JPH02253730A - Optical line detouring system - Google Patents
Optical line detouring systemInfo
- Publication number
- JPH02253730A JPH02253730A JP1076228A JP7622889A JPH02253730A JP H02253730 A JPH02253730 A JP H02253730A JP 1076228 A JP1076228 A JP 1076228A JP 7622889 A JP7622889 A JP 7622889A JP H02253730 A JPH02253730 A JP H02253730A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- station
- terminal
- detour
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 84
- 239000013307 optical fiber Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000004891 communication Methods 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000005086 pumping Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- -1 rare earth ions Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光ファイバを用いた光伝送方式における光線
路の切替方式に関し、光伝送装置間を接続する先ファイ
バ現用心線を任意の光ケーブルの光ファイバ予備心線に
切替える、光線路迂回方式〔従来の技術〕
従来の光ファイバ心線切替による光線路迂回方式として
は、先ファイバ現用心線を同じ光ケーブル内の光ファイ
バ予備心線に切り替える方式がある。この方式を採用し
た従来装置の構成を第4図に示す。図において、4は光
伝送装置端末2.2・・・・間を接続する光ファイバ現
用心線の途中に挿入された光切替部であり、5は同一ケ
ーブル内の光ファイバ予備心線を前記光切置部4に接続
する接続装置である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical line switching system in an optical transmission system using optical fibers, and relates to an optical line switching method in an optical transmission system using optical fibers. Optical line detouring method that switches to a spare optical fiber in the same optical cable [Conventional technology] The conventional optical line detouring method using optical fiber switching involves switching the existing fiber to a spare optical fiber in the same optical cable. There is a method. The configuration of a conventional device adopting this method is shown in FIG. In the figure, 4 is an optical switching unit inserted in the middle of the working optical fiber that connects the optical transmission equipment terminals 2, 2, etc., and 5 is the optical switching unit that connects the spare optical fiber in the same cable. This is a connection device that connects to the optical disconnection section 4.
上記構成において、計画的な工事等により特定の光ファ
イバ現用心線を光ファイバ予備心線に切り替える場合、
A、B両局において、接続装置5によって光ファイバ予
備心線を光切置部4に接続した後に、光切置部4によっ
て光信号を光ファイバ現用心線から光ファイバ予備心線
に切り替える。In the above configuration, when switching a specific working optical fiber to a backup optical fiber due to planned construction, etc.,
At both stations A and B, after the connecting device 5 connects the optical fiber standby to the optical disconnection section 4, the optical disconnection section 4 switches the optical signal from the working optical fiber to the standby optical fiber.
このような構成と動作のため、光ケーブル全体が故障し
たときのように当該光ケーブル1内の光ファイバ予備心
線が使用できない場合、この従来方式では迂回路を形成
できない。この理由は、迂回用に設定し得る光ファイバ
予備心線が同一光ケーブル1内にのみ限られているため
である。Because of this configuration and operation, when the spare optical fiber in the optical cable 1 cannot be used, such as when the entire optical cable fails, this conventional method cannot form a detour. The reason for this is that the spare optical fibers that can be set for detouring are limited only within the same optical cable 1.
以上述べたように、従来の光線路迂回方式には、限定さ
れた光ファイバ予備心線にしか迂回できないという欠点
があった。As described above, the conventional optical line detouring method has the drawback that it is possible to detour only to a limited number of spare optical fibers.
本発明の目的は、前記の欠点を除去し、任意の光ケーブ
ル中の光ファイバ予備心線を用いて、光信号を迂回させ
ることのCきる光線路迂回方式を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an optical line detouring method that eliminates the above-mentioned drawbacks and allows optical signals to be detoured using a spare optical fiber in any optical cable.
上記課題を解決するために、請求項1に記載の発明は、
自局の光伝送装置と複数の相手局の光伝送装置との間に
各々設けられた光ファイバ現用心線および光ファイバ予
備心線を備えた光線路において、自局の光伝送装置を通
信相手局以外の局の先ファイバ予備心線に切り換える第
1の過程と、この第1の過程によって切り換えられた一
f備心線に接続される局において当該予備心線を他の予
備心線に折り返し接続する第2の過程とを有し、第15
第2の過程によって順次接続される先ファイバ予備心線
によって自局と通信相手局との間の迂回路を形成するこ
とを特徴としている。In order to solve the above problem, the invention according to claim 1,
In an optical line equipped with a working optical fiber and a standby optical fiber, which are installed between the optical transmission equipment of the local station and the optical transmission equipment of multiple partner stations, the optical transmission equipment of the local station is connected to the optical transmission equipment of the communication partner. A first process of switching to a pre-fiber fiber at a station other than the station, and folding back the pre-fiber to another pre-fiber at the station that is connected to the 1F spare fiber switched by this first process. and a fifteenth step of connecting.
The second process is characterized in that a bypass path is formed between the local station and the communication partner station by means of the preliminary fiber wires that are sequentially connected.
また、請求項2に記載の発明においては、前記迂回路中
の任意の点において、合分波形光学部の一方の入力端に
前記迂回路の一方側から出力される信号波長光を入射す
るとともに前記合分波形光学部の他方の入力端にポンプ
用光を入射し、かつ、前記合分波形光学部の出力端を希
土類をドープした導光路部に接続し、この導光路部から
出力される増幅された信号波長光を前記迂回路の他方側
に入射するようにしている。Further, in the invention according to claim 2, at any point on the detour, the signal wavelength light outputted from one side of the detour is inputted to one input end of the combining/demultiplexing waveform optical section. Pumping light is input to the other input end of the combining/dividing waveform optical section, and the output end of the combining/dividing waveform optical section is connected to a rare earth-doped light guide section, and the pump light is output from this light guide section. The amplified signal wavelength light is made to enter the other side of the detour.
請求項1.2に記載の発明においては、通信を行おうと
する相手局との間のケーブルが断線状態等の場合には、
第1の過程により相手局以外の局とつながる光ファイバ
予備心線に切換えられる。In the invention described in claim 1.2, if the cable between the other party with which communication is to be performed is disconnected,
In the first step, a switch is made to a spare optical fiber that connects to a station other than the partner station.
このようにして切換えられた光ファイバ予備心線が第2
の過程において他の光ファイバ予備心線に接続される。The optical fiber spare wire switched in this way is
In the process, it is connected to other spare optical fibers.
そして、これら第11第2の過程によって自局と相手局
との間の迂回路が形成される。Through these eleventh and second steps, a detour between the local station and the other station is formed.
また、請求項2に記載の発明においては、光分波光学部
、ポンプ用光および導光路部によって通信波長光が増幅
されるため、迂回用の光ファイバ予備心線の損失が大き
く光信号が減衰する場合であってもこれが補われる。In addition, in the invention described in claim 2, since the communication wavelength light is amplified by the optical demultiplexing optical section, the pump light, and the light guide section, the loss of the spare optical fiber for detour is large and the optical signal is attenuated. This will be compensated even if you do.
以ト、本発明の実施例について図面を参照して説明rる
。Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1)第1実施例
第1図は本発明の第1の実施例の構成を示すフロック図
である。図において、A、B、およびC局は、各々光ケ
ーブル1.1′、および1″で接続されており、各光ケ
ーブル1、l ’ !、 ” 内の光ファイバ現用
心線には光切置部4が挿入されている。7,7・・・・
・・は予備ルート構成部であり、各光切置部4と複数の
光ファイバ予備心線とを適宜接続する端子を有しており
、また、複数の先ファイバ予備心線のうちの任意の2心
線を相Tiに接続するための相互接続端子74.75・
・・・・・および相互接続路8を具備している。なお、
局BとCの予備ルート構成部7については、相互接続端
子の図示を省略している。(1) First Embodiment FIG. 1 is a block diagram showing the configuration of a first embodiment of the present invention. In the figure, stations A, B, and C are connected by optical cables 1.1' and 1'', respectively, and the optical fibers in each optical cable 1, l'!, '' are equipped with an optical cutting section. 4 has been inserted. 7,7...
. . is a spare route component, which has a terminal for connecting each optical cutting unit 4 and a plurality of spare optical fibers as appropriate, and also connects any one of the plurality of preliminary fibers. Interconnection terminals 74, 75 for connecting two-core wires to phase Ti
. . . and an interconnection path 8. In addition,
As for the backup route configuration sections 7 of stations B and C, interconnection terminals are not shown.
次に本実施例の動作について説明する。なお、以下の説
明においては、局)3とCを接続rる光ケーブル1が断
線状態等の故障に至った場合を例とする。Next, the operation of this embodiment will be explained. In the following description, a case will be exemplified in which the optical cable 1 connecting stations 3 and C has a failure such as a disconnection state.
まず、局Bでは、光切置部4において、先ファイバ現用
心線の端−f・41が光ケーブルlにつながる端F42
と離れ−C,切替用端イ43と接続される。予備ルート
構成部7では、光ケープルビ内の光ファイバ′f−備心
線端r72と、切替用端子43につながる端子71が接
続される。First, at station B, in the optical cutting section 4, the end -f 41 of the working core of the previous fiber is connected to the end F42 connected to the optical cable l.
It is connected to the switching end A43. In the preliminary route configuration section 7, the optical fiber 'f-replacement line end r72 in the optical cable ruby and the terminal 71 connected to the switching terminal 43 are connected.
一方、局Cでは光切置部4において、光ファイバ現用心
線端子44が光ケーブルlに−〕ながる端F45と離れ
°C切替用端子46に接続される。予備ルート構成部7
では、光ケーブル1′内の先ファイバ予備心線端p77
と、切替用端子46につながる端r−78が接続される
。On the other hand, in the station C, in the optical disconnection section 4, the optical fiber working core terminal 44 is separated from the end F45 leading to the optical cable l and connected to the °C switching terminal 46. Preliminary route configuration part 7
Now, the preliminary fiber end p77 in the optical cable 1'
and the end r-78 connected to the switching terminal 46 is connected.
また、A局では、予備ルート構成部7において、光ケー
プルビの光ファイバ予備心線4了73と相互接続路8に
つながる端子74とが接続されるとともに、光ケーブル
1″の光ファイバ予備心線端子76と相互接続路8の端
f・75とが接続される。In addition, in the A station, in the backup route configuration section 7, the optical fiber backup wire 4 of the optical cable 1'' is connected to the terminal 74 connected to the interconnection path 8, and the optical fiber backup wire terminal of the optical cable 1'' is connected. 76 and end f 75 of interconnection path 8 are connected.
以−トから、図中の2重破線で示すような迂回回線が接
続される。このような動作をするので、従来不iJ能で
あった任意光ケーブルの光ファイバ予備心線を用いての
迂回がi’iJ能である。From there, a detour line as shown by the double broken line in the figure is connected. Because of this operation, it is now possible to take a detour using a spare optical fiber of an arbitrary optical cable, which was previously impossible.
なお、この実施例は大部市内の局間中継線路といった、
柄革に線路が引かれ一〇おり、かつ比較的ケーブル長の
短い場合に極めてイ1効である。In addition, this example is used for relay lines between stations in Obe City.
It is extremely effective when a track is drawn on the patterned leather and the cable length is relatively short.
(2)第2実施例
次に、この発明の第2の実施例について説明する。第2
図にこの実施例の要部である光増幅部11の構成を第3
図に示す。この光増幅部11は、合分波形光学部9と希
土類イオンをドープした導光部10とから構成されてお
り、その動作は矢印αより入射したポンプ用光と矢印β
より入射した通信波長光との相互作用により、矢印γに
増幅された信号波長光を出射させるものである。(2) Second Embodiment Next, a second embodiment of the present invention will be described. Second
The figure shows the configuration of the optical amplifying section 11, which is the main part of this embodiment.
As shown in the figure. This optical amplifying section 11 is composed of a combining/splitting waveform optical section 9 and a light guiding section 10 doped with rare earth ions, and its operation is performed by pumping light incident from an arrow α and an arrow β.
Due to the interaction with the communication wavelength light incident thereon, the amplified signal wavelength light is emitted as indicated by the arrow γ.
この実施例は、上述の光増幅部11、ポンプ用光を出力
するポンプ用光源12、および両者を接続する光スィッ
チを第1の実施例に組み合わせたものである。ここで、
第2の実施例の全体構成を第3図に示す。This embodiment is a combination of the above-described optical amplification section 11, a pump light source 12 that outputs pump light, and an optical switch that connects the two to the first embodiment. here,
The overall configuration of the second embodiment is shown in FIG.
本実施例の動作は、第1の実施例と同様であるが、光増
幅部11とポンプ用光源12、および両者を接続する光
スィッチにより光信号を増幅するため迂回に用いる光フ
ァイバ予備心線の損失増加を埋め合わせることができる
。The operation of this embodiment is the same as that of the first embodiment, except that the optical amplification section 11, the pump light source 12, and the optical fiber reserve wire used for detour to amplify the optical signal by the optical switch that connects the two. can compensate for the increase in losses.
以−1−説明したように、本発明により従来実現できな
かった迂回用の光ファイバ予備心線の任意な設定が可能
となり、光ケーブルの故障等による障書時間を短縮し、
サービスの品質を向トすることができる。As explained above-1-, the present invention makes it possible to arbitrarily set a spare optical fiber for detour, which could not be realized in the past, and reduces the time required for troubleshooting due to optical cable failure, etc.
The quality of service can be improved.
第1図はこの発明の第1の実施例の構成を示すブロック
図、第2図はこの発明の第2の実施例において使用する
光増幅部の構成図、第3図は同実施例の全体構成を示す
ブロック図、第4図は従来の光線路迂回方式を採用した
迂回システノ・の構成を示すブロック図である。
1、ビ 1 # 、、、光ケーブル、2・・・光伝送
装置端末、4・・・光切置部、5・・・接続装置、6・
・・−P備ルート構成部、8・・・相互接続路、9・・
・合分波形光学部、lO・・・導光部、11・・・光増
幅部、12・・・ポンプ用光源。FIG. 1 is a block diagram showing the configuration of a first embodiment of this invention, FIG. 2 is a configuration diagram of an optical amplification section used in a second embodiment of this invention, and FIG. 3 is an overall diagram of the same embodiment. FIG. 4 is a block diagram showing the structure of a detour system employing a conventional optical path detour system. 1. Optical cable, 2... Optical transmission equipment terminal, 4... Optical disconnection section, 5... Connection device, 6.
...-P equipment route component, 8... interconnection path, 9...
- Combining/splitting waveform optical section, 1O... light guide section, 11... optical amplification section, 12... light source for pump.
Claims (2)
の間に各々設けられた光ファイバ現用心線および光ファ
イバ予備心線を備えた光線路において、自局の光伝送装
置を通信相手局以外の局の光ファイバ予備心線に切り換
える第1の過程と、この第1の過程によって切り換えら
れた予備心線に接続される局において当該予備心線を他
の予備心線に折り返し接続する第2の過程とを有し、第
1、第2の過程によって順次接続される光ファイバ予備
心線によって自局と通信相手局との間の迂回路を形成す
ることを特徴とする光線路迂回方式。(1) In an optical line equipped with working optical fibers and standby optical fibers installed between the optical transmission equipment of the own station and the optical transmission equipment of multiple partner stations, the optical transmission equipment of the own station A first process of switching the optical fiber to a spare optical fiber of a station other than the communication partner station, and a station connected to the spare fiber switched by this first process switches the spare fiber to another spare fiber. and a second step of connecting back and forth, and forming a detour between the local station and the communication partner station by means of the optical fiber backup wires that are sequentially connected in the first and second steps. Optical line detour method.
部の一方の入力端に前記迂回路の一方側から出力される
信号波長光を入射するとともに前記合分波形光学部の他
方の入力端にポンプ用光を入射し、かつ、前記台分波形
光学部の出力端を希土類をドープした導光路部に接続し
、この導光路部から出力される増幅された信号波長光を
前記迂回路の他方側に入射することを特徴とする請求項
1に記載の光線路迂回路方式。(2) At any point on the detour, the signal wavelength light output from one side of the detour is input to one input end of the combining/demultiplexing waveform optical part, and the signal wavelength light output from one side of the detour is input to one input end of the combining/demultiplexing waveform optical part. Pumping light is input to the input end, and the output end of the platform waveform optical section is connected to a rare earth-doped light guide section, and the amplified signal wavelength light output from this light guide section is routed through the detour. 2. The optical path detour system according to claim 1, wherein the optical path is incident on the other side of the optical path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1076228A JPH02253730A (en) | 1989-03-28 | 1989-03-28 | Optical line detouring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1076228A JPH02253730A (en) | 1989-03-28 | 1989-03-28 | Optical line detouring system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02253730A true JPH02253730A (en) | 1990-10-12 |
Family
ID=13599311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1076228A Pending JPH02253730A (en) | 1989-03-28 | 1989-03-28 | Optical line detouring system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02253730A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003049330A1 (en) * | 2001-12-03 | 2003-06-12 | Fujitsu Limited | Optical communication system |
-
1989
- 1989-03-28 JP JP1076228A patent/JPH02253730A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003049330A1 (en) * | 2001-12-03 | 2003-06-12 | Fujitsu Limited | Optical communication system |
JPWO2003049330A1 (en) * | 2001-12-03 | 2005-04-21 | 富士通株式会社 | Optical communication system |
US7242865B2 (en) | 2001-12-03 | 2007-07-10 | Fujitsu Limited | Optical communication system |
US7376348B2 (en) | 2001-12-03 | 2008-05-20 | Fujitsu Limited | Optical communication system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5181134A (en) | Photonic cross-connect switch | |
JP3218047B2 (en) | Optical transmission system | |
EP0532230A1 (en) | Optical amplifiers having pump redundancy | |
JP2002280968A (en) | Optical amplification relay system | |
US5109296A (en) | Transmission line switching system | |
JPH10197736A (en) | Optical switch distributor | |
JP3325655B2 (en) | Method and apparatus for monitoring a branched optical line network | |
DE3224998A1 (en) | DEVICE DETECTING DEVICE IN AN OPTICAL MESSAGE TRANSMISSION SYSTEM | |
JP3100386B2 (en) | Optical communication system | |
WO1995015625A1 (en) | Bidirectional optical amplifier | |
JP2003324391A (en) | System and method for amplifying signal in optical network | |
JPH02253730A (en) | Optical line detouring system | |
JP2675615B2 (en) | Optical shutdown method | |
JPH09252281A (en) | Optical signal switching device and optical transmission system | |
JPH09179151A (en) | Direction switching type optical amplifier and bus type single fiber optical communication system using the same | |
JPS62196934A (en) | Optical fiber switching system | |
JPH039625A (en) | Fault supervising system for optical communication system | |
JPH037917A (en) | Optical separating and switching device for wavelength multiplex signal | |
JP2001021929A (en) | Optical line change-over system | |
JPH0473648B2 (en) | ||
JPH04319830A (en) | Optical bypass system | |
JPH04326218A (en) | Submarine optical repeater | |
JP2000278212A (en) | Optical transmission line fault point search system | |
JPS62150952A (en) | Duplicated node equipment | |
JPH10133032A (en) | Method and device for switching optical fiber cable line |