JPH0225362B2 - - Google Patents

Info

Publication number
JPH0225362B2
JPH0225362B2 JP1028486A JP1028486A JPH0225362B2 JP H0225362 B2 JPH0225362 B2 JP H0225362B2 JP 1028486 A JP1028486 A JP 1028486A JP 1028486 A JP1028486 A JP 1028486A JP H0225362 B2 JPH0225362 B2 JP H0225362B2
Authority
JP
Japan
Prior art keywords
polymerization
vinyl
mixture
water
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1028486A
Other languages
Japanese (ja)
Other versions
JPS62172001A (en
Inventor
Shoichi Tei
Shugen Ki
Mitsuaki Chin
Manton Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIWAN SOKO KOGYO KOFUN JUGENKOSHI
Original Assignee
TAIWAN SOKO KOGYO KOFUN JUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIWAN SOKO KOGYO KOFUN JUGENKOSHI filed Critical TAIWAN SOKO KOGYO KOFUN JUGENKOSHI
Priority to JP1028486A priority Critical patent/JPS62172001A/en
Publication of JPS62172001A publication Critical patent/JPS62172001A/en
Publication of JPH0225362B2 publication Critical patent/JPH0225362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はビニル系モノマーを重合するための重
合方法に係かり、特に、重合手法において使用さ
れる通常の乳化剤の代わりに無機塩を用いる方法
に関する。ビニル系モノマーの重合は水溶性開始
剤の存在下で行われる。反応混合物のPH値を適当
に調整するために、無機塩の電解溶液および緩衝
溶液が反応期間中の特定の時点で重合混合物中に
導入される。さらに、重合の間に、撹拌速度を二
段階操作によつて変更することは必須である。こ
のようにして製造されるポリマー樹脂はポリマー
粒子中に乳化剤残留物を含まず、このため、これ
らの樹脂からのプラスチゾルの性質、例えば粘度
安定性、熱安定性、および清澄性は通常の乳化重
合法またはミクロ懸濁重合法によつて製造される
ポリマー樹脂のそれよりも優れている。この重合
手法におけるモノマー/水の比率もまた改良さ
れ、このため重合のバツチまたはラン生産性が増
加される。 ビニル樹脂を製造する従来の乳化重合法におい
て、一般に、水溶性重合開始剤が用いられ、所望
の性質を有するラテツクスまたはペーストが得ら
れる。これに対して、ミクロ懸濁重合法において
ビニルポリマーまたはコポリマーを製造するため
に、油溶性重合開始剤が使用される。これらの方
法は例え採用されても、重合工程において多量の
乳化剤が含まれてしまう。この種の乳化剤とし
て、一例を示せば、陰イオン界面活性剤、例えば
高脂肪酸石鹸、長鎖アルコールの硫酸塩、アルキ
ルベンゼンスルホン酸金属塩等、非イオン界面活
性剤、例えば脂肪酸のグリセリンエステル、ソル
ビタンエステル、脂肪酸のポリオールエステル、
ポリオキシエチレン化合物等が挙げられる。 前記乳化剤含有重合法で得られる樹脂はポリマ
ー粒子中に含まれる乳化剤残留物を有することが
知られている。これは樹脂の特性において不利益
な効果を呈するものである。従つて、その後の過
程でこの樹脂をプラスチゾルまたはオルガノゾル
に用いる場合、貯蔵中に粘度が変化して使用不可
能となり、熱安定性も好ましくなく、かつ、これ
から製造される製品の清澄性もまた、好ましいも
のではない。乳化剤が樹脂の性質に悪影響を及ぼ
すことを鑑みれば、乳化剤が重合工程から除かれ
れば、多大の利点が得られることは明白である。
しかし、乳化剤が重合工程に含まれなければ、重
合期間中のコロイド粒子の安定性は不完全であ
る。したがつて、本発明は重合工程中に乳化剤を
含まず、しかも、重合期間中、コロイド粒子の安
定性を保持しうる重合方法を提供することにあ
る。 本発明によれば、ビニル系モノマーの重合方法
は二段階撹拌操作を通して一の填充混合物中で行
われる。約0.1乃至約0.8のモノマー/水比率を有
する成分を重合反応器中に装填する。モノマー、
脱鉱水および水溶性開始剤を含む反応混合物は充
分に撹拌される。次いで、この重合系を約30℃乃
至約75℃の範囲の反応温度で加熱する。しかし、
35℃乃至70℃の範囲の重合温度を用いることが望
ましい。反応温度が許容温度範囲よりも高い場合
には、大量の重合コロイドが凝固してポリマーの
塊りが増加するので注意すべきである。本発明で
は、さらに、重合開始後に高速撹拌期間を必要と
する。言い換えれば、反応の最初の段階で高速撹
拌を行う。これは重合反応が不均質系反応であつ
て、実質上の水不溶性モノマーと重合開始剤によ
つて生成される遊離基との間の衝突頻度を増加す
るために、充分な撹拌が要求されるためである。
効果的な衝突によつてモノマーと遊離基との間の
反応が開始され、この結果、反応の核発生が誘発
される。 重合開始剤から分解された遊離基は電気的に荷
電される。この荷電は、次いで、反応の核化粒子
に移動され、この結果、成長しつつある核発生重
合粒子は繁殖するポリマーと水相との間の界面で
電気的に荷電される。重合が約5%乃至約30%に
達した時点で、PH値が約7.5乃至11.5の範囲に調
整された電解溶液を、一定に撹拌された重合混合
物中に導入する。この導入により重合混合物のPH
値が約7.5〜約11.5の範囲に調整される。このPH
値が4以下の場合は、滓状沈澱物が増加し、かつ
製品の耐熱性が悪くなる。(後述の比較例3、表
―1参照)。 また、PH値が13以上の場合は、滓も多くなる。
(比較例4、表―1参照)。そしてPH値が7.5〜
11.5のときに最も良好な効果を奏し得ることがこ
れら実験により示された。したがつて、前述のPH
値は4〜13、好ましくは7.5〜11.5である。 また、反応の重合率が約5%から約30%に達し
たときに電解溶液あるいは緩衝液を導入する理由
は次のとおりである。すなわち、重合率(転換
率)が5%以下ではモノマーのポリマーへの重合
が少なく安定しているため、緩衝液等を導入する
意味がない。しかし、これが5%〜30%に達した
場合には、反応混合物を適当なPHに調整しなけれ
ば良好な電子二重層を維持して安定を保持できな
いため、このときに緩衝液等を導入する必要が生
じる。また、30%を超してもなおかつ、緩衝液等
を導入しないと、ポリマー(PVC)の粒子が不
安定となり、塊が増加する。(後述の比較例2を
参照)。荷電された重合粒子は逆イオンによつて
包囲され、そして、各粒子の周りで電子二重層を
形成し、この結果、ポリマーはコロイド状態を維
持することができる。 重合が約50%乃至約70%の範囲に達したとき
に、ポリマーはある程度まで成長かつ繁殖されモ
ノマー濃度が比較的低下する。この場合、第1段
階の高速撹拌を維持すれば、ポリマーの安定性は
破壊される。ポリマーはこのようにして生成され
れば、沈澱物を凝固するか、あるいは望ましくな
いポリマー塊りを形成する。さらに、高速撹拌が
不当に延長されると、遊離基の停止反応が起こつ
てポリマーの成長または繁殖ができなくなり、そ
して反応の核発生が水中の稀釈モノマーの方に移
動して反応の終了時期に望ましくない新規粒子が
形成される。これらの望ましくない現象を避ける
ために、この時点で撹拌速度を減速すべきであ
る。(以後、これを第二段階撹拌と呼ぶ))好まし
い第二段階撹拌速度は第一段階速度の約1/3乃至
1/6であることがわかつた。 本発明において、「ビニル系モノマー」とはハ
ロゲン化ビニル、例えば塩化ビニル等、ハロゲン
化エチレン、例えば臭化エチレン等、ハロゲン化
ビニリデン、例えば塩化ビニリデン等、ビニルエ
ステル、例えば酢酸ビニル等、ニトリル、例えば
アクリロニトリル等、およびその他公知の油溶性
オレフインモノマーである。本発明は前記オレフ
インモノマーの一種のモノポリマーを製造するこ
とに応用され、また、前記オレフインモノマーの
少なくとも二種のコポリマーを製造することにも
応用される。しかし、わずかに水溶性の極性モノ
マーを使用することが好ましい。油溶性モノマー
の水溶解度は0.2%ないしはそれ以上であるので、
反応の核発生の可能性が増加することがわかつ
た。 本発明における好ましいモノマー/水比率は約
0.1乃至約0.8の範囲である。重合条件が厳格に維
持されなければ、すなわち、反応混合物のPH値を
約7.5乃至約11.5の範囲に調整するために工程中
に緩衝溶液が使用されなければ、あるいは撹拌速
度が正確な初期速度に保持されず、かつその後適
当な時期に好ましい第二段階速度に変更されなけ
れば、あるいはまた、電解溶液が正しい瞬間に導
入されなければ、反応混合物のコロイド状態は不
安定になり、このため反応混合物をなお充分に安
定な状態に保持するためにモノマー/水比率を約
0.05乃至約0.1の範囲に低下させることが必要と
なる。これに対して、重合条件が本発明方法に従
つて厳密に保持されるならば、モノマー/水比率
は本発明の範囲、すなわち約0.1乃至約0.8の範囲
に増加することができる。なお、この比率が0.1
よりも小さいときは経済的に不利であり、0.8よ
りも大きい場合にはPVC乳化物が不安定になる。 本発明において、開始剤は水溶性化合物であ
り、例えば過酸化水素、アルカリ金属の過硫酸
塩、または構造式中にアンモニウムイオンを含む
かまたは、含まない水溶性還元剤、例えばアルカ
リ金属の亜硫酸塩または重亜硫酸塩である。開始
剤の使用量はモノマー重量に対して約0.05%乃至
0.4%(重量)の範囲である。開始剤の使用量は
実際には反応系設備の生産能率によつて決定され
るものであるが、これが0.05%よりも少ない場合
には反応が遅く、経済性に劣り、また、0.4%よ
りも多いと、反応器の散熱極限に影響をきたし、
制御できなくなるおそれがある。好ましい開始剤
は構造式中に硫酸基(SO4 --)、カルボキシル基
(COO-)またはヒドロキシル基(OH-)を含む
化合物である。この種の開始剤の一例を示せば、
K2S2O8,K2S2O5,K2S2O3,NaHSO3,H2O2
である。開始剤は重合工程において、電気的に荷
電された遊離基に分解され、これによつて生成さ
れる繁殖ポリマーはその末端基に荷電基を含む。
反応の核発生セルにおける各ポリマーの末端基は
外側に向いており、そして水中の電解質イオンと
ともに、各核発生粒子の周りで電子二重層を形成
し、この結果、凝固ないしはアグロメレーシヨン
が避けられ、そして懸濁液中で安定なコロイドが
得られる。 開始剤の均一な分解を促進し、かつ、重合混合
物を適当な反応温度で安定化するために、重合過
程中に少量の酸化剤を添加することができる。使
用しうる酸化剤は遷移元素(金属)の塩、例えば
Fe,Cu,Zn,Ce,Sn,CoおよびVの硝酸塩、
塩酸塩、臭酸塩、または硫酸塩等である。前記酸
化剤の好ましい添加量は添加される開始剤のモル
の約0.1乃至約10倍である。しかし、前記酸化剤
は使用に際して、重合工程中に含有される開始剤
の濃度および種類を考慮しなければならず、反応
を抑制するようなことになつてならない。さもな
いと、重合コロイドの安定性は失われてしまう。 本発明で使用されるコロイド安定剤は水溶性無
機塩系の電解質物質、例えば、周期律表A属、
A属、またはA属の水酸化物、塩化物、炭酸
塩、重炭酸塩、リン酸塩、または硝酸塩である。
安定剤の最適量は主に、全反応混合物のイオン強
度に負つており、かつ、使用される開始剤および
酸化剤と良好なバランスを維持すべきである。好
ましい量はモノマー重量に対して約0.01%乃至約
0.5%(重量)の範囲である。これが0.01%より
も少ないと、PVC乳化物の安定性が悪くなつて
凝結する欠点が生じ、また、0.5%よりも多い場
合にはPVC製品の物理特性に影響を与える。本
発明の実施に当たり、反応混合物をPH約7.5乃至
11.5の好ましい範囲に維持しうる緩衝溶液もま
た、重合工程中に導入される。これは反応系のPH
を前記範囲に維持する限り、いかなる種類のもの
も使用可能であり、一例を示せば、NH3
NaOH、NaHCO3/NaOHまたはNa3PO4
NaHPO4である。PH値を約7.5乃至約11.5の範囲
に維持するには、緩衝溶液の量を厳密に定めるこ
とのみで充分である。適量の緩衝溶液を用いるこ
とにより、繁殖ポリマーの末端基は基本的な雰囲
気において、全重合工程を通じて充分に負の電荷
になる。 本発明方法をさらに詳細に説明するために、塩
化ビニルの重合工程についての実施例を以下に示
す。もちろん、この実施例は本発明方法を説明す
るためのものであつて、本発明方法はこれに何等
制限されるものではない。 実施例 1 1リツトル容量の重合容器(または反応容器)
に、0.5gK2S2O8および500c.c.脱鉱水の混合物を
装填した。次いで、容器をきつちりと閉め、−740
mmHgまで真空にした。この中に塩化ビニル100c.c.
を添加し、そしてこの系を600rpmの撹拌速で撹
拌した。混合物を52℃の反応温度で半時間加熱し
た。次いで、反応容器中に電解質溶液(0.04g
CaCO3+0.8g25%NH3/NaOH溶液)のプレミ
ツクスを導入した。2.5時間後、撹拌速度を
100rpmに減速した。反応は圧力低下が2Kgに達
するまで続けた。粒径約0.4ミクロン乃至約1.5ミ
クロンの安定なポリマーを得た。そして、ポリマ
ー塊りは装填ストツクの約0.1%であつた。 前記電解質溶液は反応の重合が5%から30%に
達したときに導入され、混合物のPHを調整した。
このPH値は4以下では滓状沈澱物が増加し、かつ
製品の耐熱性が悪くなる。(後述の比較例3、表
―1参照)。また、PH値が13以上のでは滓も多く
なる。(後述の比較例4、表―1参照。)そしてPH
値が7.5〜11.5のときに最も良好な効果を奏し得
る。 また、反応の重合が5%以下では、ポリマーへ
の重合が少なく、安定しているので、電解質溶液
の導入は意味がない。しかし、これが5%〜30%
に達すると反応混合物のPHを適当な値に調整しな
いと、良好な電子二重層を維持して安定な状態と
することができなくなるため、電解質溶液を導入
し、PHを調整しなければならない。なお、重合率
が30%を超してもなお電解質溶液を導入しない
と、ポリマーの粒子が不安定となり、塊が増加す
る。(後述の比較例2を参照)。 さらに、前述の電解質溶液の添加量は0.01%〜
0.5%(重量)である。この添加量が0.01%より
も少ない場合にはポリマー乳化物の安定性が悪く
なり、凝結する。また、これが0.5よりも多いと、
ポリマー製品の物理特性に影響が生じる。 また、モノマー/水の比率は0.1〜0.8が最適で
ある。これが0.1よりも小さいと経済性に劣り、
また、0.8よりも大きいと、ポリマー乳化物が不
安定になる。 比較例 1 反応圧力低下が2Kg/cm2に達するまで、
600rpmの撹拌速度を維持しながら、重合反応を
実施例1と同様にして繰り返した。ポリマー塊り
は装填ストツクの約30%であつた。ポリマーの粒
径は約0.2乃至0.7ミクロンの範囲のものであつ
た。 比較例 2 2.5時間反応の後に電解質溶液および緩衝溶液
を重合混合物中に導入し、他の重合条件は実施例
1と同様であつた。ポリマー塊りは装填ストツク
の約12%であつた。ポリマーの粒径は約0.2乃至
1.5ミクロンの範囲のものであつた。 比較例 3 電解溶液のPH値を3.5乃至4.0の範囲に規制し、
他の重合条件は実施例1と同様であつた。ポリマ
ー塊りは装填ストツクの約25%であつた。ポリマ
ーの粒径は約0.2乃至1.4ミクロンの範囲のもので
あつた。 比較例 4 重合混合物をPH値13に規制し、他の重合条件は
実施例1と同様に維持した。反応時間は長く、圧
力低下はこの系では観測されなかつた。反応混合
物が塩基性になつたときには、開始剤K2S2O8
反応を開始することが不可能であり、反応は不完
全であつた。ポリマーの粒径は約0.2乃至0.9ミク
ロンの範囲のものであつた。ポリマー塊りは装填
ストツクの約8%であつた。 前述の実施例ならびに比較例の結果を表―1に
示す。
The present invention relates to a polymerization method for polymerizing vinyl monomers, and in particular to a method using an inorganic salt in place of a conventional emulsifier used in the polymerization procedure. Polymerization of vinyl monomers is carried out in the presence of a water-soluble initiator. In order to suitably adjust the PH value of the reaction mixture, electrolyte and buffer solutions of inorganic salts are introduced into the polymerization mixture at certain points during the reaction period. Furthermore, during the polymerization it is essential to vary the stirring speed by a two-stage operation. The polymer resins produced in this way do not contain emulsifier residues in the polymer particles, and therefore the properties of plastisols from these resins, such as viscosity stability, thermal stability, and clarity, are similar to those of normal emulsion polymers. superior to that of polymer resins produced by legal or microsuspension polymerization methods. The monomer/water ratio in this polymerization procedure is also improved, thus increasing the batch or run productivity of the polymerization. In conventional emulsion polymerization methods for producing vinyl resins, water-soluble polymerization initiators are generally used to obtain latexes or pastes with desired properties. In contrast, oil-soluble polymerization initiators are used to produce vinyl polymers or copolymers in microsuspension polymerization methods. Even if these methods are adopted, a large amount of emulsifier will be included in the polymerization process. Examples of emulsifiers of this type include anionic surfactants such as high fatty acid soaps, sulfates of long-chain alcohols, metal salts of alkylbenzenesulfonates, and nonionic surfactants such as glycerin esters of fatty acids and sorbitan esters. , polyol esters of fatty acids,
Examples include polyoxyethylene compounds. It is known that resins obtained by the emulsifier-containing polymerization method have emulsifier residues contained in the polymer particles. This has a detrimental effect on the properties of the resin. Therefore, when this resin is used in plastisols or organosols in the subsequent process, the viscosity changes during storage and becomes unusable, the thermal stability is also unfavorable, and the clarity of the products manufactured from it is also affected. Not desirable. In view of the negative effect emulsifiers have on the properties of resins, it is clear that significant benefits would be obtained if emulsifiers were removed from the polymerization process.
However, if an emulsifier is not included in the polymerization process, the stability of the colloidal particles during the polymerization period is incomplete. Therefore, an object of the present invention is to provide a polymerization method that does not contain an emulsifier during the polymerization process and can maintain the stability of colloidal particles during the polymerization period. According to the present invention, the process for polymerizing vinyl monomers is carried out in one charged mixture through a two-stage stirring operation. The components having a monomer/water ratio of about 0.1 to about 0.8 are charged into a polymerization reactor. monomer,
The reaction mixture containing demineralized water and water-soluble initiator is thoroughly stirred. The polymerization system is then heated to a reaction temperature ranging from about 30°C to about 75°C. but,
It is desirable to use polymerization temperatures in the range of 35°C to 70°C. It should be noted that if the reaction temperature is higher than the permissible temperature range, a large amount of polymerized colloid will coagulate, resulting in increased polymer agglomeration. The present invention further requires a period of high-speed stirring after initiation of polymerization. In other words, high-speed stirring is performed during the first stage of the reaction. This is because the polymerization reaction is a heterogeneous reaction, and sufficient stirring is required to increase the frequency of collisions between the substantially water-insoluble monomer and the free radicals generated by the polymerization initiator. It's for a reason.
Efficient collisions initiate a reaction between the monomer and the free radicals, thus inducing nucleation of the reaction. The free radicals decomposed from the polymerization initiator become electrically charged. This charge is then transferred to the reaction nucleating particles such that the growing nucleated polymeric particles become electrically charged at the interface between the growing polymer and the aqueous phase. When polymerization reaches about 5% to about 30%, an electrolytic solution with a pH value adjusted to a range of about 7.5 to 11.5 is introduced into the constantly stirred polymerization mixture. This introduction increases the pH of the polymerization mixture.
The value is adjusted to a range of about 7.5 to about 11.5. This PH
When the value is 4 or less, the amount of scum-like precipitates increases and the heat resistance of the product deteriorates. (See Comparative Example 3 and Table 1 below). Also, if the pH value is 13 or higher, there will be more slag.
(See Comparative Example 4, Table 1). And the PH value is 7.5~
These experiments showed that the best effect can be achieved when the ratio is 11.5. Therefore, the aforementioned PH
The value is between 4 and 13, preferably between 7.5 and 11.5. Further, the reason why the electrolytic solution or buffer solution is introduced when the polymerization rate of the reaction reaches about 5% to about 30% is as follows. That is, when the polymerization rate (conversion rate) is 5% or less, there is little polymerization of monomers into polymers and the polymerization is stable, so there is no point in introducing a buffer solution or the like. However, when this reaches 5% to 30%, a good electronic double layer cannot be maintained and stability can be maintained unless the reaction mixture is adjusted to an appropriate pH, so a buffer solution etc. must be introduced at this time. The need arises. Furthermore, if the concentration exceeds 30% and a buffer solution or the like is not introduced, the polymer (PVC) particles will become unstable and clumps will increase. (See Comparative Example 2 below). The charged polymeric particles are surrounded by counterions and form an electronic double layer around each particle, allowing the polymer to remain in a colloidal state. When polymerization reaches a range of about 50% to about 70%, the polymer has grown and propagated to a certain extent and the monomer concentration is relatively reduced. In this case, maintaining the high speed stirring of the first stage destroys the stability of the polymer. If the polymer is produced in this manner, it will solidify the precipitate or otherwise form undesirable polymer clumps. Furthermore, if high-speed agitation is unduly prolonged, free radical termination reactions occur, preventing polymer growth or propagation, and the nucleation of the reaction shifts toward the diluted monomer in the water, leading to the termination of the reaction. Undesired new particles are formed. To avoid these undesirable phenomena, the stirring speed should be reduced at this point. (Hereinafter, this will be referred to as second stage agitation.) It has been found that the preferred second stage agitation speed is about 1/3 to 1/6 of the first stage speed. In the present invention, "vinyl monomer" refers to vinyl halides, such as vinyl chloride, ethylene halides, such as ethylene bromide, vinylidene halides, such as vinylidene chloride, vinyl esters, such as vinyl acetate, nitriles, such as Acrylonitrile, etc., and other known oil-soluble olefin monomers. The present invention applies to the production of monopolymers of one of the above olefin monomers, and also to the production of copolymers of at least two of the above olefin monomers. However, it is preferred to use slightly water-soluble polar monomers. Since the water solubility of oil-soluble monomers is 0.2% or more,
It was found that the probability of nucleation of the reaction increases. The preferred monomer/water ratio in the present invention is about
It ranges from 0.1 to about 0.8. Unless the polymerization conditions are maintained strictly, i.e., a buffer solution is not used during the process to adjust the PH value of the reaction mixture to a range of about 7.5 to about 11.5, or the agitation speed is not maintained at the correct initial speed. If not maintained and then changed to the preferred second stage velocity at a suitable time, or alternatively if the electrolyte solution is not introduced at the correct moment, the colloidal state of the reaction mixture will become unstable and the reaction mixture will thus The monomer/water ratio was adjusted to approx.
A reduction in the range of 0.05 to about 0.1 is required. On the other hand, if the polymerization conditions are maintained strictly according to the method of the present invention, the monomer/water ratio can be increased to the range of the present invention, ie, from about 0.1 to about 0.8. Note that this ratio is 0.1
When it is smaller than 0.8, it is economically disadvantageous, and when it is larger than 0.8, the PVC emulsion becomes unstable. In the present invention, the initiator is a water-soluble compound, such as hydrogen peroxide, an alkali metal persulfate, or a water-soluble reducing agent with or without ammonium ions in its structural formula, such as an alkali metal sulfite. or bisulfites. The amount of initiator used is about 0.05% to monomer weight.
It is in the range of 0.4% (by weight). The amount of initiator used is actually determined by the production efficiency of the reaction system equipment, but if it is less than 0.05%, the reaction will be slow and economical, and if it is less than 0.4%, it will be less economical. If there is too much, it will affect the heat dissipation limit of the reactor,
There is a risk of loss of control. Preferred initiators are compounds containing a sulfate group (SO 4 -- ), a carboxyl group (COO - ) or a hydroxyl group (OH - ) in their structural formula. An example of this type of initiator is:
These include K 2 S 2 O 8 , K 2 S 2 O 5 , K 2 S 2 O 3 , NaHSO 3 and H 2 O 2 . The initiator is decomposed into electrically charged free radicals during the polymerization process, and the propagated polymer thereby produced contains charged groups at its end groups.
The end groups of each polymer in the reaction nucleation cell face outward and, together with the electrolyte ions in the water, form an electronic double layer around each nucleation particle, thus avoiding coagulation or agglomeration. , and a colloid stable in suspension is obtained. A small amount of oxidizing agent can be added during the polymerization process to promote uniform decomposition of the initiator and to stabilize the polymerization mixture at a suitable reaction temperature. Oxidizing agents that can be used include salts of transition elements (metals), e.g.
Nitrates of Fe, Cu, Zn, Ce, Sn, Co and V,
These include hydrochloride, bromate, or sulfate. The preferred amount of the oxidizing agent added is about 0.1 to about 10 times the moles of the initiator added. However, when using the oxidizing agent, consideration must be given to the concentration and type of initiator contained in the polymerization process, and the oxidizing agent must not inhibit the reaction. Otherwise, the stability of the polymerized colloid will be lost. The colloid stabilizer used in the present invention is a water-soluble inorganic salt-based electrolyte substance, such as a member of group A of the periodic table,
A genus A, or a hydroxide, chloride, carbonate, bicarbonate, phosphate, or nitrate of genus A.
The optimum amount of stabilizer depends primarily on the ionic strength of the total reaction mixture and should be kept in good balance with the initiator and oxidizing agent used. Preferred amounts are from about 0.01% to about 0.01% by weight of monomer.
It is in the range of 0.5% (by weight). If it is less than 0.01%, the stability of the PVC emulsion will be poor and it will cause coagulation, and if it is more than 0.5%, it will affect the physical properties of the PVC product. In practicing the present invention, the reaction mixture has a pH of about 7.5 to
A buffer solution, which can be maintained in the preferred range of 11.5, is also introduced during the polymerization process. This is the pH of the reaction system
Any type can be used as long as NH 3 /
NaOH, NaHCO 3 /NaOH or Na 3 PO 4 /
NaHPO4 . To maintain the PH value in the range of about 7.5 to about 11.5, it is sufficient to precisely define the amount of buffer solution. By using an appropriate amount of buffer solution, the end groups of the propagating polymer become sufficiently negatively charged throughout the entire polymerization process in the basic atmosphere. In order to explain the method of the present invention in more detail, examples for the vinyl chloride polymerization process are shown below. Of course, this example is for explaining the method of the present invention, and the method of the present invention is not limited thereto. Example 1 1 liter capacity polymerization vessel (or reaction vessel)
was charged with a mixture of 0.5 g K 2 S 2 O 8 and 500 c.c. demineralized water. Then, close the container tightly and -740
Vacuum was applied to mmHg. This contains 100c.c. of vinyl chloride.
was added and the system was stirred at a stirring speed of 600 rpm. The mixture was heated at a reaction temperature of 52° C. for half an hour. Next, the electrolyte solution (0.04g
A premix of CaCO 3 +0.8 g 25% NH 3 /NaOH solution) was introduced. After 2.5 hours, reduce the stirring speed to
The speed was reduced to 100 rpm. The reaction continued until the pressure drop reached 2 kg. A stable polymer with a particle size of about 0.4 microns to about 1.5 microns was obtained. The polymer mass was approximately 0.1% of the loaded stock. The electrolyte solution was introduced when the polymerization of the reaction reached 5% to 30% to adjust the PH of the mixture.
If the PH value is less than 4, scum-like precipitates will increase and the heat resistance of the product will deteriorate. (See Comparative Example 3 and Table 1 below). Also, if the pH value is 13 or higher, there will be a lot of slag. (See Comparative Example 4 and Table 1 below.) And PH
The best effect can be achieved when the value is between 7.5 and 11.5. Furthermore, if the polymerization of the reaction is 5% or less, the polymerization into the polymer is small and stable, so there is no point in introducing an electrolyte solution. However, this is 5% to 30%
If the PH of the reaction mixture reaches an appropriate value, it will not be possible to maintain a good electronic double layer and achieve a stable state, so an electrolyte solution must be introduced and the PH must be adjusted. Note that even if the polymerization rate exceeds 30%, if the electrolyte solution is not introduced, the polymer particles will become unstable and the number of lumps will increase. (See Comparative Example 2 below). Furthermore, the addition amount of the electrolyte solution mentioned above is 0.01% ~
0.5% (weight). If the amount added is less than 0.01%, the stability of the polymer emulsion deteriorates and it coagulates. Also, if this is more than 0.5,
The physical properties of the polymer product are affected. Further, the optimal monomer/water ratio is 0.1 to 0.8. If this is smaller than 0.1, it will be less economical;
Moreover, when it is larger than 0.8, the polymer emulsion becomes unstable. Comparative Example 1 Until the reaction pressure drop reached 2Kg/ cm2 ,
The polymerization reaction was repeated as in Example 1 while maintaining a stirring speed of 600 rpm. The polymer mass was approximately 30% of the loaded stock. The particle size of the polymer was in the range of about 0.2 to 0.7 microns. Comparative Example 2 After 2.5 hours of reaction, electrolyte solution and buffer solution were introduced into the polymerization mixture, other polymerization conditions were as in Example 1. The polymer mass was approximately 12% of the loaded stock. The particle size of the polymer is approximately 0.2 to
It was in the 1.5 micron range. Comparative Example 3 The PH value of the electrolytic solution was regulated within the range of 3.5 to 4.0,
Other polymerization conditions were the same as in Example 1. The polymer mass was approximately 25% of the loaded stock. The particle size of the polymer ranged from about 0.2 to 1.4 microns. Comparative Example 4 The polymerization mixture was controlled to have a pH value of 13, and other polymerization conditions were maintained as in Example 1. The reaction time was long and no pressure drop was observed in this system. When the reaction mixture became basic, the initiator K 2 S 2 O 8 was unable to initiate the reaction and the reaction was incomplete. The particle size of the polymer ranged from about 0.2 to 0.9 microns. The polymer mass was about 8% of the loaded stock. Table 1 shows the results of the above-mentioned Examples and Comparative Examples.

【表】 比較例1から、二段階撹拌、すなわち、反応の
第一段階における高速撹拌および第二段階におけ
る低速撹拌を採用しなければ繁殖ポリマーは系中
で不安定になることがわかる。比較例2から、電
解質安定剤溶液は安定な反応混合物を形成するた
めに、反応の正確なステツプで重合混合物中に導
入されるべきであることがわかる。比較例3およ
び4では、重合混合物のPH値は好ましい範囲内に
規制されるべきであることが明らかに示される。
酸性に成りすぎても、また、塩基性に成りすぎて
も、本条件外では受け入れ難い重合雰囲気を形成
し、そして、これらの影響は不安定なポリマーを
形成し、かつ、塊りが増加する。 前述の重合方法に加えて、本発明の他の利点は
得られた樹脂が優れた性質を有していることであ
る。本発明によつて製造された重合樹脂と通常の
乳化重合方法およびミクロ懸濁重合方法によつて
得られたものとを比較する。 実施例 2 20リツトル容量の重合容器に、1.2grのK2S2O8
および8リツトルの脱鉱水の混合物を装填した。
次いで、容器をきつちりと閉め、−740mmHgまで
真空にした。この中に塩化ビニル2リツトルを添
加した。撹拌機を稼動し、系を650rpmの速度で
15分間撹拌した。次いで、混合物を52℃の反応温
度で半時間加熱した。次いで、16grNH3
NaOH25%溶液+0.01grCaCl2+4grCaCO3を含
有する電解質溶液のプレミツクスを反応容器中に
導入した。2.5時間の後、撹拌速度を200rpmに減
速し、反応を圧力低下が2Kg/cm2に達するまで続
けた。工程からのPVC樹脂の粒径は約0.4乃至1.5
ミクロンであつた。 比較例 5 ミクロ懸濁重合 8リミツトルの脱鉱水、2.5grの2―4―ジメ
チル―2―2′―アゾ―ビス―バレロニトリル、
24grのドデシル硫酸ソーダ、36grのヘキサデカノ
ール、および12grのステアリン酸を含む装填物を
20リツトル容量の重合容器に導入した。次いで、
容器をきつちりと閉め、−740mmHgまで真空にし
た。この中に塩化ビニル4.5リツトルを添加し、
系を15分間撹拌した。次いで、混合物をホモジナ
イザーにより完全に均質化し、52℃の反応温度に
加熱した。反応は圧力低下が2Kg/cm2に達する
まで行われた。この工程から粒径約0.2乃至2.0ミ
クロンの範囲のラテツクスが得られた。 比較例 6 乳化重合 6リツトルの脱鉱水、2.5grのK2S2O8、10grの
ドデシルヘンゼンスルホン酸ソーダ、18grのステ
アリン酸、および20grのヘキサデカノールを含む
装填物を20リツトル容量の重合容器に導入した。
次いで、容器をきつちりと閉め、−740mmHgまで
真空にした。この中に塩化ビニル4.5リツトルを
添加し、系を15分間撹拌した。混合物を52℃の反
応温度に加熱した。前記反応混合物中に2リツト
ルの0.6%ドデシルヘンゼンスルホン酸ソーダを
0.4リツトル/時間の流速で連続的に添加した。
そして、反応は圧力低下が2Kg/cm2に達するまで
行われた。この工程から粒径約0.2乃至1.4ミクロ
ンの範囲のラテツクスが得られた。 前記三工程の各ポリマーラテツクスまたはスラ
リーを反応器から取り出し、スプレイ乾燥して、
乾燥されたPVCまたは樹脂を回収した。評価目
的のために前記各実験からの樹脂の性質を比較し
た。性質に関する適切なデータを表2に示した。
[Table] From Comparative Example 1, it can be seen that unless two-stage stirring is employed, ie, high-speed stirring in the first stage of the reaction and low-speed stirring in the second stage, the propagated polymer becomes unstable in the system. Comparative Example 2 shows that the electrolyte stabilizer solution should be introduced into the polymerization mixture at the correct step of the reaction in order to form a stable reaction mixture. Comparative Examples 3 and 4 clearly show that the PH value of the polymerization mixture should be regulated within the preferred range.
Becoming too acidic or too basic creates a polymerization atmosphere that is unacceptable outside these conditions, and these effects result in the formation of unstable polymers and increased agglomeration. . In addition to the polymerization method described above, another advantage of the present invention is that the resulting resin has excellent properties. A comparison is made between the polymeric resins produced according to the present invention and those obtained by conventional emulsion polymerization methods and microsuspension polymerization methods. Example 2 In a 20 liter capacity polymerization vessel, 1.2 gr of K 2 S 2 O 8
and 8 liters of demineralized water mixture.
The vessel was then tightly closed and vacuum was applied to -740 mmHg. Two liters of vinyl chloride was added to this. Turn on the stirrer and run the system at a speed of 650 rpm.
Stir for 15 minutes. The mixture was then heated at a reaction temperature of 52° C. for half an hour. Then 16grNH3 /
A premix of electrolyte solution containing 25% NaOH solution + 0.01 gr CaCl 2 + 4 gr CaCO 3 was introduced into the reaction vessel. After 2.5 hours, the stirring speed was reduced to 200 rpm and the reaction continued until a pressure drop of 2 Kg/cm 2 was reached. The particle size of PVC resin from the process is about 0.4 to 1.5
It was micron. Comparative Example 5 Microsuspension Polymerization 8 liters of demineralized water, 2.5 gr of 2-4-dimethyl-2-2'-azobis-valeronitrile,
A charge containing 24gr sodium dodecyl sulfate, 36gr hexadecanol, and 12gr stearic acid.
It was introduced into a 20 liter capacity polymerization vessel. Then,
The container was tightly closed and vacuum was applied to -740 mmHg. Add 4.5 liters of vinyl chloride to this,
The system was stirred for 15 minutes. The mixture was then completely homogenized using a homogenizer and heated to a reaction temperature of 52°C. The reaction was carried out until the pressure drop reached 2 Kg/cm 2 . This process resulted in a latex with particle sizes ranging from about 0.2 to 2.0 microns. Comparative Example 6 Emulsion Polymerization A charge containing 6 liters of demineralized water, 2.5 gr of K 2 S 2 O 8 , 10 gr of sodium dodecylhenzenesulfonate, 18 gr of stearic acid, and 20 gr of hexadecanol was added to a 20 liter volume. It was introduced into a polymerization vessel.
The vessel was then tightly closed and vacuum was applied to -740 mmHg. 4.5 liters of vinyl chloride was added to this and the system was stirred for 15 minutes. The mixture was heated to a reaction temperature of 52°C. Add 2 liters of 0.6% sodium dodecylhenzenesulfonate to the reaction mixture.
Addition was made continuously at a flow rate of 0.4 liters/hour.
The reaction was continued until the pressure drop reached 2 Kg/cm 2 . This process resulted in a latex with particle sizes ranging from about 0.2 to 1.4 microns. The polymer latex or slurry in each of the three steps is taken out of the reactor, spray dried,
The dried PVC or resin was collected. The properties of the resins from each of the experiments were compared for evaluation purposes. Appropriate data regarding properties are shown in Table 2.

【表】【table】

【表】 表2のデータは次ぎの試験工程から得られた。 (1) 熱安定性についての試験工程: 熱安定性を測定するために、各工程の樹脂また
はポリ塩化ビニル(PVC)を用い、次ぎのよう
にしてプラスチゾルを製造した。 PVC樹脂 100PHR (a) ジオクチルフタレートト 80PHR CaCO3 10PHR Ba―Zn液状安定剤 2PHR (a) PHR:樹脂100部に対する部 前記プラスチゾルから、厚さ0.2mmのフイルム
を製造し、1分に対して190℃のゲルポイントで
加熱した。各工程のフイルムを小さく切断し、オ
ーブン温度220℃の熟成オープン中に入れた。試
験片の一つを30秒毎にオーブンから取り出した。
各工程の試験片の褪色を比較し、黒色化までの熟
成時間(分)を記録した。 (2) 清澄性についての試験工程: 次ぎの試料を調製した。 PVC樹脂 100PHR ジオクチルフタレート 80PHR 有機錫安定剤 1PHR 前記各工程のPVC樹脂から厚さ0.2mmのフイル
ムを製造し、190℃で3分間加熱した。次いで、
前記フイルムをガラス板上に置き、標準発光体の
下で清澄性について観察した。清澄性の比較:
「優れている」は良い〕よりも清澄性が優れてい
ることを意味する。 (3) プラスチゾルの調製後、粘度測定についての
試験工程: 各工程のPVC樹脂を用いて、次ぎの配合のプ
ラスチゾルをつくつた。 PVC樹脂 100PHR ジオクチルフタレート 70PHR アジピン酸ジオクチル 10PHR CaCO3 10PHR 粘度値はブルツクフイールド型B粘度計を用い
ての測定値である。粘度は各プラスチゾルを表2
の日数調製後に25℃の温度でセンチポイズ
(cps.)の単位を用いて測定した。 前記結果から本発明の製品は優れた性質を保持
することがわかる。本発明のおおくの利点の中
で、樹脂の性質が非常に改良されており、特に、
本発明方法によつてモノマー/水比率が改良され
るため、重合のバツチまたはランについての生産
性が向上されている。 本発明は前記実施例によつて説明したが、本発
明の範囲はこれらに限定されるものではなく、本
発明の範囲内に於いて種々の変更が可能である。
[Table] The data in Table 2 was obtained from the following test steps. (1) Test process for thermal stability: In order to measure thermal stability, plastisol was produced in the following manner using resins or polyvinyl chloride (PVC) from each process. PVC resin 100PHR (a) Dioctyl phthalate 80PHR CaCO 3 10PHR Ba-Zn liquid stabilizer 2PHR (a) PHR: parts per 100 parts of resin A film with a thickness of 0.2 mm was produced from the above plastisol, and the rate was 190 per minute. Heated at gel point of °C. The films of each process were cut into small pieces and placed in an open ripening oven at a temperature of 220°C. One of the specimens was removed from the oven every 30 seconds.
The fading of the test pieces in each step was compared, and the aging time (minutes) until blackening was recorded. (2) Test process for clarity: The following samples were prepared. PVC resin 100 PHR Dioctyl phthalate 80 PHR Organotin stabilizer 1 PHR A film with a thickness of 0.2 mm was produced from the PVC resin of each step above and heated at 190° C. for 3 minutes. Then,
The film was placed on a glass plate and observed for clarity under a standard illuminant. Clarity comparison:
"Excellent" means better clarity than "Good". (3) Test process for viscosity measurement after plastisol preparation: Using the PVC resins from each process, plastisols with the following formulations were made. PVC resin 100PHR Dioctyl phthalate 70PHR Dioctyl adipate 10PHR CaCO 3 10PHR The viscosity values are the values measured using a Bruckfield type B viscometer. The viscosity of each plastisol is shown in Table 2.
Measurements were made using centipoise (cps.) units at a temperature of 25°C after several days of preparation. The above results show that the product of the present invention retains excellent properties. Among the many advantages of the present invention, the properties of the resin are greatly improved, in particular:
Due to the improved monomer/water ratio provided by the process of the present invention, productivity for batches or runs of polymerization is increased. Although the present invention has been described with reference to the above embodiments, the scope of the present invention is not limited thereto, and various modifications can be made within the scope of the present invention.

Claims (1)

【特許請求の範囲】 1 ビニル系モノマーの重合を反応器中で水溶性
重合開始剤の存在下で行う方法であつて、重合反
応混合物のモノマー/水の比率を0.1〜0.8に調整
し、最初はモノマーおよび重合開始剤によつて生
成される遊離基の間の衝突頻度を促進するに充分
な初期撹拌速度、すなわち500rpm〜800rpmの第
一段階の高速撹拌速度で撹拌を行いながら、ビニ
ル系モノマーの乳化重合反応を起こさせ、重合反
応の重合率が約5%〜30%に達したときに、重合
混合物のPHを約7.5〜11.5の範囲に調整して該重
合混合物を安定なコロイド状態に維持すべく、上
記初期または第一段階の高速撹拌速度を維持しな
がら、該重合混合物中にモノマーに対して約0.01
%〜0.5%(重量%)のコロイド安定剤である水
溶性無機塩系の電解質溶液および少量の緩衝剤を
導入して重合混合物と混合撹拌させ、重合反応の
重合率が約50%〜70%に達したときに、上記撹拌
速度を初期の第一段階の高速撹拌速度の1/3〜1/6
に減速され、上記コロイド状態の安定性の維持に
充分な第二段階または後期の低速撹拌速度に切入
替え、これにより重合物粒子中に含有される乳化
剤残留物が存在せず、かつ改良された物理性質を
有するホモポリマーまたはコポリマー樹脂を得る
ことを特徴とするビニル系モノマーのホモポリマ
ーまたはコポリマーを製造する方法。 2 特許請求の範囲第1項に記載の方法におい
て、コロイド安定剤である水溶性無機塩系の電解
質溶液は周期律表A属、A属、またはA属
の水酸化物、塩化物、炭酸塩、重炭酸塩、リン酸
塩、または硝酸塩である方法。 3 特許請求の範囲第1項に記載の方法におい
て、重合開始剤は上記モノマーの重量に対して約
0.05%〜0.4%(重量%)が使用され、この重合
開始剤は重合混合物中で分解して硫酸基、ヒドロ
キシル基またはカルボキシル基を生成する水溶性
化合物、または構造式中にアンモニウムイオンを
含むかあるいは含まない水溶性還元剤である方
法。 4 特許請求の範囲第1項に記載の方法におい
て、コロイド安定剤である電解質溶液と共に反応
混合物のPH値を7.5〜11.5の範囲に維持するため
用いられる緩衝液はアンモニア/水酸化ナトリウ
ム、リン酸ナトリウム/リン酸水素ナトリウム、
炭酸ナトリウム/重炭酸ナトリウムおよび重炭酸
ナトリウム/水酸化ナトリウムから選択された一
種である方法。 5 特許請求の範囲第1項に記載の方法におい
て、モノマーは塩化ビニルのようなハロゲン化ビ
ニル、塩化ビニリデンのようなハロゲン化ビニリ
デン、酢酸ビニルのようなビニルエステル、臭化
エチレンのようなハロゲン化エチレン、またはそ
の他のアクリロニトリルのような油溶性オレフイ
ンモノマーである方法。 6 特許請求の範囲第5項に記載の方法におい
て、前記モノマーは2種または2種以上の混合物
である方法。
[Claims] 1. A method for polymerizing vinyl monomers in the presence of a water-soluble polymerization initiator in a reactor, the method comprising: adjusting the monomer/water ratio of the polymerization reaction mixture to 0.1 to 0.8; The vinyl-based monomer is stirred at an initial stirring speed sufficient to promote the collision frequency between the free radicals generated by the monomer and the polymerization initiator, i.e., a high first stage stirring speed of 500 rpm to 800 rpm. When the polymerization rate of the polymerization reaction reaches approximately 5% to 30%, the pH of the polymerization mixture is adjusted to a range of approximately 7.5 to 11.5 to bring the polymerization mixture into a stable colloidal state. About 0.01% of the monomer in the polymerization mixture while maintaining the high initial or first stage stirring speed described above.
% ~ 0.5% (wt%) of a water-soluble inorganic salt-based electrolyte solution that is a colloid stabilizer and a small amount of buffer are mixed and stirred with the polymerization mixture, and the polymerization rate of the polymerization reaction is approximately 50% ~ 70%. When the above stirring speed reaches 1/3 to 1/6 of the initial high speed stirring speed of the first stage.
and switch to a second or later stage slow stirring speed sufficient to maintain the stability of the colloidal state, thereby eliminating the presence of emulsifier residues contained in the polymer particles and improving the stability of the colloidal state. A method for producing a homopolymer or copolymer of vinyl monomers, characterized in that a homopolymer or copolymer resin having physical properties is obtained. 2. In the method according to claim 1, the water-soluble inorganic salt-based electrolyte solution as a colloid stabilizer is a hydroxide, chloride, or carbonate of Group A, Group A, or Group A of the Periodic Table. , bicarbonate, phosphate, or nitrate. 3. In the method according to claim 1, the polymerization initiator is used in an amount of about
0.05% to 0.4% (wt%) is used, and the polymerization initiator is a water-soluble compound that decomposes in the polymerization mixture to produce sulfate, hydroxyl or carboxyl groups, or contains ammonium ions in its structural formula. Or a method that does not contain a water-soluble reducing agent. 4. In the method described in claim 1, the buffer used to maintain the pH value of the reaction mixture in the range of 7.5 to 11.5 together with the electrolyte solution which is a colloid stabilizer is ammonia/sodium hydroxide, phosphoric acid. sodium/sodium hydrogen phosphate,
A method selected from sodium carbonate/sodium bicarbonate and sodium bicarbonate/sodium hydroxide. 5 In the method described in claim 1, the monomer is a vinyl halide such as vinyl chloride, a vinylidene halide such as vinylidene chloride, a vinyl ester such as vinyl acetate, or a halogenated vinyl such as ethylene bromide. The method is ethylene, or other oil-soluble olefin monomers such as acrylonitrile. 6. The method according to claim 5, wherein the monomers are two types or a mixture of two or more types.
JP1028486A 1986-01-22 1986-01-22 Production of homopolymer or copolymer of olefinic unsaturated monomer Granted JPS62172001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028486A JPS62172001A (en) 1986-01-22 1986-01-22 Production of homopolymer or copolymer of olefinic unsaturated monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028486A JPS62172001A (en) 1986-01-22 1986-01-22 Production of homopolymer or copolymer of olefinic unsaturated monomer

Publications (2)

Publication Number Publication Date
JPS62172001A JPS62172001A (en) 1987-07-29
JPH0225362B2 true JPH0225362B2 (en) 1990-06-01

Family

ID=11746009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028486A Granted JPS62172001A (en) 1986-01-22 1986-01-22 Production of homopolymer or copolymer of olefinic unsaturated monomer

Country Status (1)

Country Link
JP (1) JPS62172001A (en)

Also Published As

Publication number Publication date
JPS62172001A (en) 1987-07-29

Similar Documents

Publication Publication Date Title
US4458057A (en) Process for producing spherical and porous vinyl resin particles
US4360651A (en) Process for preparing spherical and porous vinyl resin particles
US5087678A (en) Method for reducing foaming in a vinyl chloride polymerization reactor
JP2000290307A (en) Latex of vinyl-chloride-based polymer having two particle diameter distributions and having high fine content, production of same, and use of same
US6297316B1 (en) Bipopulated latex of polymers based on vinyl chloride, processes for the production thereof and application thereof in plastisols exhibiting improved rheology
US4310649A (en) Process for production of vinyl chloride polymer using alcohols
US4186259A (en) Process for producing homopolymers or copolymers of vinyl or vinylidene halides by emulsion polymerization
US4377672A (en) Process for the polymerization of vinyl chloride according to the microsuspension process
EP0052632B1 (en) Process for preparing spherical and porous vinyl resin particles
JP3286675B2 (en) Method for producing polyvinyl chloride resin for paste processing
JPH0225362B2 (en)
US4539380A (en) Process for producing homopolymers or copolymers of olefinically unsaturated monomers
US5872155A (en) Latex based on vinyl chloride copolymers with a specific structure, process for the manufacture thereof and applications thereof
JP4144322B2 (en) Method for producing vinyl chloride polymer for paste processing
US4163090A (en) Process for preparing normally crystalline vinylidene halide polymers having superior flow properties employing a combination of colloidal silica and non-ionic water soluble cellulose ether having a viscosity of about 5 cp or less as stabilizing agents
EP0051678B1 (en) Process for producing spherical and porous vinyl resin particles
JPH05271313A (en) Production of vinyl chloride polymer
CA1152695A (en) Method of polymerizing vinyl chloride
US3862076A (en) Preparation of vinyl chloride polymers in aqueous dispersion with alpha halogen substituted unsymmetrical diacyl peroxide initiator
US5376747A (en) Process for producing vinyl chlorine-based polymer via continuous or intermittent addition of dispersing stabilizer
JP3286676B2 (en) Method for producing polyvinyl chloride resin for paste processing
JP4257932B2 (en) Manufacturing method of PVC resin for paste
JP3508171B2 (en) Method for producing vinyl chloride resin
JP3286677B2 (en) Manufacturing method of polyvinyl chloride resin for paste processing
JPH0479363B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees