture when molten particles are sprayed by replacing the air in a vessel- shaped body to be sprayed by an inert gas. CONSTITUTION:An inert gas G is supplied into the internal space of the body 1 to be sprayed from a device for supplying an inert gas such as Ar and N2 through an injection pipe 15, a control valve 11, and an opening 13 to carry out thermal spraying. The air in the body 1 is simultaneously discharged to the outside through an opening 12, an exhaust valve 10, and an exhaust pipe 14. As a result, the air in the body 1 is replaced by the inert gas G, and the inside of the body 1 is filled with the inert gas G. The molten particles of metal, etc., are sprayed into such an atmosphere of the inert gas G from a thermal spraying gun 17 to cause electrical-molten-wire spraying, and a film having a low content of oxides and having extremely low porosity can be formed on the inner surface 22 of the body 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融状態の金属やセラミックス等の粒子群を
被溶射物の表面に吹きつけて皮膜を形成させる被覆法で
ある溶射方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal spraying method, which is a coating method in which particles of molten metal, ceramics, etc. are sprayed onto the surface of an object to be thermally sprayed to form a film.

〔従来の技術と発明が解決しようとする課題〕従来の溶
射によって形成される皮膜には被溶射物の表面に達する
多数の気孔が存在し、そこから腐食性ガスや溶剤等が侵
入して皮膜の剥離や破損等の原因となるという問題を生
じていた。
[Prior art and problems to be solved by the invention] The coating formed by conventional thermal spraying has many pores that reach the surface of the object to be sprayed, and corrosive gases, solvents, etc. can enter through these pores and cause the coating to deteriorate. This has caused problems such as peeling and damage.

本発明は、上記問題点を解決し、酸化物含有率及び気孔
率が極めて低い皮膜を形成することの出来る溶射方法を
提供することを目的としている。
An object of the present invention is to provide a thermal spraying method capable of solving the above-mentioned problems and forming a coating having extremely low oxide content and porosity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の溶射方法において
は、容器状の被溶射物自体を密封し、該被溶射物内の空
気を排出すると共に不活性ガスを容器状の該被溶射物に
注入し不活性ガスの雰囲気中で該被溶射物の内面を溶射
するものである。
In order to achieve the above object, in the thermal spraying method of the present invention, the container-shaped object to be thermally sprayed is sealed, the air inside the object to be thermally sprayed is exhausted, and the inert gas is injected into the container-shaped object to be thermally sprayed. The inner surface of the object to be thermally sprayed is sprayed in an inert gas atmosphere.

また、密封室内に不活性ガスを注入すると共に該密封室
内の空気を排除して該密封室内を大気圧を僅かに越える
所定圧力に保持し、該密封室内の不活性ガスの雰囲気中
で該密封室内に置かれた被溶射物の溶射をおこなうもの
である。
In addition, an inert gas is injected into the sealed chamber and the air inside the sealed chamber is expelled to maintain the inside of the sealed chamber at a predetermined pressure slightly exceeding atmospheric pressure, and the sealed chamber is sealed in an inert gas atmosphere inside the sealed chamber. It is used to thermally spray objects placed indoors.

〔作用〕[Effect]

容器状の被溶射物の内部の空気を不活性ガスと置き換え
ることにより金属等の溶融粒子の吹きつけ時、不活性領
域と空気との混合が防止され、溶融粒子内へ酸素や水分
等が混入しない、また、容器状の被溶射物自体の内部で
溶射作業を行うので、密封構造の作業室が不要となる。
By replacing the air inside the container-shaped object to be sprayed with inert gas, when spraying molten metal particles, the inert area is prevented from mixing with air, and oxygen, moisture, etc. are mixed into the molten particles. Moreover, since the thermal spraying work is performed inside the container-shaped object to be thermally sprayed, a sealed work chamber is not required.

密封室内を1気圧を僅かに越える所定圧力に保持するの
で、密封室に特別な強度を要せず密封室を特別な耐圧構
造等とする必要はない。
Since the inside of the sealed chamber is maintained at a predetermined pressure slightly exceeding 1 atmosphere, the sealed chamber does not require special strength and does not need to have a special pressure-resistant structure.

溶融粒子の吹きつけ時、溶融粒子は化学的に不活発な不
活性ガスの雰囲気中に包まれるので酸素や水分等のまき
こみがなく、母材表面には酸化物含有率及び気孔率が極
めて低い皮膜が形成される。
When molten particles are sprayed, the molten particles are surrounded by an atmosphere of chemically inert gas, so no oxygen or moisture is mixed in, and the oxide content and porosity of the base metal surface are extremely low. A film is formed.

〔実施例〕〔Example〕

実施例について図面を参照して説明すると、第1図と第
2図と第3図に於いて、1は圧力容器等の容器状の被溶
射物であり、該被溶射物1は一端が開口状であって円筒
部1a及び中空状の円錐部1bからなり、水平上に置か
れた鉄板等の平面板5上に!!置されている。該平面板
5と被溶射物lの開口端2との間には、略矩形断面の硬
質ゴム製等のシール部材6が介装され、該開口@2と平
面5との間が密封される。8は被溶射物l内部への出入
り口であって平面板5の所定部位を開設して形成したも
のであり、9はこの出入り口8を開閉可能に密封してい
るシール板9である。平面板5の下方には外部と被溶射
物l内部との連絡用の通路3が形成されており、該通路
3は出入り口8及び外部へ通じる連絡口4に連通してい
る。なお、該連絡口4には開き戸7が設けられている。
Embodiments will be described with reference to the drawings. In FIGS. 1, 2, and 3, reference numeral 1 denotes a container-shaped object to be thermally sprayed, such as a pressure vessel, and the object to be thermally sprayed 1 has an open end. The shape is composed of a cylindrical portion 1a and a hollow conical portion 1b, and is placed on a flat plate 5 such as an iron plate placed horizontally! ! It is placed. A sealing member 6 made of hard rubber or the like having a substantially rectangular cross section is interposed between the flat plate 5 and the open end 2 of the object to be thermally sprayed 1, and the space between the opening @2 and the flat surface 5 is sealed. . Reference numeral 8 denotes an entrance/exit to the interior of the object to be thermally sprayed l, which is formed by opening a predetermined portion of the flat plate 5. Reference numeral 9 represents a sealing plate 9 which seals the entrance/exit 8 in an openable/closable manner. A passage 3 for communication between the outside and the inside of the object to be thermally sprayed l is formed below the flat plate 5, and the passage 3 communicates with an entrance/exit 8 and a communication opening 4 leading to the outside. Note that the communication port 4 is provided with a hinged door 7.

被溶射物lの円錐部1bには被溶射物1内の空気Aの排
出時に操作するための排気バルブIOが、円筒部1aに
は被溶射物1内に不活性ガスGを注入するときに操作す
るための操作バルブ11が設けられており、具体的には
、該両パルプ10.11は被溶射物lの開口部12.1
3に連通して取りつけられた排気管14.不活性ガス注
入管15に付設されている。
The conical part 1b of the object to be thermally sprayed 1 has an exhaust valve IO for discharging the air A from the object to be thermally sprayed 1, and the cylindrical part 1a has an exhaust valve IO for injecting inert gas G into the object to be thermally sprayed 1. An operating valve 11 is provided for operating, in particular the two pulps 10.11 are connected to the opening 12.1 of the object l to be sprayed.
Exhaust pipe 14 connected to and attached to 3. It is attached to the inert gas injection pipe 15.

なお、両開口部12.13は、圧力容器としての被溶射
物1の各種部品取りつけ孔、マンホール等をそのまま使
用したものである。
The openings 12 and 13 are holes for attaching various parts, manholes, etc. of the object 1 to be thermally sprayed as a pressure vessel.

16は被溶射物1内に配置されると共に平面Fi、5上
を走行可能に設けられたアーク溶線方式等の自動溶射装
置であって、該溶射装置16は溶射ガン17゜コンプレ
ッサー18.アルゴンや窒素等の不活性ガスの吹きつけ
用としての不活性ガスのタンク19等を備えている。溶
射ガン17は横方向ガイド20に沿って水平方向に、竪
方向ガイド21に沿って上下方向に移動自在とされてい
る。
Reference numeral 16 denotes an automatic thermal spraying device, such as an arc melting wire method, which is disposed within the object to be thermally sprayed 1 and is movable on a plane Fi, 5. The thermal spraying device 16 includes a thermal spray gun 17, a compressor 18. An inert gas tank 19 for blowing inert gas such as argon or nitrogen is provided. The thermal spray gun 17 is movable horizontally along a lateral guide 20 and vertically along a vertical guide 21.

溶射を行うには、図外のアルゴンや窒素等の不活性ガス
を供給する供給装置から注入管15.操作バルブ11.
開口部13を介して不活性ガスGを被溶射物lの内部空
間に供給・注入し、同時に、開口部12.排気バルブ1
0.排気管14を介して内部の空気を外部へ排出する。
To perform thermal spraying, the injection pipe 15. Operation valve 11.
Inert gas G is supplied and injected into the internal space of the object to be sprayed l through the opening 13, and at the same time, the inert gas G is supplied and injected into the internal space of the object to be sprayed l through the opening 12. Exhaust valve 1
0. Internal air is exhausted to the outside via the exhaust pipe 14.

被溶射物l内部の空気を不活性ガスGに置き変えたうえ
、不活性ガスGの圧力を、大気圧を僅かに越える程度つ
まりゲージ圧力にテ+0.1 kg (/cj 〜0.
2 kg r /cd(7)I回内ニ設定保持し、不活
性ガスGの飽和状態とした後、このような不活性ガスG
の雰囲気内で、溶射ガン17から金属等の溶融粒子を吹
きつけ電気溶線式溶射を行うことにより被溶射物lの内
面22に酸化物含有率及び気孔率が極めて低い皮膜を形
成することが出来る。溶射ガン17と内面22との距M
Wは50〜250−に設定して行うのが好ましい。
The air inside the object to be thermally sprayed L was replaced with inert gas G, and the pressure of inert gas G was raised to slightly above atmospheric pressure, that is, gauge pressure +0.1 kg (/cj ~0.
2 kg r / cd (7) I After holding the pronation setting and bringing it into a saturated state with inert gas G, such an inert gas G
By performing electric wire thermal spraying by spraying molten particles of metal or the like from a thermal spray gun 17 in an atmosphere of . Distance M between thermal spray gun 17 and inner surface 22
It is preferable to set W to 50-250.

他の実施例として、第4図に示すように、箱状等の構造
物25によって密封室23を形成し、該密封室23の内
部を、上記実施例と同様にしで、+0.1kg f /
cj〜0.2 kg r / cd (ゲージ圧力)の
範囲内における所定圧力の不活性ガスGの雰囲気とした
うえ、溶射装置16により被溶射物24の表面を溶射す
るようにしてもよい0図例では、被溶射物24である円
柱状のシャフトをローラ28,28で支持しつつ同時に
該被溶射物24を回転させながらその表面に溶射する場
合を示している。なお、排気バルブlOは構造物25の
天井壁26に、操作バルブ11は側壁27に付設されて
いる。29ば密封構造の出入り周界である。
As another example, as shown in FIG. 4, a sealed chamber 23 is formed by a box-shaped structure 25, and the inside of the sealed chamber 23 is made similar to the above example, and +0.1 kg f /
The surface of the object to be thermally sprayed 24 may be thermally sprayed by the thermal spraying device 16 in an atmosphere of inert gas G at a predetermined pressure within the range of cj to 0.2 kg r/cd (gauge pressure). In the example, a case is shown in which a cylindrical shaft, which is the object to be thermally sprayed, is supported by rollers 28, 28, and at the same time, the object to be thermally sprayed 24 is rotated and the surface thereof is thermally sprayed. Note that the exhaust valve IO is attached to the ceiling wall 26 of the structure 25, and the operation valve 11 is attached to the side wall 27. 29 is the area around the entrance and exit of the sealed structure.

図示省略するが、自動溶射装置16に代えて、溶射口ボ
ットにて行わせるようにするも好ましい。
Although not shown, it is preferable to use a thermal spray port bot instead of the automatic thermal spraying device 16.

勿論、手持式溶射ガン17を持って作業を行うようにし
てもよい。
Of course, it is also possible to carry out the work while holding the hand-held thermal spray gun 17.

第5図乃至第8図に於いて、種々の条件下で溶射実験を
行って形成した溶射皮膜の顕微鏡写真を示しく拡大率1
00倍)、図中、Cは形成された溶射皮膜、Sはその溶
射皮膜層、Bは被溶射物である母材の表面層である。
Figures 5 to 8 show micrographs of thermal spray coatings formed by thermal spraying experiments under various conditions.
In the figure, C is the formed sprayed coating, S is the sprayed coating layer, and B is the surface layer of the base material that is the material to be sprayed.

第5図に於いて、圧縮空気を用いて一般大気中で行った
場合の母材の表面に形成された溶射皮膜Cを示し、該溶
射皮膜Cには多数の気孔が生じている。
FIG. 5 shows a thermally sprayed coating C formed on the surface of a base material when the spraying was carried out in the general atmosphere using compressed air, and the thermally sprayed coating C has a large number of pores.

第6図(1)乃至第6図(V)に於いて、アルゴンを用
いて一般大気中で行った場合であり、圧縮空気で吹きつ
けた場合(第5図の場合)よりも、単位面積当たりの気
孔の数量つまり分布率はかなり小さいが、孔径の大きい
気孔が存在している。
In Figure 6 (1) to Figure 6 (V), this is the case where argon was used in the general atmosphere, and the unit area was larger than when blowing with compressed air (in the case of Figure 5). Although the number of pores per unit, that is, the distribution ratio, is quite small, there are pores with large pore diameters.

なお、第1表のような条件にて溶射を行った0表中のD
は液体アルゴンを、Eは高圧容器によるガスアルゴンを
夫々示している。
In addition, D in Table 0 when thermal spraying was carried out under the conditions as shown in Table 1.
indicates liquid argon, and E indicates gaseous argon from a high-pressure vessel.

第1表 溶射条件 但し、 ガス溶線式による。Table 1 Thermal spray conditions however, By gas melt wire method.

第7図(1)乃至第7図(IV)に於いて、アルゴンを
用い一般大気中で行った点については、第6図の場合と
同条件であるが、溶射距離を変更した点で相違し、この
場合、溶射距離が大きくなるに伴い気孔率も大きくなっ
ている。
In Fig. 7 (1) to Fig. 7 (IV), the conditions were the same as in Fig. 6 for the points where argon was used in the general atmosphere, but the difference was that the spraying distance was changed. However, in this case, as the spraying distance increases, the porosity also increases.

第8図(1)乃至第8図(IV)に於いては、前記1図
又は第4図の実施例による方法にて行った場合を示して
いる。その内、第8図(i)及び第8図(■)は電気溶
線式にて、第8図(!It)及び第8図(IV)はガス
溶線式にて、また、吹き付けにはアルゴンガスを使用し
て行った場合を示している。上記電気溶線式の場合、つ
まり、第8図(1)では気孔は掘めて微細であり、第8
図(■)では気孔の分布率が極めて小さいうえに母材表
面の近傍には橿めて微細な気孔しか存在していない、さ
らに、第8図(m)及び第8図(IV)では、極めて微
細な気孔しか存在せず、しかも分布率は橿めて小さい。
FIGS. 8(1) to 8(IV) show cases in which the method according to the embodiment of FIG. 1 or FIG. 4 is used. Of these, Fig. 8 (i) and Fig. 8 (■) use the electric welding method, Fig. 8 (!It) and Fig. 8 (IV) use the gas welding method, and argon is used for spraying. This shows the case using gas. In the case of the above-mentioned electric welding wire type, that is, in Fig. 8 (1), the pores are dug and minute;
In Figure (■), the distribution ratio of pores is extremely small, and only extremely fine pores exist near the surface of the base material.Furthermore, in Figures 8 (m) and 8 (IV), Only extremely fine pores exist, and the distribution rate is extremely small.

第1図の実施例においては、被溶射物lとして圧力容器
の場合を示したが、これと異なり容器状つまり開口部を
有する建物等の構造物の一部であってもよい。
In the embodiment shown in FIG. 1, a pressure vessel is shown as the object to be thermally sprayed, but unlike this, it may be in the shape of a container, that is, a part of a structure such as a building having an opening.

上記何れの実施例においても、空気を不活性ガスの飽和
状態に置き換えて溶射作業を不活性ガスGの雰囲気中で
行うのでで、金属等の溶融粒子の吹き付は時、溶融粒子
内への酸素や水分等の混入が無く、酸化物含有率及び気
孔率が極めて低い皮膜が形成される。溶射距離を小さく
して行う必要もないので、母材を加熱し過ぎることもな
い。
In any of the above embodiments, the air is replaced with a saturated state of inert gas and the thermal spraying work is carried out in an atmosphere of inert gas G. Therefore, when molten particles such as metal are sprayed, there is a possibility that the inside of the molten particles may A film with extremely low oxide content and porosity is formed without the contamination of oxygen, moisture, etc. Since there is no need to reduce the thermal spraying distance, there is no need to overheat the base material.

第1図の実施例においては、被溶射物1自体を密封室と
して用いるので、不活性ガスGを保持するための密封室
を別に必要としない。また、不活性ガスGは低圧(0,
1〜0.2 kg r / cd :ゲージ圧)である
から被溶射物1は強度を要しない、第4図に示す実施例
に於いては、密封室23内の不活性ガスGの圧力を低圧
の0.1〜0.2 kg f / cd 、(ゲージ圧
)に設定したので、密封室23は強度を要しない。
In the embodiment shown in FIG. 1, since the object to be thermally sprayed 1 itself is used as a sealed chamber, a separate sealed chamber for holding the inert gas G is not required. In addition, the inert gas G is at low pressure (0,
1 to 0.2 kgr/cd (gauge pressure), the material to be sprayed 1 does not require strength. In the embodiment shown in FIG. Since the pressure is set at a low pressure of 0.1 to 0.2 kgf/cd (gauge pressure), the sealed chamber 23 does not require strength.

〔発明の効果] 本発明は、以上説明したように構成されCいるので、以
下に記載されるような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the effects described below.

■ 被溶射物1,24の内面22又は表面に酸化物含有
率及び気孔率が極めて低い皮膜を形成することが出来る
。従って、防錆・防蝕効果があり、耐薬品性が向上する
(2) It is possible to form a film with extremely low oxide content and porosity on the inner surface 22 or surface of the objects 1, 24 to be thermally sprayed. Therefore, it has anti-rust and anti-corrosion effects and improves chemical resistance.

■ 不活性ガスGを保持するための密封室を別に必要と
しない。
■ No separate sealed chamber for holding inert gas G is required.

■ 被溶射物1内及び密封室23内を密封するのに、そ
れらの内部を高圧や高・低真空に保持する必要が無いの
で、被溶射物1及び密封室23における大気とのシール
部は簡易なものでよい、被溶射物1及び密封室23は機
械的強度を要しないので、密封室23を構成するのが大
構造物である場合にも、容易に適用可能である。
■ In order to seal the interior of the thermal spraying object 1 and the sealed chamber 23, there is no need to maintain the interiors at high pressure or high/low vacuum. The thermal spraying object 1 and the sealed chamber 23 may be simple ones and do not require mechanical strength, so the present invention can be easily applied even when the sealed chamber 23 is a large structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面側面図、第2図と
第3図は夫々拡大部分断面図、第4図は他の実施例を示
す断面側面図、第5図乃至第8図は母材表面に形成され
た溶射皮膜の夫々顕微鏡写真である。 l・・・被溶射物、22・・・内面、23・・・密封室
、24・・・被溶射物、A・・・空気、G・・・不活性
ガス。 カンメタエンジニアリング 株式会社 第 図 参A /″ 手続補正書(試) 昭和63年10月15日 1、羽生のJしR 昭和63年 1猶嘲第174799号 2、発明の名称 溶射方法 3、′4正をする者 4、代 人 事件との関係  特許出願人 名  称   カンメタエンジニアリング株式会社曇5
30  電話(06)344−0177番大阪市北区梅
田2丁目5番8号 千代田ビル西別館(全送日 昭和6
3年 9月27日) 6、補正の対象 (1)明細書の図面の簡単な説明の欄。 7、補正の内容 (1)明細書第11頁第181テ〜2斬テ目の「第5図
乃至第8図\1、−ン′
FIG. 1 is a sectional side view showing one embodiment of the present invention, FIGS. 2 and 3 are enlarged partial sectional views, respectively, FIG. 4 is a sectional side view showing another embodiment, and FIGS. The figures are microscopic photographs of the sprayed coatings formed on the surface of the base material. l...Object to be thermally sprayed, 22...Inner surface, 23...Sealed chamber, 24...Object to be thermally sprayed, A...Air, G...Inert gas. Kanmeta Engineering Co., Ltd. Figure Reference A/'' Procedural amendment (trial) October 15, 1988 1, Hanyu's J ShiR 1988 1 No. 174799 2, Name of the invention Thermal spraying method 3,' 4. Person making the correction 4. Relationship with proxy case Patent applicant name: Kanmeta Engineering Co., Ltd. Cloud 5
30 Phone: (06) 344-0177 Chiyoda Building West Annex, 2-5-8 Umeda, Kita-ku, Osaka (all dates 1932)
(September 27, 2013) 6. Subject of amendment (1) Field for brief explanation of drawings in the specification. 7. Contents of amendment (1) "Figures 5 to 8\1, -n' in page 11 of the specification, paragraphs 181 to 2,

Claims (2)

【特許請求の範囲】[Claims] 1.容器状の被溶射物1自体を密封し、該被溶射物1内
の空気Aを排出すると共に不活性ガスGを容器状の該被
溶射物1内に注入し不活性ガスGの雰囲気中で該被溶射
物lの内面22を溶射することを特徴とする溶射方法。
1. The container-shaped object to be thermally sprayed 1 itself is sealed, the air A in the object to be thermally sprayed 1 is exhausted, and an inert gas G is injected into the container-shaped object to be thermally sprayed 1 in an atmosphere of inert gas G. A thermal spraying method characterized in that the inner surface 22 of the object l to be thermally sprayed is thermally sprayed.
2.密封室23内に不活性ガスGを注入すると共に該密
封室23内の空気Aを排除して該密封室23内を大気圧
を僅かに越える所定圧力に保持し、該密封室23内の不
活性ガスGの雰囲気中で該密封室23内に置かれた被溶
射物24の溶射をおこなうことを特徴とする溶射方法。
2. Inert gas G is injected into the sealed chamber 23 and air A is removed from the sealed chamber 23 to maintain the sealed chamber 23 at a predetermined pressure slightly exceeding atmospheric pressure. A thermal spraying method characterized in that a thermal spraying target 24 placed in the sealed chamber 23 is thermally sprayed in an atmosphere of active gas G.
JP63174799A 1988-07-13 1988-07-13 Thermal spraying method Pending JPH0225558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174799A JPH0225558A (en) 1988-07-13 1988-07-13 Thermal spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174799A JPH0225558A (en) 1988-07-13 1988-07-13 Thermal spraying method

Publications (1)

Publication Number Publication Date
JPH0225558A true JPH0225558A (en) 1990-01-29

Family

ID=15984871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174799A Pending JPH0225558A (en) 1988-07-13 1988-07-13 Thermal spraying method

Country Status (1)

Country Link
JP (1) JPH0225558A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489520A1 (en) * 1990-11-21 1992-06-10 Sermatech International Inc. Chamber for applying a thermal spray coating and method of using the same
FR2675821A1 (en) * 1991-04-26 1992-10-30 Pechiney Recherche METHOD FOR PREPARING REFERENCE SAMPLES FOR SPECTROGRAPHIC ANALYSIS.
US5456951A (en) * 1993-12-09 1995-10-10 Sermatech International, Inc. Thermal spray coating chamber and method of using same
US6350798B1 (en) * 1997-06-20 2002-02-26 Bayer Aktiengesellschaft Use of saccharin for stabilizing thermoplastic, aromatic polycarbonates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951860A (en) * 1982-09-17 1984-03-26 田辺製薬株式会社 Bag for infusion liquid and production thereof
JPS6315343A (en) * 1986-07-07 1988-01-22 Fujitsu Ltd Damping circuit for log data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951860A (en) * 1982-09-17 1984-03-26 田辺製薬株式会社 Bag for infusion liquid and production thereof
JPS6315343A (en) * 1986-07-07 1988-01-22 Fujitsu Ltd Damping circuit for log data

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489520A1 (en) * 1990-11-21 1992-06-10 Sermatech International Inc. Chamber for applying a thermal spray coating and method of using the same
US5389407A (en) * 1990-11-21 1995-02-14 Sermatech International, Inc. Thermal spraying coating method
FR2675821A1 (en) * 1991-04-26 1992-10-30 Pechiney Recherche METHOD FOR PREPARING REFERENCE SAMPLES FOR SPECTROGRAPHIC ANALYSIS.
US5456951A (en) * 1993-12-09 1995-10-10 Sermatech International, Inc. Thermal spray coating chamber and method of using same
US6350798B1 (en) * 1997-06-20 2002-02-26 Bayer Aktiengesellschaft Use of saccharin for stabilizing thermoplastic, aromatic polycarbonates

Similar Documents

Publication Publication Date Title
JP2752588B2 (en) Apparatus and method for coating molten metal surface with coating medium
JPH0534425B2 (en)
JPH08333683A (en) Bubbler for solid organic compound only
JPH0225558A (en) Thermal spraying method
US3840155A (en) Nuclear fuel handling powder container
EP0528153A1 (en) Multi-layer fluid curtains for furnace openings
CA1121156A (en) Sliding nozzle apparatus for blowing powdery treating agent
JPS60186373A (en) Water jet machining method and system therefor
JPS6399000A (en) Plasma jet flame-coater
CN1572412A (en) Shielding gas apparatus used in laser machining
JPH028357A (en) Thermal spraying method
CA2055897A1 (en) Chamber for applying a thermal spray coating and method of using the same
JP2689200B2 (en) Method and apparatus for modifying thermal spray coating of metal
JPS56165573A (en) Electron beam welding method
CN113144474B (en) Intelligent production line for fire extinguisher
JPH042781A (en) Aerosol producing equipment
JPH0341823Y2 (en)
JP3881895B2 (en) Plasma spraying equipment
JPS62167880A (en) Apparatus for coating inside and outside of pipe
JPS60227856A (en) Low-pressure thermal spray device
JPH06320246A (en) Spraying device of powder die release agent
JPH0813130A (en) Vessel for dry process coating device
JPH04165060A (en) Corrosion preventive method for underwater structure and underwater thermal spraying device
JPH0275367A (en) Spray container
JPH0192310A (en) Opening/closing device in molten metal vessel