JPH02253853A - Method for depositing catalyst metal - Google Patents

Method for depositing catalyst metal

Info

Publication number
JPH02253853A
JPH02253853A JP1074439A JP7443989A JPH02253853A JP H02253853 A JPH02253853 A JP H02253853A JP 1074439 A JP1074439 A JP 1074439A JP 7443989 A JP7443989 A JP 7443989A JP H02253853 A JPH02253853 A JP H02253853A
Authority
JP
Japan
Prior art keywords
catalyst
interference fringes
catalyst metal
metal
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1074439A
Other languages
Japanese (ja)
Inventor
Hisanori Itou
寿記 伊藤
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1074439A priority Critical patent/JPH02253853A/en
Publication of JPH02253853A publication Critical patent/JPH02253853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To decrease the contact area of two kinds of catalyst metals and to enhance the performance of the catalysts to clean exhaust gases by nonuniformly depositing the 1st catalyst metal and the 2nd catalyst metal on a catalyst carrier layer formed with interference fringe by UV rays. CONSTITUTION:The 1st interference fringes by UV rays are formed on the surface of the catalyst carrier layer on a catalyst carrier base material in the presence of the gaseous 1st catalyst metal compd. The 1st catalyst metal compd. is decomposed mainly in the bright part of the 1st interference fringes to deposit the 1st catalyst metal on the catalyst carrier layer. The 2nd interference fringes shifted in the bright and dark phases from the 1st interference fringes are formed by UV rays on the surface of the catalyst carrier layer in the presence of the gaseous 2nd catalyst metal compd. The 2nd catalyst metal compd. is decomposed mainly in the bright part of the 2nd interference fringes to deposit the 2nd catalyst metal. The catalyst for cleaning exhaust gases is thus produced.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は触媒担持層に触媒金属を担持させる方法に関す
る。本発明の担持方法は、自動車の排気ガス浄化用触媒
を製造する場合などに利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for supporting a catalyst metal on a catalyst support layer. The supporting method of the present invention is used when manufacturing a catalyst for purifying automobile exhaust gas.

[従来の技術] 自動車の排気ガス浄化用触媒を製造する場合、担体基材
表面に活性アルミナなどよりなる触媒担持層を形成し、
その触媒担持層に白金、ロジウム、パラジウムなどの触
媒金属を担持させて触媒としている。ここで触媒担持層
に触媒金属を担持させるには、触媒金属化合物の溶液を
触媒担持層に含浸させ、次いで乾燥・焼成することによ
り担持させる方法が一般的である。そして複数の触媒金
属を担持させる場合は、この含浸、乾燥・焼成を繰返し
て担持させている。
[Prior Art] When manufacturing a catalyst for purifying automobile exhaust gas, a catalyst support layer made of activated alumina or the like is formed on the surface of a carrier base material,
Catalytic metals such as platinum, rhodium, and palladium are supported on the catalyst support layer to form a catalyst. Here, in order to support the catalyst metal on the catalyst support layer, a general method is to impregnate the catalyst support layer with a solution of the catalyst metal compound, and then to carry it by drying and firing. When a plurality of catalyst metals are supported, this impregnation, drying, and calcination are repeated to support them.

[発明が解決しようとする課題J 上記した従来の触媒金属の担持方法において、複数種類
の触媒金属を担持させる場合には、それぞれの触媒金属
は一様に担持される。このように−様に担持された場合
、それによる効果も生じる反面不具合もあった。例えば
パラジウム粒子とロジウム粒子とが隣接して担持されて
いると、バラジウムーロジウム合金となる場合がある。
[Problem to be Solved by the Invention J] In the conventional catalytic metal supporting method described above, when a plurality of types of catalytic metals are supported, each catalytic metal is uniformly supported. When the particles are supported in this way, there are some effects, but there are also some disadvantages. For example, if palladium particles and rhodium particles are supported adjacent to each other, a palladium-rhodium alloy may be formed.

するとパラジウムはロジウムより酸化され易いため、ロ
ジウムが酸化パラジウムにより被覆された状態となって
、ロジウムの触媒性能が低下するという問題があった。
Then, since palladium is more easily oxidized than rhodium, rhodium becomes coated with palladium oxide, resulting in a problem in that the catalytic performance of rhodium deteriorates.

この現象はパラジウム−白金の系においても同様に生じ
ることも知られている。なお、このような不具合を防止
するものとして、特開昭60−114341号公報には
、パラジウムおよびロジウムにネオジムおよびサマリウ
ムの少なくとも一方を共存させた触媒が開示されている
It is also known that this phenomenon similarly occurs in the palladium-platinum system. In order to prevent such problems, JP-A-60-114341 discloses a catalyst in which at least one of neodymium and samarium is made to coexist with palladium and rhodium.

本発明はこのような事情に鑑みてなされたものであり、
複数の触媒金属を敢て不均一に担持させることにより、
上記不具合を防止することを目的とする。
The present invention was made in view of these circumstances, and
By deliberately supporting multiple catalyst metals unevenly,
The purpose is to prevent the above problems.

[!il!題を解決するための手段] 本発明者らは複数の触媒金属を不均一に担持させること
により上記不具合の解決を図り、担持方法の鋭意研究を
重ねた。そして光の干渉作用により明暗の干渉縞が形成
され明暗の部分で光強度が大きく異なること、紫外線に
より金属化合物は容易に分解すること、などの知見から
、紫外線の干渉縞を利用することを想起し本発明を完成
したものである。
[! Il! Means for Solving the Problems] The present inventors attempted to solve the above-mentioned problems by non-uniformly supporting a plurality of catalyst metals, and conducted extensive research into a method for supporting them. From the knowledge that bright and dark interference fringes are formed due to the interference effect of light, and the light intensity differs greatly between bright and dark areas, and that metal compounds are easily decomposed by ultraviolet rays, it was thought that the interference fringes of ultraviolet rays could be used. This completes the present invention.

すなわち本発明の触媒金属の担持方法は、触媒担持層を
もつ触媒担体基材の触媒担持層表面に触媒金属を担持さ
せる方法であって、 気体状の第1触媒金属化合物の存在下で触媒担持層表面
に紫外線による第1干渉縞を形成し主として第1干渉縞
の明の部分で第1触媒金属化合物を分解して触媒担持層
に第1触媒金属を担持させる第1工程と、 気体状の第2触媒金属化合物の存在下で触媒担持層表面
に紫外線により第1干渉縞の明暗の位相がずれた第2干
渉縞を形成し主として第2干渉縞の明の部分で第2触媒
金属化合物を分解して第2触媒金属を担持させる第2工
程と、よりなることを特徴とする。
That is, the method for supporting a catalyst metal of the present invention is a method of supporting a catalyst metal on the surface of a catalyst support layer of a catalyst support base material having a catalyst support layer, the method comprising: supporting the catalyst in the presence of a gaseous first catalyst metal compound; a first step of forming first interference fringes with ultraviolet rays on the layer surface and decomposing the first catalyst metal compound mainly in the bright portions of the first interference fringes to support the first catalyst metal on the catalyst support layer; In the presence of the second catalytic metal compound, a second interference fringe is formed on the surface of the catalyst supporting layer by ultraviolet rays, in which the light and dark phases of the first interference fringe are shifted. It is characterized by comprising a second step of decomposing and supporting a second catalyst metal.

触媒担体基材としては特に制限されないが、干渉縞を形
成するのには平坦な形状であることが好ましく、金属板
を巻いて形成されるメタル系触媒の金属板などを用いる
のが望ましい。この触媒担体基材表面には触媒担持層が
形成されている。触媒担持層は、従来と同様にγ−アル
ミナなどの活性アルミナなどから形成することができる
Although there are no particular restrictions on the catalyst carrier base material, a flat shape is preferable for forming interference fringes, and it is desirable to use a metal plate of a metal catalyst formed by winding a metal plate. A catalyst supporting layer is formed on the surface of this catalyst carrier base material. The catalyst support layer can be formed from activated alumina such as γ-alumina as in the conventional case.

第1工程は触媒担持層に第1触媒金属を担持させる工程
であり、紫外線の干渉縞を利用して行なう。すなわち、
気体状の第1触媒金属化合物の存在下で触媒担持層表面
に紫外線の第1干渉縞を形成する。これにより第1触媒
金属化合物は主として第1干渉縞の明の部分で分解し、
その部分の触媒担持層に第1触媒金属が担持される。こ
こで紫外線としてはコヒーレントな光で干渉性が大きな
レーザ光を用いるのが好ましい。このようなレーザ光と
してはアルゴンレーザ、■キシマレーザなどが挙げられ
る。また、紫外線により干渉縞を形成するには、光路長
の異なる2つの紫外線を同時に照射することにより容易
に形成することができる。
The first step is a step of supporting the first catalyst metal on the catalyst supporting layer, and is carried out using interference fringes of ultraviolet light. That is,
First interference fringes of ultraviolet light are formed on the surface of the catalyst support layer in the presence of the gaseous first catalyst metal compound. As a result, the first catalytic metal compound is mainly decomposed in the bright part of the first interference pattern,
The first catalyst metal is supported on the catalyst support layer in that portion. Here, as the ultraviolet rays, it is preferable to use laser light that is coherent and has high coherence. Examples of such laser light include argon laser and ximer laser. In addition, interference fringes can be easily formed using ultraviolet rays by simultaneously irradiating two ultraviolet rays with different optical path lengths.

第2工程では、第2触媒金属化合物の存在下で第1干渉
縞の明暗の位相がずれた第2干渉縞が触媒担持層表面に
形成される。これにより第2干渉縞の主として明の部分
に第2触媒金属が担持される。ここで干渉縞の位相をず
らすには、2つの紫外線の光路長の差を変更することで
容易に行なうことができる。なお、位相をずらす程度は
、場合により種々変更できる。例えば第1触媒金属と第
2触媒金属との反応性が大きい場合などには、位相を1
80度程度ずらす。また、ざらに別の触媒金属を担持さ
せる場合には、120度程度とする、などとすることが
できる。
In the second step, second interference fringes in which the bright and dark phases of the first interference fringes are shifted are formed on the surface of the catalyst support layer in the presence of the second catalytic metal compound. As a result, the second catalyst metal is supported mainly on the bright portions of the second interference fringes. Here, the phase of the interference fringes can be easily shifted by changing the difference in optical path length of the two ultraviolet rays. Note that the degree to which the phase is shifted can be changed in various ways depending on the situation. For example, when the reactivity between the first catalyst metal and the second catalyst metal is large, the phase is set to 1.
Shift it about 80 degrees. In addition, if another catalyst metal is to be supported on the surface, the temperature can be set to about 120 degrees.

第1触媒金属と第2触媒金属とは、隣接して存在するこ
とにより不具合が生じるようなものが望ましいが特に制
限されない。例えば第1触媒金属としてパラジウムを用
いた場合は、第2触媒金属として白金およびロジウムの
いずれか一方または両方を選ぶことができる。また、第
1触媒金属化合物または第2触媒金属化合物としては、
加熱などにより比較的低温で蒸気化して気体となるもの
が望ましく、例えばPd(C3Hs ) 2 (ビスア
リルパラジウム(It))、 Pt(C2H+)(PP
h 3) 2(η−エチレンビストリフェニルホスフィ
ン白金)、Rh(Ctl 2  CH2) 2(C#H
s)  (ビスη−エチレンη−シクロペンタジェニル
ロジウム)などが利用される。
The first catalytic metal and the second catalytic metal are preferably ones that would cause problems if they exist adjacent to each other, but are not particularly limited. For example, when palladium is used as the first catalyst metal, one or both of platinum and rhodium can be selected as the second catalyst metal. Further, as the first catalytic metal compound or the second catalytic metal compound,
It is preferable to use a material that vaporizes at a relatively low temperature by heating to become a gas, such as Pd(C3Hs) 2 (bisallyl palladium (It)), Pt(C2H+) (PP
h3) 2(η-ethylenebistriphenylphosphine platinum), Rh(Ctl2CH2)2(C#H
s) (bis η-ethylene η-cyclopentagenyl rhodium), etc. are used.

なお、第1工程後および第2工程俊には触媒担持層の洗
浄を行なうことが望ましい。干渉縞の暗の部分には第1
触媒金属化合物または第2触媒金属化合物が付着してい
るからである。これは例えば湯洗により容易に除去する
ことができる。また、不純物が触媒担持層に付着するの
を防止するために、第1工程および第2工程は不活性ガ
ス雰囲気下、または真空下などで行なうことが望ましい
Note that it is desirable to wash the catalyst support layer after the first step and immediately after the second step. The dark part of the interference fringe contains the first
This is because the catalytic metal compound or the second catalytic metal compound is attached. This can be easily removed, for example, by washing with hot water. Further, in order to prevent impurities from adhering to the catalyst supporting layer, the first step and the second step are desirably carried out under an inert gas atmosphere or under vacuum.

[発明の作用および効果] 本発明の触媒金属の担持方法では、まず気体状の第1触
媒金属化合物の存在下で触媒担持層表面に紫外線による
第1干渉縞が形成される。ここで第1干渉縞の明の部分
では紫外線の強度が大きく、暗の部分では紫外線の強度
が小さい。したがって第1触媒金属化合物は第1干渉縞
の主として明の部分で、紫外線の光化学反応性により分
解し、第1触媒金属となって触媒担持層と結合する。し
たがって、第1工程後には第1触媒金属が触媒担持層表
面に縞状に担持された状態となっている。
[Operations and Effects of the Invention] In the catalytic metal supporting method of the present invention, first interference fringes are formed by ultraviolet rays on the surface of the catalyst supporting layer in the presence of a gaseous first catalytic metal compound. Here, the intensity of the ultraviolet rays is high in the bright parts of the first interference fringe, and the intensity of the ultraviolet rays is low in the dark parts. Therefore, the first catalytic metal compound decomposes mainly in the bright portion of the first interference pattern due to the photochemical reactivity of the ultraviolet rays, becomes the first catalytic metal, and is bonded to the catalyst support layer. Therefore, after the first step, the first catalyst metal is supported on the surface of the catalyst support layer in a striped manner.

次に第1触媒金属が担持された触媒担持層表面に、気体
状の第2触媒金属化合物の存在下で紫外線による第2干
渉縞が形成される。ここで第2干渉縞の位相は第1干渉
縞の位相とずれているため、触媒担持層上の第2干渉縞
の明の部分は第1触媒金属が担持されている部分からず
れている。そして第2干渉縞の主として明の部分で第2
触媒金属化合物が分解し、第2触媒金属が担持される。
Next, second interference fringes are formed by ultraviolet rays in the presence of a gaseous second catalyst metal compound on the surface of the catalyst support layer on which the first catalyst metal is supported. Here, since the phase of the second interference fringes is out of phase with the phase of the first interference fringes, the bright portion of the second interference fringes on the catalyst support layer is out of phase with the portion where the first catalyst metal is supported. Then, the second interference pattern mainly occurs in the bright part of the second interference fringe.
The catalytic metal compound is decomposed and the second catalytic metal is supported.

したがって第2工程侵の触媒担持層には、第1触媒金属
が縞状に担持され、第1触媒金属の担持されていない部
分に第2触媒金属が担持されている。すなわち、第1触
媒金属と第2触媒金属との接触面積が従来に比べて極め
て小さく、相互に悪影響を及ぼすのが防止されている。
Therefore, in the catalyst support layer in the second step, the first catalyst metal is supported in a striped manner, and the second catalyst metal is supported on the portions where the first catalyst metal is not supported. That is, the contact area between the first catalytic metal and the second catalytic metal is extremely small compared to the prior art, and mutually adverse effects are prevented.

そして第1触媒金属と第2触媒金属とは、それぞれの触
媒性能を最大に発揮でき、得られる触媒の浄化性能は極
めて優れたものとなる。
The first catalytic metal and the second catalytic metal can exhibit their respective catalytic performance to the maximum, and the resulting catalyst has extremely excellent purification performance.

すなわち、本発明の触媒金属の担持方法によれば、それ
ぞれの触媒金属を一様ではなく互いに接触しないように
、容易にかつ安定して担持させることができる。
That is, according to the method for supporting catalytic metals of the present invention, it is possible to easily and stably support the respective catalytic metals so that they are not uniform and do not come into contact with each other.

[実施例] 以下、1つの実施例および2つの比較例により本発明を
より具体的に説明する。
[Example] Hereinafter, the present invention will be explained more specifically using one example and two comparative examples.

(実施例) 15重量%のアルミニウムを含有するフェライト系高耐
熱性ステンレス鋼を50μmの厚さに圧延し、幅10C
m、長さ9000mの平板および波板を形成する。この
平板および波板の表面に、アルミナ粉末100重1部、
アルミナ含有率10重量%のアルミナシルア0重量部、
濃度40重量・%の硝酸アルミニウム水溶液15重量部
および水30重量部からなるスラリーを吹付け、150
℃で1時間乾燥後さらに700℃で1時間焼成して、重
量比で10%の触媒担持層を平板および波板にそれぞれ
形成した。
(Example) A ferritic high heat-resistant stainless steel containing 15% by weight of aluminum was rolled to a thickness of 50 μm and a width of 10C.
m, a flat plate and a corrugated plate with a length of 9000 m are formed. On the surface of this flat plate and corrugated plate, 1 part by weight of alumina powder,
0 parts by weight of alumina silua with an alumina content of 10% by weight,
A slurry consisting of 15 parts by weight of aluminum nitrate aqueous solution with a concentration of 40% by weight and 30 parts by weight of water was sprayed at 150 parts by weight.
After drying at 1 hour at 700° C., the mixture was further calcined at 700° C. for 1 hour to form a catalyst supporting layer having a weight ratio of 10% on the flat plate and the corrugated plate, respectively.

(1)第1工程 次に第1図に示すように、触媒担持層をもつ平板1およ
び波板2を石英製容器3内に配置し、窒素ガスを流して
容器3内の空気、水分などを除去する。そしてさらに減
圧にして窒素ガスを除去した後、アルゴンレーザを用い
て波長340nmの紫外線を光路Aおよび光路Bの2つ
の光路がら照射する。
(1) First step Next, as shown in Figure 1, the flat plate 1 and the corrugated plate 2 with the catalyst support layer are placed in a quartz container 3, and nitrogen gas is flowed through the container 3 to remove air and moisture. remove. After the pressure is further reduced to remove nitrogen gas, ultraviolet rays with a wavelength of 340 nm are irradiated from two optical paths, optical path A and optical path B, using an argon laser.

ここでレーザ源4から出た紫外線は、ハーフミラ−5で
反射する光とハーフミラ−5を通過する光とに分かれる
。そしてハーフミラ−5で反射した光は光路Aを通って
ビームエクスパンダ6がら照射される。一方、ハーフミ
ラ−5を通過した光はミラー7で反射され、光路Bを通
ってビームエクスパンダ8から照射される。したがって
光路Aと光路Bとはハーフミラ−5とミラー7との距離
分の光路長の差があり、ビームエクスパンダ6とビーム
エクスパンダ8から照射された紫外線は平板1および波
板2表面で第1干渉縞を形成する。
Here, the ultraviolet light emitted from the laser source 4 is divided into light reflected by the half mirror 5 and light passing through the half mirror 5. The light reflected by the half mirror 5 passes through the optical path A and is irradiated through the beam expander 6. On the other hand, the light that has passed through the half mirror 5 is reflected by the mirror 7, passes through the optical path B, and is irradiated from the beam expander 8. Therefore, there is a difference in optical path length between the optical path A and the optical path B by the distance between the half mirror 5 and the mirror 7, and the ultraviolet rays irradiated from the beam expander 6 and the beam expander 8 are 1. Forms interference fringes.

ちなみにその光路長の差は200mmであり、第1干渉
縞の隣接する明部どうしの間隔は約8.5μmであった
Incidentally, the difference in optical path length was 200 mm, and the interval between adjacent bright parts of the first interference fringe was about 8.5 μm.

赤外線を用いて容器3、平板1および波板2を150℃
に保温し、第1干渉縞が形成されている状態で、容器3
内に150℃に加熱されて蒸気化したPd(C3Hs 
) 2の1.3g分の蒸気を充満させてパラジウムを担
持させる。そして3分間保持後、平板1および波板2を
湯洗し、150℃で1時間乾燥した。
Container 3, flat plate 1 and corrugated plate 2 are heated to 150°C using infrared rays.
The container 3 is kept warm and the first interference fringes are formed.
Pd (C3Hs) was heated to 150°C and vaporized in
) Fill with 1.3 g of steam from Step 2 to support palladium. After holding for 3 minutes, the flat plate 1 and the corrugated plate 2 were washed with hot water and dried at 150° C. for 1 hour.

(2)第2工程 次に、第2図に示すように光路Bの構成を変化させたこ
と以外は同様にして、第1工程で湯洗、乾燥された平板
1および波板2に第2干渉縞を形成する。この光路Bで
は、ハーフミラ−5を通過した光はミラー9とミラー1
0で反射されて光路Aの光と平行に進み、ざらに水槽1
1内を通過してビームエクスパンダ8から照射される。
(2) Second step Next, in the same manner as shown in FIG. 2, except that the configuration of the optical path B was changed, a second Forms interference fringes. In this optical path B, the light that has passed through the half mirror 5 passes through the mirror 9 and the mirror 1.
0 and travels parallel to the light of optical path A, roughly reaching the aquarium 1.
1 and is irradiated from the beam expander 8.

これにより形成された第2干渉縞の位相は第1干渉縞に
比べて180度ずれ、第1干渉縞と明暗が逆転している
The phase of the second interference fringes thus formed is shifted by 180 degrees compared to the first interference fringes, and the brightness and darkness are reversed from those of the first interference fringes.

そして赤外線を用いて容器3、平板1および波板2を1
50℃に保温し、Pt(C2H4)(PPh 3 )2
の1.6g分の蒸気を充満させて3分間保持して白金を
担持させた後、第1工程と同様にして湯洗、乾燥を行な
った。
Then, using infrared rays, the container 3, the flat plate 1, and the corrugated plate 2 are
Insulated at 50°C, Pt(C2H4)(PPh 3 )2
After filling with 1.6 g of steam and holding it for 3 minutes to support platinum, it was washed with hot water and dried in the same manner as in the first step.

また、同一の装置を用い、同様にしてRh(C1l 2
CM 2) 2(C7HS)の0.3Q分の蒸気を充満
させ、同様にロジウムを担持させた。
In addition, Rh(C1l 2
It was filled with 0.3Q worth of vapor of CM 2) 2 (C7HS), and rhodium was similarly supported.

(3)触媒化 第3図に示すように、触媒が担持された平板1および波
板2を重ねた状態でロール状に巻き、厚さl 5mm、
直径122mmの金属筒12に挿入してメタル系排気ガ
ス浄化用触113とした。
(3) Catalysis As shown in Fig. 3, the flat plate 1 and the corrugated plate 2 carrying the catalyst are stacked and rolled into a roll to a thickness of 5 mm.
It was inserted into a metal cylinder 12 with a diameter of 122 mm to form a metal exhaust gas purifying contact 113.

得られた排気ガス浄化用触媒1Q中には、パラジウムが
0.470.白金が0.53CJ、ロジウムが0.11
0担持されていた。
The obtained exhaust gas purifying catalyst 1Q contained palladium at a concentration of 0.470. Platinum is 0.53CJ, rhodium is 0.11
0 was carried.

(比較例1) 第1図に示す装置において、レーザの照射を停止した状
態で容器3内にPd(C3Hs ) 2 、Pt(C2
H+)(PPh 3 ) 2およびRh(CI 2  
CH2) 2 (C#Is)の蒸気を順に供給し、それ
ぞれの化合物が吸着した後300℃で1時間焼成して各
触媒金属を担持させたこと以外は実施例と同様にして排
気ガス浄化用触媒を形成した。排気ガス浄化用触媒中の
各触媒金属の担持量は実施例と同一となるように調整し
た。
(Comparative Example 1) In the apparatus shown in FIG. 1, Pd(C3Hs) 2 and Pt(C2
H+)(PPh3)2 and Rh(CI2
A sample for exhaust gas purification was prepared in the same manner as in Example except that the vapor of CH2) 2 (C#Is) was sequentially supplied, and after each compound was adsorbed, it was calcined at 300°C for 1 hour to support each catalyst metal. A catalyst was formed. The amount of each catalyst metal supported in the exhaust gas purifying catalyst was adjusted to be the same as in the example.

(比較例2) 実施例と同一の平板と波板を用い、硝酸パラジウム水溶
液、ジニトロジアンミン白金水溶液および硝酸ロジウム
水溶液に順に浸漬し、乾燥後300℃で1時間焼成して
各触媒金属を担持させた。
(Comparative Example 2) Using the same flat plate and corrugated plate as in Example, they were immersed in a palladium nitrate aqueous solution, a dinitrodiammine platinum aqueous solution and a rhodium nitrate aqueous solution in order, and after drying, they were fired at 300°C for 1 hour to support each catalyst metal. Ta.

そして実施例と同様にして排気ガス浄化用触媒を形成し
た。排気ガス浄化用触媒中の各触媒金属の担持量は実施
例と同一となるように調整した。
Then, an exhaust gas purifying catalyst was formed in the same manner as in the example. The amount of each catalyst metal supported in the exhaust gas purifying catalyst was adjusted to be the same as in the example.

(評価) 実施例および比較例で形成された3種類の排気ガス浄化
用触媒の触媒性能を評価した。触媒性能は、 大ガス温度ニア50℃ 空間速度(SV): 76000−/hr空燃費(A/
F): 14.6 (ストイキ)耐久時間:200時間 の条件で耐久試験を行ない、 大ガス温度:300℃、320℃ 空間速度(SV):60000/hr 空燃費(A/F):14.6 の条件でHC,COおよびN。
(Evaluation) The catalytic performance of three types of exhaust gas purification catalysts formed in Examples and Comparative Examples was evaluated. Catalyst performance: Large gas temperature near 50℃ Space velocity (SV): 76000-/hr Air fuel consumption (A/
F): 14.6 (Stoichiometric) Endurance time: Durability test was conducted under the conditions of 200 hours, Large gas temperature: 300℃, 320℃ Space velocity (SV): 60000/hr Air fuel consumption (A/F): 14. HC, CO and N under conditions of 6.

×の浄化率をそれぞれ測定した。結果を第1表に示す。The purification rate of × was measured. The results are shown in Table 1.

第1表 第1表より、実施例の担持方法で触媒金属が担持された
排気ガス浄化用触媒では、比較例に比べて優れた浄化性
能を示している。これは実施例ではパラジウムは白金お
よびロジウムと異なる部分に担持されているので、パラ
ジウムが白金またはロジウムと合金化するのが防止され
、パラジウム、白金およびロジウムは本来の触媒活性を
示していることによるものと推察される。
Table 1 From Table 1, the exhaust gas purifying catalyst in which the catalytic metal was supported by the supporting method of the example shows superior purification performance compared to the comparative example. This is because in the examples, palladium is supported on a different part from platinum and rhodium, so palladium is prevented from alloying with platinum or rhodium, and palladium, platinum, and rhodium exhibit their original catalytic activity. It is presumed that this is the case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で紫外線を照射して第1P渉縞を形成す
る方法を示す説明図、第2図は第1図で形成される第1
干渉縞と位相が180度ずれた第2干渉縞を形成する方
法を示す説明図である。第3図は実施例で形成された排
気ガス浄化用触媒の構成を示す説明図である。 1・・・平板   2・・・波板   3・・・容器4
・・・レーザ源    5・・・ハーフミラ−6,8・
・・ビームエキスパンダ 7.9.10・・・ミラー   11・・・水槽12・
・・金属筒  13・・・排気ガス浄化用触媒特許出願
人  トヨタ自動車株式会社 代理人   弁理士   大川 宏
FIG. 1 is an explanatory diagram showing a method of forming the first P interference fringes by irradiating ultraviolet rays in an example, and FIG.
FIG. 7 is an explanatory diagram showing a method of forming second interference fringes whose phase is shifted by 180 degrees from the interference fringes. FIG. 3 is an explanatory diagram showing the structure of the exhaust gas purifying catalyst formed in the example. 1...Flat plate 2...Corrugated plate 3...Container 4
... Laser source 5 ... Half mirror 6, 8.
・・Beam expander 7.9.10・Mirror 11・Aquarium 12・
...Metal tube 13... Patent applicant for exhaust gas purification catalyst Hiroshi Okawa, Patent attorney, Toyota Motor Corporation representative

Claims (1)

【特許請求の範囲】[Claims] (1)触媒担持層をもつ触媒担体基材の該触媒担持層表
面に触媒金属を担持させる方法であつて、気体状の第1
触媒金属化合物の存在下で該触媒担持層表面に紫外線に
よる第1干渉縞を形成し主として該第1干渉縞の明の部
分で該第1触媒金属化合物を分解して該触媒担持層に第
1触媒金属を担持させる第1工程と、 気体状の第2触媒金属化合物の存在下で該触媒担持層表
面に紫外線により該第1干渉縞の明暗の位相がずれた第
2干渉縞を形成し主として該第2干渉縞の明の部分で該
第2触媒金属化合物を分解して第2触媒金属を担持させ
る第2工程と、よりなることを特徴とする触媒金属の担
持方法。
(1) A method for supporting a catalyst metal on the surface of a catalyst support layer of a catalyst support base material having a catalyst support layer, the method comprising:
In the presence of the catalyst metal compound, first interference fringes are formed by ultraviolet rays on the surface of the catalyst support layer, and the first catalyst metal compound is decomposed mainly in the bright part of the first interference fringes, so that the first interference fringes are formed on the catalyst support layer. a first step of supporting a catalytic metal, and forming second interference fringes in which the bright and dark phases of the first interference fringes are shifted by ultraviolet rays on the surface of the catalyst supporting layer in the presence of a gaseous second catalytic metal compound; A method for supporting a catalytic metal, comprising a second step of decomposing the second catalytic metal compound in the bright portion of the second interference pattern to support the second catalytic metal.
JP1074439A 1989-03-27 1989-03-27 Method for depositing catalyst metal Pending JPH02253853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1074439A JPH02253853A (en) 1989-03-27 1989-03-27 Method for depositing catalyst metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1074439A JPH02253853A (en) 1989-03-27 1989-03-27 Method for depositing catalyst metal

Publications (1)

Publication Number Publication Date
JPH02253853A true JPH02253853A (en) 1990-10-12

Family

ID=13547264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074439A Pending JPH02253853A (en) 1989-03-27 1989-03-27 Method for depositing catalyst metal

Country Status (1)

Country Link
JP (1) JPH02253853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326476A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Emission gas cleaning catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326476A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Emission gas cleaning catalyst

Similar Documents

Publication Publication Date Title
US4661329A (en) Catalyst for oxidizing an offensively smelling substance and a method of removing an offensively smelling substance
GB1581628A (en) Catalytic purification of automobile exhaust gases
JP3442382B2 (en) Support materials for platinum group metal containing three-way catalysts for purifying exhaust gases of internal combustion engines
JPH0796183A (en) Hc eliminating member
JPH02253853A (en) Method for depositing catalyst metal
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPS6384635A (en) Catalyst for purifying exhaust gas
EP0656812A1 (en) Catalyst and method for manufacturing the same
JPH07213910A (en) Adsorbing catalyst for purifying exhaust gas
JPH11285644A (en) Production of catalyst
JPH05154381A (en) Exhaust gas purifying catalyst forming process
JP2002316049A (en) Catalyst for cleaning exhaust gas and manufacturing method for the same
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPH08257407A (en) Catalyst for cleaning exhaust gas from internal combustion engine
RU2005538C1 (en) Process for manufacturing catalyst for purification of exhaust gases
KR102272455B1 (en) CATALYST USING FeCrAl ALLOY AND MANUFACTURING METHOD OF THE SAME
JPH054048A (en) Catalyst for treatment of exhaust gas and its production
JPH04341343A (en) Palladium-lanthanum composite oxide catalyst and its immobilized catalyst
JPS6020987A (en) Solid oxygen carrier for dehydrogenation and its preparation
JPS6147575B2 (en)
JPH0966223A (en) Catalyst mechanism for purifying exhaust gas and purification of exhaust gas
JPH081016A (en) Production of monolithic catalyst for purification of exhaust gas, monolithic catalyst, and removing method of nitrogen oxide in exhaust gas
JP3352473B2 (en) Exhaust gas purification device
JP4285044B2 (en) Method for producing exhaust gas purification catalyst
JPH05305242A (en) Catalyst for purifying exhaust gas of car