JPH02254709A - Manufacture of magnetic composite material of excellent magnetic characteristics - Google Patents

Manufacture of magnetic composite material of excellent magnetic characteristics

Info

Publication number
JPH02254709A
JPH02254709A JP1077254A JP7725489A JPH02254709A JP H02254709 A JPH02254709 A JP H02254709A JP 1077254 A JP1077254 A JP 1077254A JP 7725489 A JP7725489 A JP 7725489A JP H02254709 A JPH02254709 A JP H02254709A
Authority
JP
Japan
Prior art keywords
magnetic
composite material
powder
magnetic composite
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1077254A
Other languages
Japanese (ja)
Inventor
Mutsumi Abe
睦 安倍
Takashi Motoda
元田 高司
Kenichi Aota
健一 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1077254A priority Critical patent/JPH02254709A/en
Publication of JPH02254709A publication Critical patent/JPH02254709A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To make it possible to increase the specific resistance of the title magnetic composite material while necessary permeability is being secured by a method wherein specific spherical magnetic powder and solid-state particulate resin binder are dry-mixed, they are filled in a die, a direct powder-molding is conducted in the cold work applying specific surface pressure of 2t/cm<2>. CONSTITUTION:Spherical magnetic powder, having the ratio of building volume to lot of 55 to 95% against the entire magnetic composite material and average grain diameter of 50 to 300mum, and a resin binder are dry-mixed, and after the mixed powder has been filled in a die, a direct powder molding operation is conducted in the cold work applying the surface pressure higher than 2t/cm<2>, and the mixed powder is compacted. As a result, a magnetic composite material, with which a large-sized magnetic composite material tabular plate body, having a permeability (mu) of 50 or higher, specific resistance of 0.001cm or higher, tensile strength of 2kg/cm<2> or higher and area of 250cm<2> or wider, is formed, can be obtained. As a result, specific resistance can be increased while necessary permeability is being secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁性鉄粉等の磁性粉末を樹脂バインダ
ーを用いて成形した磁性複合材料の製造方法に関し、特
に必要な透磁率を確保しながら、比抵抗を大きくできる
ようにした磁性複合材料に関する.本発明は、永久磁石
方式のMHI(Magantic Resonance
  Imaging)装置において、永久磁石を支持す
るために採用される磁極板に最通であるので、以下、こ
れに適用した場合を例にとって説明する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic composite material made by molding magnetic powder, such as magnetic iron powder, using a resin binder, and in particular, to a method for manufacturing a magnetic composite material that secures the necessary magnetic permeability. However, it also relates to magnetic composite materials that can increase resistivity. The present invention is a permanent magnet type MHI (Magantic Resonance
Since this method is most commonly used in magnetic pole plates used to support permanent magnets in imaging devices, the case where it is applied to this will be described below as an example.

〔従来の技術〕[Conventional technology]

近年、人体の断層像を映像により得るようにした画像鎗
断装置として、核磁気共鳴現象を利用したMRIli置
が急速に背反しつつある。このMHI装置は、X&IC
T装置に比べて、放射線による被ばくが皆無であり、し
かも横断像だけでな(、矢状断像、冠状断像等の任意の
方向の断層像が得られるという特長ををしている。この
ようなMR工装置において静磁場を発生させる手段の一
例として、永久磁石方式が採用されている。
In recent years, MRI systems that utilize nuclear magnetic resonance phenomena are rapidly becoming out of favor as imaging devices that obtain tomographic images of the human body. This MHI device is
Compared to the T device, there is no radiation exposure, and it has the advantage of being able to obtain tomographic images in any direction, such as transverse images (sagittal images, coronal images, etc.). A permanent magnet system is employed as an example of a means for generating a static magnetic field in such MR equipment.

第1図及び第2図は、その永久磁石を利用したMHI装
置の概略構成を示す。図において、MRI装置1は、一
対の矩形板状のヨーク2,2を、人体を挿入できるスペ
ースSを設けて対向させ、該ヨーク2.2同士を四隅に
配設された4本の支柱3で接続支持するとともに、この
ヨーク2.2の対向面内側にそれぞれ永久磁石4を配設
して構成されている。
FIG. 1 and FIG. 2 show the schematic configuration of an MHI device using the permanent magnet. In the figure, the MRI apparatus 1 has a pair of rectangular plate-shaped yokes 2, 2 facing each other with a space S into which a human body can be inserted, and the yokes 2, 2 are connected to four pillars 3 arranged at the four corners. The yoke 2.2 is connected and supported by the yoke 2.2, and permanent magnets 4 are arranged on the inner side of the facing surface of the yoke 2.2.

ここで、上記上、下の永久磁石4は、広範囲にわたって
−様な磁界を発生させるために、大きな面積のものが必
要であり、またその重量を合わせると約1tにもなり、
このような大型で、かつ重量の大きな永久磁石を一体形
成するのは困難であることから、従来、多数のセグメン
ト状磁石を組み合わせて形成するようにしている。とこ
ろが、このような多数の小片からなる永久磁石を敷設す
る場合、各永久磁石片の磁力のばらつき等から磁界が不
均一となり易い問題が生じる。しかも各永久磁石片をヨ
ーク2に固定保持する構造が必要なことから、上記永久
磁石4を、例えば純鉄製の磁極板5で保持するようにし
ている。この磁極板5により、各磁石片の磁力のばらつ
きを吸収して磁界を均一化できるとともに、永久磁石4
を保持できる。
Here, the upper and lower permanent magnets 4 need to have a large area in order to generate a -like magnetic field over a wide range, and their combined weight is about 1 ton.
Since it is difficult to integrally form such a large and heavy permanent magnet, conventionally, a large number of segmented magnets are combined to form one. However, when such a permanent magnet consisting of a large number of small pieces is installed, a problem arises in that the magnetic field tends to be non-uniform due to variations in the magnetic force of each permanent magnet piece. Moreover, since a structure for fixing and holding each permanent magnet piece to the yoke 2 is required, the permanent magnet 4 is held by a magnetic pole plate 5 made of pure iron, for example. This magnetic pole plate 5 can absorb variations in the magnetic force of each magnet piece to make the magnetic field uniform, and the permanent magnet 4
can be held.

ところで、上記磁極板5には、■永久磁石の磁力を減衰
させることな(透過させるために透磁率(p)が高いこ
と、■磁場の変化を鋭敏に検出するために、つまり磁場
線検出カーブがパルス波状に明確に変化し、いわゆるブ
レが生じないようにするために、比抵抗が高いこと等の
特性が要求される。しかしながら、上記従来の純鉄製の
磁極板を採用した場合、透磁率は2000程度と高いも
のの、比抵抗がllXl0−”Qcmと低く、その結果
磁場の変化を鋭敏に検出できず、シャープな断層映像が
得られないという問題点があり、MHI実用化の障害と
なっている。
By the way, the above-mentioned magnetic pole plate 5 has a high magnetic permeability (p) that does not attenuate the magnetic force of the permanent magnet (in order to transmit it), and ■ a magnetic field line detection curve for sensitively detecting changes in the magnetic field. In order to ensure that the current changes clearly in the form of a pulse wave and that so-called blurring does not occur, characteristics such as high specific resistance are required.However, when using the conventional pure iron magnetic pole plates mentioned above, the magnetic permeability Although the resistivity is high at around 2000, the resistivity is low at 11X10-''Qcm, and as a result, changes in the magnetic field cannot be detected sensitively and sharp tomographic images cannot be obtained, which is an obstacle to the practical application of MHI. ing.

本件発明者らは、上記従来の純鉄製の磁極板に替わるも
のとして、磁性鉄粉を樹脂バインダーを用いて成形して
なる磁性複合材料を採用することに着目した。つまり、
この複合材料の磁性鉄粉と樹脂バインダーとの混合量を
適宜選定すれば、透磁率、及び比抵抗の両方を大きくす
ることが可能であると考えられる。そしてこの種の複合
材料を製造する場合、従来から射出成形による方法が一
般的に採用されている。
The inventors of the present invention have focused on the use of a magnetic composite material formed by molding magnetic iron powder with a resin binder as an alternative to the conventional pure iron magnetic pole plate. In other words,
It is considered that by appropriately selecting the mixing amount of the magnetic iron powder and resin binder of this composite material, it is possible to increase both the magnetic permeability and the specific resistance. When manufacturing this type of composite material, an injection molding method has conventionally been generally employed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上記射出成形により上述した磁極板を得る場合
、材料の流動性が第−義的な問題となる。
However, when obtaining the above-mentioned magnetic pole plate by the above-mentioned injection molding, the fluidity of the material becomes a primary problem.

即ち、上記磁極板に要求される特性を満足させるには、
磁性鉄粉の含有率を上げる必要があり、従って、それだ
け樹脂バインダーの含有率を下げなければならない、そ
の結果、樹脂バインダーの含有量を上げて流動性を確保
しなければならない射出成形法は、磁極板の製造方法と
しては実質的に採用することができない、ちなみに、射
出形成では鉄粉の含有量を60%以下にする必要がある
。また、上記射出成形では、混合の際に鉄粉の表面に液
膜が形成されることから、圧縮成形後の鉄粉同士が結合
し難く、その結果透磁率が低下するという問題も生じる
ことが判明し、この点からも射出成形法を採用すること
はできない。
That is, in order to satisfy the characteristics required of the above magnetic pole plate,
In the injection molding method, it is necessary to increase the content of magnetic iron powder, and therefore the content of resin binder must be reduced accordingly.As a result, the content of resin binder must be increased to ensure fluidity. Injection molding, which cannot be practically adopted as a manufacturing method for magnetic pole plates, requires the content of iron powder to be 60% or less. In addition, in the above injection molding, a liquid film is formed on the surface of the iron powder during mixing, which makes it difficult for the iron powder to bond with each other after compression molding, resulting in the problem of lower magnetic permeability. As it turns out, the injection molding method cannot be adopted from this point as well.

ところで、上記磁性複合材料を、例えばMRI装置の磁
極板に採用する場合、この磁極板を可能な限り大型化す
ることにより、磁界の均一性を向上することが求められ
る。即ち、上述のように、小面積の永久磁石を多数貼り
合わせる構造となることから発生する磁界自体の均一性
を高くすることには限界があるので、磁極板によって誤
差を吸収するのであるが、この場合磁極板同士の貼り合
わせ数が少ないほど有利となるからである。従って、磁
極板の大型化、大面積化が要請される。
By the way, when the above-mentioned magnetic composite material is employed, for example, as a magnetic pole plate of an MRI apparatus, it is required to improve the uniformity of the magnetic field by increasing the size of the magnetic pole plate as much as possible. In other words, as mentioned above, there is a limit to increasing the uniformity of the magnetic field itself due to the structure in which many small-area permanent magnets are bonded together, so errors are absorbed by magnetic pole plates. This is because in this case, the fewer the number of magnetic pole plates bonded together, the more advantageous it becomes. Therefore, it is necessary to increase the size and area of the magnetic pole plate.

本発明は、上記従来の状況に鑑みてなされたもので、永
久磁石の磁力を減衰させることなく透過させるために必
要な透磁率を確保しながら、比抵抗を大きくでき、ひい
てはMHI実用化に貢献できる磁極板の製造方法として
好適の、磁性複合材料の製造方法を提供することを目的
としている。
The present invention was made in view of the above-mentioned conventional situation, and it is possible to increase specific resistance while ensuring the magnetic permeability necessary to transmit the magnetic force of a permanent magnet without attenuating it, thereby contributing to the practical application of MHI. It is an object of the present invention to provide a method for manufacturing a magnetic composite material that is suitable as a method for manufacturing a magnetic pole plate.

C問題点を解決するための手段〕 そこで本発明は、磁性複合材料全体に対する容積率が5
5〜95%で、かつ平均粒子径が50〜300μmの球
状磁性粉末と、樹脂バインダーとを乾式混合し、該混合
粉を金型内に充填した後、冷間にて、2t/cm2を越
える面圧の直接粉末成形を行って圧粉化し、透磁率(μ
)が50以上、比抵抗が0.001Ω1以上、引張強度
が2−/■富富士上、かつ面積が250−以上の大型磁
性複合材料板状体を得ることを特徴とする磁性複合材料
の製造方法である。
Means for Solving Problem C] Therefore, the present invention has a volume ratio of 5 to the entire magnetic composite material.
Dry mix spherical magnetic powder with an average particle size of 5 to 95% and an average particle size of 50 to 300 μm and a resin binder, fill the mixed powder in a mold, and then cool it to produce a powder with a particle size of more than 2 t/cm2. Direct powder compaction with surface pressure is performed to compact the powder, and the magnetic permeability (μ
) is 50 or more, specific resistance is 0.001Ω1 or more, tensile strength is 2-/■ Fuji, and area is 250- or more. It's a method.

ここで、本発明における各種の条件を設定した理由につ
いて説明する。
Here, the reasons for setting various conditions in the present invention will be explained.

■ 上記磁性粉末を球状のものとしたのは、磁界を磁場
方向に対して流れ易(するためである。
(2) The magnetic powder is made into a spherical shape so that the magnetic field can easily flow in the direction of the magnetic field.

即ち、例えば上述の磁極板として使用する場合、その構
造上、外部磁界が該磁極板と直角方向に作用することか
ら、偏平状の磁性粉末を採用すると、各磁性粉末の磁化
方向が外部磁界と直交することとなり、いわゆる反磁場
が大きくなるが、球状磁性粉末を採用することにより、
この問題を抑制できる。
For example, when used as the above-mentioned magnetic pole plate, the external magnetic field acts perpendicularly to the magnetic pole plate due to its structure, so if flat magnetic powder is used, the magnetization direction of each magnetic powder will be different from the external magnetic field. They are perpendicular to each other, which increases the so-called demagnetizing field, but by using spherical magnetic powder,
This problem can be suppressed.

■ また、上記磁性粉末の容積%を55〜95としたの
は、55%以下では磁性粉末の絶対量が不足し、所定の
透磁率が得られないからであり、また95%を越えると
ほとんどが磁性粉末だけとなることから成形が困難とな
り、さらに強度が低下して機械加工が困難となるからで
ある。
■ Also, the reason why the volume percent of the magnetic powder is set to 55 to 95 is that if it is less than 55%, the absolute amount of magnetic powder is insufficient and the desired magnetic permeability cannot be obtained, and if it exceeds 95%, it is almost This is because molding becomes difficult because it consists only of magnetic powder, and furthermore, the strength decreases and machining becomes difficult.

■ 上記磁性粉末と樹脂バインダーとの混合に乾式法を
採用したのは、i磁性複合材料全体に対する磁性粉末の
含臂量を上げることができ、上記最大容積率95%を実
現できるからである。また、湿式混合法を採用した場合
、磁性粉粒子の表面に樹脂被膜が形成され、該粒子同士
の結合が困難となり、反磁場が大きくなる。これに対し
て乾式法ては、液体を使用しないことから、圧粉化によ
り磁性粉末同士を結合させることができ、必要な透磁率
を確保できるからである。さらに、乾式混合を採用する
ことによって、磁性粉末の均一分散性を向上でき、透過
する磁力の均一性を向上できるとともに、金型による直
接粉末成形が採用でき、量産ができるからである。
(2) The dry method was adopted for mixing the magnetic powder and the resin binder because it is possible to increase the amount of magnetic powder contained in the entire i-magnetic composite material and achieve the maximum volume ratio of 95%. Furthermore, when a wet mixing method is employed, a resin film is formed on the surface of the magnetic powder particles, making it difficult to bond the particles to each other and increasing the demagnetizing field. On the other hand, since the dry method does not use a liquid, the magnetic powders can be bonded together by compaction, and the necessary magnetic permeability can be ensured. Furthermore, by employing dry mixing, it is possible to improve the uniform dispersibility of the magnetic powder and the uniformity of the transmitted magnetic force, and it is also possible to employ direct powder compaction using a mold, which allows for mass production.

■ また、上記金型に充填した混合粉を面圧2t/aj
以上で直接粉末成形するのは、25〇−以上の大型磁性
複合材料板状体を得るためであり、これにより、例えば
上述したMRIvt直の磁極板に採用する場合の、該磁
極板の大型化、大面積化の要請に応えられるからである
。なお、この場合具体的には、圧縮力の大きい大型プレ
ス機を採用することが考えられる。
■ Also, the surface pressure of the mixed powder filled in the above mold is 2t/aj.
The purpose of direct powder molding in the above process is to obtain a large magnetic composite material plate with a size of 250 mm or more, and this allows for an increase in the size of the magnetic pole plate when it is used, for example, in the magnetic pole plate of the above-mentioned MRIvt. This is because it can meet the demand for larger area. In this case, specifically, it is possible to use a large press machine with a large compressive force.

■ さらに、上記透磁率を50以上、比抵抗を0゜QQ
IQcm以上と規定したのは、上記MHI装置の磁極板
に、本発明の磁性複合材料を採用する際の必要特性を満
足するためである。
■ Furthermore, the above magnetic permeability is 50 or more, and the specific resistance is 0°QQ.
The reason for specifying IQcm or more is to satisfy the necessary characteristics when employing the magnetic composite material of the present invention for the magnetic pole plate of the above-mentioned MHI device.

■ さらにまた、引張強度を2−/■怠以上としたのは
、ある程度の機械加工等に対する強度を考慮したもので
あり、これにより例えばボルト孔を形成したり、ボルト
により取付けたりする際の必要強度を確保できる。
■Furthermore, the reason why the tensile strength is set to 2-/■ or more is to provide strength against a certain degree of machining. Strength can be ensured.

なお、上記樹脂バインダーとして、エポキシ樹脂を採用
することが好ましい、これは強度、磁性粉末との接合性
、あるいは磁気特性を向上できるからである。また、本
発明の磁性複合材料を、例えばMRI1m置の磁極板に
適用する場合、装置のサイズによっては複数のセグメン
ト状磁極板を直接粉末成形により形成し、各磁極板の周
側面同士を当接させて磁極板を形成することになるわけ
であるが、これらの当接させた部分に空隙が生じると磁
界が不均一となり易く、従って、各セグメントの周側面
、角部分に切断、切削による機械加工を施し、R部を除
去することが望ましい。
Note that it is preferable to employ an epoxy resin as the resin binder, since this can improve strength, bondability with magnetic powder, or magnetic properties. In addition, when applying the magnetic composite material of the present invention to magnetic pole plates placed at 1 meter intervals in MRI, for example, depending on the size of the device, a plurality of segmented magnetic pole plates may be formed by direct powder molding, and the circumferential surfaces of each magnetic pole plate may be brought into contact with each other. However, if a gap is created between these abutting parts, the magnetic field tends to become non-uniform.Therefore, the circumferential side and corner parts of each segment are cut or machined by cutting. It is desirable to perform processing and remove the R portion.

〔作用〕[Effect]

本発明に係る磁気特性に優れた磁性複合材料の製造方法
によれば、所定の容積率からなる球状磁性粉末と、樹脂
バインダーとを乾式混合し、該混金粉を金型内に充填し
た後、冷間にて、面圧2t/el1以上の直接粉末成形
を行って圧粉化したので、本発明により製造された磁性
複合材料は、透磁率が50以上、比抵抗が0.001Ω
1以上有しており、透磁率、比抵抗の両方を向上できる
。従うて、例えばMRIl!置の磁極板として使用した
場合は、永久磁石の磁力を減衰させることな(、かつ磁
場の変化を鋭敏に検出することができシャープな断層映
像が得られる。
According to the method for manufacturing a magnetic composite material with excellent magnetic properties according to the present invention, after dry mixing spherical magnetic powder having a predetermined volume ratio and a resin binder, and filling the mixed powder into a mold, The magnetic composite material manufactured by the present invention has a magnetic permeability of 50 or more and a specific resistance of 0.001Ω because it is compacted by direct powder compaction in a cold state with a surface pressure of 2t/el1 or more.
1 or more, and both magnetic permeability and specific resistance can be improved. Accordingly, for example, MRIl! When used as a permanent magnetic pole plate, it does not attenuate the magnetic force of the permanent magnet (and changes in the magnetic field can be detected sensitively, allowing sharp tomographic images to be obtained).

また、本発明の磁性複合材料では、引張強度が2−/−
以上あることから、小片の永久磁石をヨークに保持する
場合は、該複合材料にボルト孔を形成し、ボルトを介し
て上記ヨークに取付けることができる。
Furthermore, the magnetic composite material of the present invention has a tensile strength of 2-/-
Because of the above, when holding a small piece of permanent magnet on a yoke, bolt holes can be formed in the composite material and the permanent magnet can be attached to the yoke via bolts.

さらに、磁性粉末と樹脂バインダーとを乾式混合したの
で、磁性粉末の含有量を95%まで上げることができ、
しかも液体を使用しないから、圧粉化による鉄粉同士を
結合することができる。さらにまた、250−以上の大
型板状体を得ることができるので、上記MRIll置装
磁極板の大型化、大面積化の要請に対応でき、磁界の均
一性を向上できる。
Furthermore, since the magnetic powder and resin binder are dry mixed, the content of magnetic powder can be increased to 95%.
Moreover, since no liquid is used, iron powder can be bonded together by compacting. Furthermore, since a large plate-like body of 250 mm or more can be obtained, it is possible to meet the demands for increasing the size and area of the magnetic pole plate of the MRIll apparatus, and improving the uniformity of the magnetic field.

〔実施例〕〔Example〕

以下、本発明の一実施例による磁性複合材料の製造方法
を説明する。
Hereinafter, a method for manufacturing a magnetic composite material according to an embodiment of the present invention will be described.

まず、平均粒径が50〜300μ−の球状磁性鉄粉と固
体粒子状のエポキシ樹脂粉末とを準備し、この磁性鉄粉
の容積率が磁性複合材料全体の55〜95%の範囲内に
なるように、乾式混合し、混合粉を形成する。
First, spherical magnetic iron powder with an average particle size of 50 to 300 μ- and solid particulate epoxy resin powder are prepared, and the volume fraction of the magnetic iron powder is within the range of 55 to 95% of the entire magnetic composite material. Then, dry mix to form a mixed powder.

次に、上記混合粉を金型内に充填し、これを冷間にて、
大型プレス機械で面圧2t/−以上の直接粉末成形を行
って圧粉化する。ここで、上舵金型の投影面積を250
−未滴にすると、機械加工代が増大し、不経済であると
ともに、磁極板同士の継目箇所が多くなり、均一な磁界
強度分布を得ることが困難になる。
Next, fill the above mixed powder into a mold, cool it,
The powder is compacted by direct powder compaction with a surface pressure of 2 t/- or more using a large press machine. Here, the projected area of the upper rudder mold is 250
- If no droplets are used, machining costs will increase, which is uneconomical, and the number of joints between magnetic pole plates will increase, making it difficult to obtain a uniform magnetic field strength distribution.

そして、上記圧粉化した混合粉を200℃で加熱硬化す
ゐ、これにより、本実施例の磁性複合材料が製造される
Then, the compacted mixed powder was heated and cured at 200° C., thereby producing the magnetic composite material of this example.

本実施例により製造された磁性複合材料は、透磁率が5
0以上、比抵抗が0.0010m以上、引張強度が2 
kr/m”以上で、かり面積が250−以上の大型磁性
複合材料板状体となっている。この板状体を、例えば第
1図及び第2図に示すMRIvi置1の装極板5に適用
する場合は、これをボルトによりヨーク2に固定するこ
とにより、多数の永久磁石片4を保持することとなる。
The magnetic composite material manufactured according to this example has a magnetic permeability of 5
0 or more, specific resistance 0.0010m or more, tensile strength 2
kr/m" or more, and has a surface area of 250 mm or more. This plate is used, for example, as the polar plate 5 of the MRIvi device 1 shown in FIGS. 1 and 2. When applied to the yoke 2, a large number of permanent magnet pieces 4 are held by fixing it to the yoke 2 with bolts.

なお、この永久磁石片4は、必要な面積を有する1枚も
ので構成しても勿論良い。
Incidentally, the permanent magnet piece 4 may of course be composed of a single piece having the necessary area.

ところで、MHI装置1が大型化すると、磁石面積をさ
らに大きくする必要があり、これに応じて毎石片数も増
加する。そしてこのような大面積(多数)の磁石片を支
持する磁極板を、本発明による磁性複合材料によって一
枚ものとして製造するのは困難となる。この場合は、第
3図に示すように、複数の平板6を製造し、これを平面
状に敷詰め、各平板6同士の当接面を機械加工してR部
を除去し、隙間をなくする。また、これらの各平板66
磁石片4の組立性確保のため、間に透磁率の高い純鉄板
7を介在させ石、なお、純鉄板7の他、鋼板を採用する
こともできるが、この場合透磁率が低いので板厚で調整
することとなる。
By the way, when the MHI device 1 becomes larger, it is necessary to further increase the magnet area, and the number of pieces per stone increases accordingly. It is difficult to manufacture a single magnetic pole plate that supports such large-area (many) magnet pieces using the magnetic composite material of the present invention. In this case, as shown in Fig. 3, a plurality of flat plates 6 are manufactured, laid out in a flat shape, and the abutting surfaces of the flat plates 6 are machined to remove the rounded portions and eliminate gaps. do. In addition, each of these flat plates 66
In order to ensure ease of assembling the magnet pieces 4, a pure iron plate 7 with high magnetic permeability is interposed between the stones.In addition to the pure iron plate 7, a steel plate can also be used, but in this case, the plate thickness is low due to the low magnetic permeability. This will have to be adjusted.

このように本実施例の製造方法によれば、球状磁性鉄粉
と、エポキシ樹脂粉とを乾式混合し、該混合粉を金型内
に充填した後、冷間にて、面圧2t/−以上の直接粉末
成形を行つて圧粉化したので、上記MR1M置1の磁極
板5に採用した場合は、′jsm率が50以上あること
から、永久磁石4の磁力を減衰させることなく透過させ
ることができ、しかも比抵抗が0.001 Ω1以上あ
ることから、磁場の変化を鋭敏に検出することができ、
人体の断層像の映像を鮮明に得ることができる。
As described above, according to the manufacturing method of this example, spherical magnetic iron powder and epoxy resin powder are dry mixed, the mixed powder is filled into a mold, and then the surface pressure is 2t/- in the cold. Since the powder was compacted by the above direct powder compaction, when it is adopted as the magnetic pole plate 5 of the above MR1M 1, since the 'jsm ratio is 50 or more, the magnetic force of the permanent magnet 4 is transmitted without being attenuated. Moreover, since it has a specific resistance of 0.001 Ω1 or more, changes in the magnetic field can be detected sensitively.
A clear tomographic image of the human body can be obtained.

また、引張強度が2 kg/m”以上であるから、上述
の機械加工が可能であり、またこれをヨークにボルト締
め固定でき、小片の永久磁石を十分保持することができ
、その結果MRIvt置の実用化に大きく貢献できる。
In addition, since the tensile strength is 2 kg/m" or more, the above-mentioned machining is possible, and this can be bolted and fixed to the yoke, and the small piece of permanent magnet can be held sufficiently. As a result, the MRIvt It can greatly contribute to the practical application of

さらに、25〇−以上の大型板杖の磁極板を得ることが
できるので、MHI装置の多数の永久磁石片4を1枚の
磁極板5で、又は小数の磁極板6によって支持でき、磁
極板同士の継目部分が少なくなり、それだけ磁界の均一
性を向上できる。
Furthermore, since it is possible to obtain a large magnetic pole plate of 250 mm or more, a large number of permanent magnet pieces 4 of the MHI device can be supported by one magnetic pole plate 5 or by a small number of magnetic pole plates 6. The number of joints between them is reduced, and the uniformity of the magnetic field can be improved accordingly.

さらにまた、磁性鉄粉とエポキシ樹脂粉との混合に乾式
方法を採用したので、該鉄粉の含有量を95%まで上げ
ることができ、しかも液体を使用しないから、鉄粉同士
を結合させることができる。
Furthermore, since we adopted a dry method for mixing magnetic iron powder and epoxy resin powder, the content of the iron powder can be increased to 95%, and since no liquid is used, it is possible to bond the iron powder together. I can do it.

表は本発明の効果を確認するために行った実験結果であ
る。
The table shows the results of experiments conducted to confirm the effects of the present invention.

この実験は、上記実施例の製造方法において、磁性複合
材料全体に対する磁性鉄粉の容積率を50〜95%の範
囲で変化させ、さらに金型による成形圧力を2〜8t/
−の範囲で変化させて8個の磁極板を製作し、この各磁
極板の最大透磁率、比抵抗、引張強度及び締め付はトル
クを測定して行った。なお、本実験に採用した金型の投
影面積は1800−である。
In this experiment, the volume ratio of magnetic iron powder to the entire magnetic composite material was varied in the range of 50 to 95% in the manufacturing method of the above example, and the molding pressure by the mold was further increased from 2 to 8 t/min.
Eight magnetic pole plates were manufactured by changing the magnetic pole plates in the range of -, and the maximum magnetic permeability, specific resistance, tensile strength, and tightening of each magnetic pole plate were determined by measuring the torque. Note that the projected area of the mold employed in this experiment was 1800-.

表からも明らかなように、いずれの場合も、引張強さは
4.2〜7.5 b/ m” 、締め付はトルクは2.
4〜4.5−・−と満足できる値が得られている。
As is clear from the table, in each case, the tensile strength was 4.2 to 7.5 b/m'' and the tightening torque was 2.
A satisfactory value of 4 to 4.5-.- is obtained.

しかし、磁性鉄粉を50vo 1%含有させた場合は(
第111iI・発明外)、鉄粉の絶対量が少ないことか
ら、比抵抗は10と高いものの、透磁率は30と低くな
っている。また、成形圧力が2t/−未満の場合は(第
5欄)、比抵抗は10と高いものの、透磁率は20と低
くなっており、これは形成圧力が低いことから鉄粉同士
が結合していないためと考えられる。これに対して、磁
性鉄粉のνo1%が60〜95%、成形圧力が4t/−
以上の場合は(第2〜4欄、第6〜8@・発明例)、い
ずれも透磁率は50〜200 、比抵抗&!1.0 =
 5 x 10−”ト満足テ* ル値が得られているこ
とがわかる。この結果、本実施例の磁性複合材料を採用
することにより、所定の透磁率を確保し、かつ比抵抗を
向上できることがわかる。
However, when 50vo 1% of magnetic iron powder is contained (
111iI, outside the invention), the absolute amount of iron powder is small, so although the specific resistance is high at 10, the magnetic permeability is low at 30. In addition, when the forming pressure is less than 2t/- (column 5), the specific resistance is high at 10, but the magnetic permeability is low at 20. This is because the iron powder is bonded together due to the low forming pressure. This is thought to be due to the fact that the On the other hand, the νo1% of magnetic iron powder is 60 to 95%, and the molding pressure is 4t/-
In the above cases (columns 2 to 4, 6 to 8 @ invention examples), the magnetic permeability is 50 to 200, the specific resistance &! 1.0 =
It can be seen that a satisfactory TEL value of 5 x 10-" was obtained. As a result, by employing the magnetic composite material of this example, it is possible to secure a predetermined magnetic permeability and improve specific resistance. I understand.

なお、上記実施例では、MHI装置用磁極板を例にとっ
て説明したが、本発明の磁性複合材料の適用範囲はこの
磁極板に限定されるものではなく、要は高透磁率、かつ
高比抵抗を必要とする磁性部材であればいずれにも通用
できる。
In the above embodiments, the magnetic pole plate for an MHI device was used as an example, but the scope of application of the magnetic composite material of the present invention is not limited to this magnetic pole plate. Any magnetic member that requires this can be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る磁気特性に優れた磁性複合材
料の製造方法によれば、磁性複合材料全体に対して55
〜95νOX%含み、かつ平均粒子径が50〜300μ
園の球状磁性粉末と、樹脂バインダーとを乾式混合し、
該混合粉を金型内に充填した後、冷間にて、2t/cm
2を越える面圧の直接粉末成形を行って圧粉化したので
、該磁性複合材料の透磁率を50以上、比抵抗を0.0
01Ωcm以上、引張強度を2 kg/ms”以上とす
ることができるとともに、25〇−以上の大型磁性複合
材料板状体を得ることができ、必要な透磁率を確保しな
がら、比抵抗を大きくできる効果があるとともに、大型
化、大面積化に対応できる効果がある。
As described above, according to the method for producing a magnetic composite material with excellent magnetic properties according to the present invention, the entire magnetic composite material has a
Contains ~95νOX% and has an average particle size of 50~300μ
Dry mix Sono's spherical magnetic powder and resin binder,
After filling the mixed powder into the mold, it is heated to 2t/cm in the cold.
Since the powder was compacted by direct powder compaction with a surface pressure of more than 2, the permeability of the magnetic composite material was 50 or more, and the specific resistance was 0.0.
It is possible to obtain a large magnetic composite material plate with a tensile strength of 0.01 Ωcm or more and a tensile strength of 2 kg/ms or more, and a large specific resistance while ensuring the necessary magnetic permeability. This has the effect of being able to accommodate larger sizes and larger areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁性複合材料が採用される一般的なM
HI装置を示す正面図、第2図はその平面図、第3図は
磁極板の変形例を示す断面側面図である。
Figure 1 shows a typical M to which the magnetic composite material of the present invention is applied.
FIG. 2 is a front view of the HI device, FIG. 2 is a plan view thereof, and FIG. 3 is a sectional side view showing a modification of the magnetic pole plate.

Claims (4)

【特許請求の範囲】[Claims] (1)磁性複合材料全体に対する容積率が55〜95%
で、かつ平均粒子径が50〜300μmの球状磁性粉末
と、固体粒子状の樹脂バインダーとを乾式混合し、該混
合粉を金型内に充填した後、冷間にて、2t/cm^2
を越える面圧の直接粉末成形を行って圧粉化し、透磁率
(μ)が50以上、比抵抗が0.001Ωcm以上、引
張強度が2kg/mm^2以上で、かつ面積が250c
m^2以上の大型磁性複合材料板状体を得ることを特徴
とする磁気特性に優れた磁性複合材料の製造方法。
(1) Volume ratio of the entire magnetic composite material is 55-95%
A spherical magnetic powder with an average particle diameter of 50 to 300 μm and a resin binder in the form of solid particles are dry-mixed, the mixed powder is filled into a mold, and then cooled to 2t/cm^2.
The product is compacted by direct powder compaction with a surface pressure exceeding
A method for producing a magnetic composite material with excellent magnetic properties, characterized by obtaining a large-sized magnetic composite material plate having a diameter of m^2 or more.
(2)上記樹脂バインダーが、エポキシ樹脂であること
を特徴とする特許請求の範囲第1項記載の磁気特性に優
れた磁性複合材料の製造方法。
(2) The method for producing a magnetic composite material with excellent magnetic properties according to claim 1, wherein the resin binder is an epoxy resin.
(3)上記磁性複合材料の磁性粉末同士が実質的に結合
していることを特徴とする特許請求の範囲第1項又は第
2項記載の磁気特性に優れた磁性複合材料の製造方法。
(3) The method for producing a magnetic composite material with excellent magnetic properties as set forth in claim 1 or 2, wherein the magnetic powders of the magnetic composite material are substantially bonded to each other.
(4)上記磁性複合材料がMRI装置用磁極板を構成す
る平板に形成されており、かつ隣接する平板の当接面同
士に隙間が生じないように、各平板の当接面に切断,切
削等の機械加工が施されていることを特徴とする特許請
求の範囲第1項ないし第3項のいずれかに記載の磁気特
性に優れた磁性複合材料の製造方法。
(4) The above-mentioned magnetic composite material is formed into a flat plate constituting a magnetic pole plate for an MRI apparatus, and the contact surface of each flat plate is cut or cut so that there is no gap between the contact surfaces of adjacent flat plates. A method for manufacturing a magnetic composite material having excellent magnetic properties according to any one of claims 1 to 3, characterized in that the material is subjected to a machining process such as the following.
JP1077254A 1989-03-28 1989-03-28 Manufacture of magnetic composite material of excellent magnetic characteristics Pending JPH02254709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077254A JPH02254709A (en) 1989-03-28 1989-03-28 Manufacture of magnetic composite material of excellent magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077254A JPH02254709A (en) 1989-03-28 1989-03-28 Manufacture of magnetic composite material of excellent magnetic characteristics

Publications (1)

Publication Number Publication Date
JPH02254709A true JPH02254709A (en) 1990-10-15

Family

ID=13628722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077254A Pending JPH02254709A (en) 1989-03-28 1989-03-28 Manufacture of magnetic composite material of excellent magnetic characteristics

Country Status (1)

Country Link
JP (1) JPH02254709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661328B2 (en) 2000-04-28 2003-12-09 Matsushita Electric Industrial Co., Ltd. Composite magnetic body, and magnetic element and method of manufacturing the same
JP2007167349A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Mri equipment using high-resistance magnet
JP2007526067A (en) * 2004-03-03 2007-09-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging scanner with booster iron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661328B2 (en) 2000-04-28 2003-12-09 Matsushita Electric Industrial Co., Ltd. Composite magnetic body, and magnetic element and method of manufacturing the same
US6784782B2 (en) 2000-04-28 2004-08-31 Matsushita Electric Industrial Co., Ltd. Composite magnetic body, and magnetic element and method of manufacturing the same
US6888435B2 (en) 2000-04-28 2005-05-03 Matsushita Electric Industrial Co., Ltd. Composite magnetic body, and magnetic element and method of manufacturing the same
US7219416B2 (en) 2000-04-28 2007-05-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a magnetic element
JP2007526067A (en) * 2004-03-03 2007-09-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging scanner with booster iron
JP2007167349A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Mri equipment using high-resistance magnet
JP4665751B2 (en) * 2005-12-22 2011-04-06 株式会社日立製作所 MRI system using high resistance magnet

Similar Documents

Publication Publication Date Title
Wang et al. Wax-bonded NdFeB micromagnets for microelectromechanical systems applications
JPS6359243B2 (en)
US7045092B2 (en) Method for press molding rare earth alloy powder and method for producing sintered object of rare earth alloy
Li et al. High-performance magnetostrictive composites with large particles volume fraction
JPH02254709A (en) Manufacture of magnetic composite material of excellent magnetic characteristics
Liu et al. Preparation and characterization of sodium silicate/epoxy resin composite bonded Nd-Fe-B magnets with high performance
Yang et al. Effect of molding pressure on structure and properties of ring-shaped bonded NdFeB magnet
WO2009096359A1 (en) Heavy concrete
JPH10284314A (en) Magnetic core material
JP2001210510A5 (en)
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
JPH02254703A (en) Magnetic circuit with excellent magnetic characteristics
US20200118742A1 (en) Alignment of magnetic materials during powder deposition or spreading in additive manufacturing
CN1271650C (en) Manufacturing method for permanent magnet and pressing device
JPH056323B2 (en)
JPH0440842B2 (en)
CN106496934B (en) A kind of preparation method of magnetostriction materials
CN106098929A (en) The formula of a kind of high-performance bonding rare earth magnetostriction materials and preparation technology
DE69111700T2 (en) Rare earth permanent magnet, its thermal treatment and magnetic body.
JPH02254702A (en) Magnetic composite material of excellent magnetic characteristics
JPH104023A (en) Manufacture of bond type permanent magnet
JP2952914B2 (en) Manufacturing method of anisotropic bonded magnet
JPH1055914A (en) Rare earth element sintered magnet
JPH10340809A (en) Magnetic circuit
CN108682735B (en) Device and method for forming giant magnetostrictive composite material