JPH02254704A - Magnetizing device for permanent magnet - Google Patents

Magnetizing device for permanent magnet

Info

Publication number
JPH02254704A
JPH02254704A JP7726389A JP7726389A JPH02254704A JP H02254704 A JPH02254704 A JP H02254704A JP 7726389 A JP7726389 A JP 7726389A JP 7726389 A JP7726389 A JP 7726389A JP H02254704 A JPH02254704 A JP H02254704A
Authority
JP
Japan
Prior art keywords
permanent magnet
yoke
magnetic flux
coil
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7726389A
Other languages
Japanese (ja)
Inventor
Ikuo Hashiya
橋谷 郁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7726389A priority Critical patent/JPH02254704A/en
Publication of JPH02254704A publication Critical patent/JPH02254704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To reduce leakage magnetic flux and to make it possible to conduct a magnetizing operation efficiently and more completely by a method wherein a low permeability member is inserted into the gap between the coil in a groove and the surface of a yoke. CONSTITUTION:Four magnetic poles 2 and 3 are formed on a yoke 4, coils 6 are passed in series through the groove 7 located between respective magnet poles, and a permanent magnet 8 is press into the gap G. Accordingly, when a low permeability member (permanent magnet 8) is viewed from the yoke 1, magnetic flux is in a state wherein it is hardly passed through, and as a result, the magnetic flux generated by the coil passes through the material to be magnetized from the surface of the yoke 1 without leaking, and a magnetizing operation is conducted through a material to be magnetized M. As a result, the leakage of magnetic flux is prevented, the generated magnetic flux is effectively used for magnetization without leakage, and the efficiency of magnetization can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はモータ、ステッピングモータそのほか等の電磁
装置に用いられる永久磁石の着磁装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetizing device for permanent magnets used in electromagnetic devices such as motors, stepping motors, and the like.

〔従来の技術〕[Conventional technology]

従来の着磁装置は、第3図乃至第6図に4極着磁を例と
して示したものであり、略円形のヨーク1.1間に被着
磁素材Mを対向して配置し、ヨーク1の磁極2,3間の
溝7にコイル6を配設したものである。コイル6に通電
する励磁電流により発生した磁束φが被着磁素材Mを通
過することにより着磁がなされる。
A conventional magnetizing device is shown in FIGS. 3 to 6 as an example of four-pole magnetization, in which magnetized materials M are placed facing each other between substantially circular yokes 1.1, and the yoke A coil 6 is disposed in a groove 7 between the magnetic poles 2 and 3 of the magnetic pole. The magnetic flux φ generated by the excitation current flowing through the coil 6 passes through the magnetized material M, thereby causing magnetization.

そして着磁を効率的に実施する上で、磁束φを漏洩させ
ることなくすべて被着磁素材Mを通過させるため被着磁
素材Mと磁極2,3の表面とは可能な限り接近させるこ
とが一般に好ましい。
In order to efficiently carry out magnetization, the material M to be magnetized and the surfaces of the magnetic poles 2 and 3 should be brought as close as possible to each other in order to allow all of the magnetic flux φ to pass through the material M to be magnetized without leaking. Generally preferred.

そのためにはコイル6がヨーク1の表面から突出すると
上述の接近が困難となる。
For this purpose, if the coil 6 protrudes from the surface of the yoke 1, the above-mentioned approach becomes difficult.

ところが溝7の加工ばらつき、コイル6の仕上がり高さ
のばらつきがさけられないので、溝7の深さはコイル6
の仕上がり高さより余裕をもって加工されるのが通例で
ある。
However, since variations in the processing of the groove 7 and variations in the finished height of the coil 6 cannot be avoided, the depth of the groove 7 is
It is customary to process the material with a margin greater than the finished height of the material.

前述のように加工されると、第5図の寸法Aだけコイル
6が沈み、空間Gが形成され、コイル6に励磁電流を通
電すると、第6図に示す様になる即ち、コイル6により
発生する磁束は、被着磁素材Mを通過する磁束φ1のほ
か、磁極2.3間の溝7中の空間Gを直接通過する漏洩
磁束φ2が生じる。この漏洩磁束φ2は被着磁素材Mを
全く通過しないから着磁効率が低下するばかりでな(、
完全な着磁を行うことが困難になる。
When processed as described above, the coil 6 sinks by the dimension A shown in FIG. 5, forming a space G, and when an excitation current is applied to the coil 6, it becomes as shown in FIG. In addition to the magnetic flux φ1 that passes through the magnetized material M, leakage magnetic flux φ2 that directly passes through the space G in the groove 7 between the magnetic poles 2 and 3 is generated. Since this leakage magnetic flux φ2 does not pass through the magnetized material M at all, the magnetization efficiency only decreases (,
It becomes difficult to perform complete magnetization.

そのため従来は、溝7にコイル6を挿入後、寸法Aの分
だけヨーク1の表面を研削して空間Gを最小にしていた
が、コイル仕上がり高さも各溝毎に異なるので、削り過
ぎてコイル線の絶縁被覆を削り取ることがあり、ヨーク
1とコイル6間の絶縁破壊の原因になっていた。
For this reason, in the past, after inserting the coil 6 into the groove 7, the surface of the yoke 1 was ground by the dimension A to minimize the space G, but since the finished height of the coil also differs for each groove, the coil was ground too much. The insulation coating of the wire may be scraped off, causing dielectric breakdown between the yoke 1 and the coil 6.

〔発明が解決しようとする課題〕 本発明は上記従来の事情に着目し、各部の加工に高い精
度を要求することなく漏洩磁束を減少して効率的により
完全な着磁を行える着磁装置を提供することにある。
[Problems to be Solved by the Invention] The present invention focuses on the above-mentioned conventional circumstances, and provides a magnetizing device that can reduce leakage magnetic flux and efficiently perform more complete magnetization without requiring high accuracy in processing each part. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、溝の中のコイルとヨーク表面との空間に、低
透磁率部材を挿入してなることを特徴とする。
The present invention is characterized in that a low magnetic permeability member is inserted into the space between the coil in the groove and the yoke surface.

また、低透磁率部材を超伝導体としてなることを特徴と
する。
Further, it is characterized in that the low magnetic permeability member is a superconductor.

また、低透磁率部材を、隣接する磁極の極性と同一とし
た永久磁石を挿入してなることを特徴とする。
Further, the low magnetic permeability member is characterized by inserting a permanent magnet having the same polarity as the adjacent magnetic pole.

また、永久磁石を磁極間の溝に圧入してなることを特徴
とする。
It is also characterized in that a permanent magnet is press-fitted into the groove between the magnetic poles.

〔作用〕[Effect]

本発明はコイルとヨークの表面との間の空間に、低透磁
率部材を挿入してなるものであり、ヨークから低透磁率
部材をみると磁束が通り難い状態となり、結局コイルに
より発生した磁束は漏洩することなくヨーク表面から被
着磁素材を通過して着磁作用を行う。
The present invention is made by inserting a low magnetic permeability member into the space between the coil and the surface of the yoke, and when looking at the low magnetic permeability member from the yoke, it becomes difficult for magnetic flux to pass through, and the magnetic flux generated by the coil eventually disappears. passes through the magnetized material from the yoke surface without leaking and performs the magnetizing action.

また、超伝導体ではメスナー効果により完全に磁束が通
らない状態となるので、全く漏洩磁束は生じない。
Furthermore, in a superconductor, magnetic flux is completely prevented from passing through due to the Messner effect, so no leakage magnetic flux occurs at all.

また、永久磁石を磁極間に挿入しているので漏洩磁束は
ほぼ生じることはない。
Furthermore, since a permanent magnet is inserted between the magnetic poles, leakage magnetic flux is almost never generated.

また、永久磁石を磁極間の溝に圧入しているので、溝が
永久磁石により閉鎖され、永久磁石とともにコイルがヨ
ークに保持される。
Furthermore, since the permanent magnet is press-fitted into the groove between the magnetic poles, the groove is closed by the permanent magnet, and the coil and the permanent magnet are held in the yoke.

〔実施例〕〔Example〕

第1図乃至第2図は本発明の実施例を示しており、第1
図のヨーク1に4つの磁極2.3を形成し、各磁極間の
溝7に直列にコイル6を通しである。そして溝7のコイ
ル6の上の空間Gに永久磁石8を圧入する。内溝7は有
底に限定されない。
1 and 2 show embodiments of the present invention.
Four magnetic poles 2.3 are formed on the yoke 1 shown in the figure, and a coil 6 is passed in series through the groove 7 between each magnetic pole. Then, the permanent magnet 8 is press-fitted into the space G above the coil 6 in the groove 7. The inner groove 7 is not limited to having a bottom.

この永久磁石8は着磁の度に逆方向の磁界が作用するの
で保持力の高い永久磁石が適している。
Since the permanent magnet 8 is subjected to a magnetic field in the opposite direction every time it is magnetized, a permanent magnet with a high coercive force is suitable.

この永久磁石8の磁束φ3は磁極3を通って被着硼素材
Mに向かうことにより、着磁を助勢して着磁効率を向上
させる。
The magnetic flux φ3 of the permanent magnet 8 passes through the magnetic pole 3 toward the boron material M to be adhered, thereby assisting magnetization and improving the magnetization efficiency.

圧入作業に当たっては、ヨーク1の表面を基準にして永
久磁石を圧入することにより、永久磁石8の表面と、ヨ
ーク10表面とは容易に一致させることができる。
In the press-fitting operation, by press-fitting the permanent magnet with the surface of the yoke 1 as a reference, the surface of the permanent magnet 8 and the surface of the yoke 10 can be easily matched.

そのためヨーク1の表面に被着磁素材Mを極めて接近さ
せられるので、−層着磁効率が向上するまたヨーク1に
、圧入により保持される永久磁石8とともにコイル6も
保持され、励磁電流によりコイル線に作用する電磁反発
力があワてもコイル6が溝7から脱出することもない。
Therefore, since the magnetized material M can be brought very close to the surface of the yoke 1, the -layer magnetization efficiency is improved.The coil 6 is also held in the yoke 1 together with the permanent magnet 8 held by press-fitting, and the coil 6 is held by the excitation current. Even if the electromagnetic repulsive force acting on the wire is strong, the coil 6 will not escape from the groove 7.

尚、着磁作業にあたっては第2図のように、被着磁素材
Mの両面側をヨーク1.1で挟んで着磁を行うと、被着
磁素材Mの表裏間を貫通する磁束φ1により、表裏方向
に一対のN、S極が着磁される。
In the magnetization work, as shown in Figure 2, when magnetizing is performed by sandwiching both sides of the material M to be magnetized between the yokes 1.1, the magnetic flux φ1 penetrating between the front and back sides of the material M to be magnetized causes , a pair of N and S poles are magnetized in the front and back directions.

仮にヨーク1を片方だけにすると、N極側の磁極3を出
た磁束φ1は被着磁素材Mの表面に入り裏に貫通するこ
となく直角に曲がって被着磁素材Mの内部を円板方向に
進み、また直角に曲がって磁極2の方向の表側から磁束
φ1が出て、磁極2に戻る。この場合の被着磁素材Mの
着磁状態は、磁束φ1の出入りのとき通過した部分が一
対のN、S極になる。このようにヨーク1及び被着磁素
材Mの配置は、着磁の態様により上述以外にも種々変更
可能である。
If only one side of the yoke 1 is used, the magnetic flux φ1 coming out of the magnetic pole 3 on the N pole side enters the surface of the magnetized material M, bends at right angles without penetrating the back, and turns the inside of the magnetized material M into a disc. The magnetic flux φ1 comes out from the front side in the direction of the magnetic pole 2 after turning at a right angle and returns to the magnetic pole 2. In this case, the magnetized state of the magnetized material M is such that the portion through which the magnetic flux φ1 enters and exits becomes a pair of N and S poles. In this way, the arrangement of the yoke 1 and the magnetized material M can be changed in various ways other than those described above depending on the magnetization mode.

また第1図゛には溝7に4個の永久磁石8を圧入してい
るが、各々の永久磁石の強さを一様にする他、着磁強さ
を各磁極毎に変化させるときは永久磁石の強さを異なら
せたり、更には一部の永久磁石をとり除(ことも可能で
ある。
Furthermore, in Fig. 1, four permanent magnets 8 are press-fitted into the groove 7, but in addition to making the strength of each permanent magnet uniform, it is necessary to vary the magnetization strength for each magnetic pole. It is also possible to vary the strength of the permanent magnets or even remove some of the permanent magnets.

永久磁石8をヨーク1に取着する別の実施例としては接
着剤、溶接の他、溝の壁の一部を永久磁石側に変形させ
て変形した壁相互間で永久磁石をかしめどめしてもよい
Another example of attaching the permanent magnet 8 to the yoke 1 is by using adhesive or welding, or by deforming a part of the groove wall toward the permanent magnet side and caulking the permanent magnet between the deformed walls. It's okay.

また、図示しないが、溝にセラミック系や金属間化合物
等の超伝導体を挿入してメスナー効果(完全反磁性体)
により漏洩磁束を完全防止できる〔発明の効果〕 本発明は、漏洩磁束を防止して発生した磁束をもれなく
着磁に有効に用いて着磁効率が向上するものである。
Although not shown, superconductors such as ceramics and intermetallic compounds can be inserted into the grooves to create the Messner effect (completely diamagnetic material).
[Effects of the Invention] The present invention improves magnetization efficiency by effectively using all the magnetic flux generated by preventing leakage magnetic flux for magnetization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第2図は本発明の実施例を示し、第1図は正
面図、第2図は第1図のa−a位置での一部断面した拡
大図である。 第3図乃至第6図は従来例を示し、第3図は正面図、第
4図は第3図のa−a位置での一部断面した拡大図、第
5図は第4図の一部を拡大した拡大図、第6図は第5図
の状態における磁束の状態を示す拡大図。 1:ヨーク、2,3,4,5:M!極、6:コイル、7
=溝、8:永久磁石、φ、φ1.φ2 :磁束、Φ2:
漏洩磁束、G:空間、M:被着磁素材筒1@ δ 第3図 第4図 fs5図 第2図 第6図
1 and 2 show an embodiment of the present invention, in which FIG. 1 is a front view and FIG. 2 is an enlarged partially sectional view taken along line aa in FIG. 1. 3 to 6 show conventional examples, FIG. 3 is a front view, FIG. 4 is an enlarged partially sectional view taken along the line a-a in FIG. 3, and FIG. FIG. 6 is an enlarged view showing the state of magnetic flux in the state of FIG. 5; 1: York, 2, 3, 4, 5: M! Pole, 6: Coil, 7
= groove, 8: permanent magnet, φ, φ1. φ2: magnetic flux, φ2:
Leakage magnetic flux, G: Space, M: Magnetized material tube 1 @ δ Figure 3 Figure 4 fs5 Figure 2 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)複数の磁極を持つヨークと、磁極間の溝に配設し
たコイルとからなり、ヨークの磁極面に対向して配置し
た被着磁素材を、コイルの励磁電流による磁束で着磁す
る永久磁石の着磁装置において、溝の中のコイルとヨー
ク表面との空間に、低透磁率部材を挿入してなることを
特徴とする永久磁石の着磁装置。
(1) Consisting of a yoke with multiple magnetic poles and a coil placed in the groove between the magnetic poles, the magnetized material placed opposite the magnetic pole surface of the yoke is magnetized by magnetic flux generated by the coil's excitation current. A magnetizing device for a permanent magnet, characterized in that a low magnetic permeability member is inserted into a space between a coil in a groove and a yoke surface.
(2)低透磁率部材を超伝導体としてなることを特徴と
する特許請求の範囲第1項記載の永久磁石の着磁装置。
(2) A permanent magnet magnetizing device according to claim 1, wherein the low magnetic permeability member is a superconductor.
(3)低透磁率部材を、隣接する磁極の極性と同一とし
た永久磁石を挿入してなることを特徴とする特許請求の
範囲第1項記載の永久磁石の着磁装置。
(3) A permanent magnet magnetizing device according to claim 1, characterized in that a permanent magnet is inserted in which the low magnetic permeability member has the same polarity as the adjacent magnetic poles.
(4)永久磁石を磁極間の溝に圧入してなることを特徴
とする特許請求の範囲第1項または第3項記載の永久磁
石の着磁装置。
(4) A permanent magnet magnetizing device according to claim 1 or 3, characterized in that the permanent magnet is press-fitted into a groove between magnetic poles.
JP7726389A 1989-03-28 1989-03-28 Magnetizing device for permanent magnet Pending JPH02254704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7726389A JPH02254704A (en) 1989-03-28 1989-03-28 Magnetizing device for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7726389A JPH02254704A (en) 1989-03-28 1989-03-28 Magnetizing device for permanent magnet

Publications (1)

Publication Number Publication Date
JPH02254704A true JPH02254704A (en) 1990-10-15

Family

ID=13628958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7726389A Pending JPH02254704A (en) 1989-03-28 1989-03-28 Magnetizing device for permanent magnet

Country Status (1)

Country Link
JP (1) JPH02254704A (en)

Similar Documents

Publication Publication Date Title
JP3230647B2 (en) DC reactor
US5200729A (en) Permanent magnet and magnetization apparatus for producing the permanent magnet
IE43265B1 (en) Rare earth permanent magnet rotor for dynamo electric machines and method of manufacturing same
US6548919B2 (en) Linear motor
US4243903A (en) Permanent magnet stator for a DC dynamo electric machine using blocking magnets
JPH02254704A (en) Magnetizing device for permanent magnet
EP0778602A3 (en) Electromagnetic actuator
JP3664271B2 (en) Multipolar magnetizing yoke
JP3296530B2 (en) Voice coil type linear motor
JP3750127B2 (en) Voice coil linear motor
JP3746656B2 (en) Permanent magnet rotor
JPS61102008A (en) Electromagnet device
JP2699251B2 (en) Magnetic field generator
JPS60144914A (en) Magnetic attracting apparatus
JP3556013B2 (en) Bistable linear electromagnetic solenoid
JPS6348090Y2 (en)
JPS6153843B2 (en)
JPH0426339A (en) Permanent magnet rotor
JP3296890B2 (en) Polarized linear actuator
RU2138110C1 (en) Stator of permanent-magnet machine
JPS6241583Y2 (en)
JPS6237423Y2 (en)
JPH0442884Y2 (en)
JPH01166507A (en) Electromagnet device
JPS6311893Y2 (en)