JPH0225243B2 - - Google Patents

Info

Publication number
JPH0225243B2
JPH0225243B2 JP15673182A JP15673182A JPH0225243B2 JP H0225243 B2 JPH0225243 B2 JP H0225243B2 JP 15673182 A JP15673182 A JP 15673182A JP 15673182 A JP15673182 A JP 15673182A JP H0225243 B2 JPH0225243 B2 JP H0225243B2
Authority
JP
Japan
Prior art keywords
superconducting magnet
superconducting
insulating material
coil
sheath tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15673182A
Other languages
Japanese (ja)
Other versions
JPS5947717A (en
Inventor
Yoshihiro Wachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15673182A priority Critical patent/JPS5947717A/en
Publication of JPS5947717A publication Critical patent/JPS5947717A/en
Publication of JPH0225243B2 publication Critical patent/JPH0225243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は核融合炉用超電導磁石等の極低温雰囲
気において使用される超電導マグネツトに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting magnet used in a cryogenic atmosphere, such as a superconducting magnet for a nuclear fusion reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導マグネツトは浸漬冷却方式と強制冷却方
式とがあり、強制冷却方式は大電流密度にでき、
また、電磁力に対するコイル強度を高めることが
できるなど、浸漬冷却方式では得ることの困難な
多くの利点を持つている。
There are two types of superconducting magnets: the immersion cooling method and the forced cooling method.The forced cooling method allows for large current density;
It also has many advantages that are difficult to obtain with immersion cooling methods, such as increasing the strength of the coil against electromagnetic force.

第1図は従来の強制冷却方式の超電導マグネツ
トである。複数の超電導線1を四角形または丸形
のシース管2内に通した管状導体をパンケーキ巻
き、またはソレノイド巻きに巻きあげ、シース管
2の表面には図示してない絶縁材で覆い、電磁力
に対する強度を保つため絶縁材3例えばエポキシ
樹脂を含浸して固めコイル容器4に収納してい
る。シース管2内の超電導線1以外の空間には冷
媒を流して冷却を行つている。
FIG. 1 shows a conventional forced cooling superconducting magnet. A tubular conductor in which a plurality of superconducting wires 1 are passed through a rectangular or round sheath tube 2 is wound up in a pancake or solenoid manner, and the surface of the sheath tube 2 is covered with an insulating material (not shown) to generate electromagnetic force. The insulating material 3 is impregnated with, for example, epoxy resin, and then hardened and housed in the coil container 4 in order to maintain its strength. The space other than the superconducting wire 1 inside the sheath tube 2 is cooled by flowing a refrigerant.

一般に管状導体は電磁力などの外力のみなら
ず、超電導線1のクエンチ現象に伴う管内圧の急
激な上昇に対しても耐えうるように、シース管2
の形状を決定している。特に四角形の場合には角
部における応力集中が生じないように丸みのある
面を形成しているのが普通である。
In general, the sheath tube 2 of the tubular conductor is designed to withstand not only external forces such as electromagnetic force but also a sudden increase in the pressure inside the tube due to the quench phenomenon of the superconducting wire 1.
determines the shape of In particular, in the case of a square shape, rounded surfaces are usually formed to prevent stress concentration at the corners.

しかしながら、シース管2の角部の丸みのある
面のために大きな空隙が形成されて絶縁材3が他
の個所より多い部分が生じ、特に真空含浸等によ
りエポキシ樹脂のような絶縁材3を含浸し充填す
ると、クラツクが生じやすく、コイルを冷却する
場合における熱収縮によりさらに助長され易い。
かかるクラツクはコイル強度を弱くし、非常に問
題となる欠点があつた。
However, due to the rounded corners of the sheath tube 2, large gaps are formed and there are parts where the insulating material 3 is more than other parts. If the coil is overfilled, cracks are likely to occur, which are further aggravated by thermal contraction when the coil is cooled.
Such cracks weakened the coil strength, creating a very problematic drawback.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点に鑑みなされたもので、管状
導体のシース管の角部などで形成する絶縁材の量
が他の箇所に比較して多い部分にクラツクが生じ
ないようにした超電導マグネツトを提供すること
を目的とする。
The present invention has been made in view of the above-mentioned drawbacks, and provides a superconducting magnet that prevents cracks from occurring in portions of a tubular conductor where the amount of insulating material formed is larger than other portions, such as the corners of the sheath pipe. The purpose is to

〔発明の概要〕 すなわち、シース管の角部などで形成する大き
な空隙に無機材料と有機材料とからなるつめ物を
してから全体に絶縁材を真空含浸してつめ物を埋
設するようにしたものである。
[Summary of the invention] That is, a filling made of an inorganic material and an organic material is filled into a large gap formed at a corner of a sheath tube, and then the filling is buried by vacuum impregnating the entire space with an insulating material. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面に示す一実施例について説明
する。第2図において第1図と同じ作用をする部
品は同一符号としたので説明は省略する。管状導
体のシース管2の角部の丸みのある面で形成する
空隙には第3図のように空隙よりわずかに小さい
断面を有する無機材料と有機樹脂とからなるつめ
物5を入れて順次コイル巻きを行なつて後に絶縁
材3例えばエポキシ樹脂などの有機樹脂を真空含
浸したものである。
An embodiment of the present invention shown in the drawings will be described below. In FIG. 2, parts having the same functions as those in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. As shown in Fig. 3, a filler 5 made of an inorganic material and an organic resin having a cross section slightly smaller than the gap is inserted into the gap formed by the rounded corner of the sheath pipe 2 of the tubular conductor, and the coil is successively inserted into the gap. After winding, the insulating material 3 is vacuum impregnated with an organic resin such as epoxy resin.

つめ物5は第4図のように、比較的大きい丸み
のある面で形成された空隙にはa,b,cのよう
に例えばフエルト、ガラス繊維やシリカ紛などの
無機材料とエポキシ樹脂などの有機樹脂とで断面
四角形、丸形または菱形の線状に形成したもの、
また比較的小さい丸みのある面で形成された空隙
にはdのように短かいガラス糸またはガラス繊維
等を使用する。
As shown in Fig. 4, the filling 5 has a relatively large rounded surface and is filled with inorganic materials such as felt, glass fiber, silica powder, etc., and epoxy resin, etc. as shown in a, b, and c in the voids formed by the relatively large rounded surface. Linear shapes with a square, round, or diamond cross section made of organic resin;
In addition, short glass threads or glass fibers are used in the gaps formed by relatively small rounded surfaces, as shown in d.

次に作用を説明する。シース管2の角部で形成
する大きい空隙には空隙に応じた大きさに成形し
たつめ物5をコイル巻きの段階で入れる。この作
業により大きい空隙はほとんど全体が強度が大き
いつめ物5で充満され、微小空隙は真空含浸によ
つて絶縁材3が充填される。このようにして形成
されたコイルは空隙全体が一体の絶縁材3で構成
されてないため、クラツクは空隙全体にわたつて
発生しにくくなり、かつ中心部分は強度が大であ
るつめ物5によつて保障されているため、つめ物
5とシース管2との微小な隙間の絶縁材3に若干
の不良が生じても強度上の問題はない。更につめ
物5の有機樹脂を含浸する絶縁材3と同一材料に
することにより、コイル冷却時の熱収縮による変
化量を軽減し、クラツクは生じにくい。なお上記
ではシース管2は四角形について説明したが丸形
でも同じである。
Next, the action will be explained. In the large gap formed at the corner of the sheath tube 2, a pawl 5 formed to a size corresponding to the gap is inserted at the stage of coil winding. By this operation, the large voids are almost entirely filled with the strong material 5, and the micro voids are filled with the insulating material 3 by vacuum impregnation. In the coil formed in this way, since the entire gap is not made of a single piece of insulating material 3, cracks are less likely to occur throughout the gap, and the center portion is made of a strong pawl 5. Since this is guaranteed, even if a slight defect occurs in the insulating material 3 in the minute gap between the pawl 5 and the sheath tube 2, there will be no problem in terms of strength. Furthermore, by using the same material as the insulating material 3 impregnated with the organic resin for the pawl 5, the amount of change due to thermal contraction during cooling of the coil is reduced, and cracks are less likely to occur. Note that although the sheath tube 2 has been described above as having a rectangular shape, the same applies to a round shape as well.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、超電導マグネツ
トにおいて管状導体間に形成する空隙に無機材料
と有機樹脂とからなるつめ物をして全体に有機樹
脂を真空含浸してつめ物を埋設するようにしたの
で、クラツクは生じにくく、クラツクが生じても
強度はつめ物によつて保障されてコイル強度が弱
くなることはないすぐれた効果がある。
As described above, according to the present invention, the gap formed between the tubular conductors in a superconducting magnet is filled with a filler made of an inorganic material and an organic resin, and the filler is embedded by vacuum impregnating the whole with the organic resin. Therefore, cracks are less likely to occur, and even if cracks occur, the strength is guaranteed by the filler and the coil strength is not weakened, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導マグネツトを示す縦断面
図、第2図は本発明の超電導マグネツトの一実施
例を示す縦断面図、第3図は第2図の要部の拡大
縦断面図、第4図a,b,cおよびdはそれぞれ
第2図のつめ物の形態を示す斜視図である。 1……超電導線、2……シース管、3……絶縁
材、4……容器、5……つめ物。
FIG. 1 is a vertical cross-sectional view showing a conventional superconducting magnet, FIG. 2 is a vertical cross-sectional view showing an embodiment of the superconducting magnet of the present invention, and FIG. Figures 4a, b, c and d are perspective views showing the form of the nail in Figure 2, respectively. 1... Superconducting wire, 2... Sheath tube, 3... Insulating material, 4... Container, 5... Filler.

Claims (1)

【特許請求の範囲】 1 複数の超電導線を管内に通し前記超電導線以
外の空間に冷媒を流す管状導体を巻回して容器内
に収納した超電導マグネツトにおいて、前記管状
導体間に形成する空隙に無機材料と有機樹脂とか
らなるつめ物を埋設したことを特徴とする超電導
マグネツト。 2 つめ物を角線状にしたことを特徴とする特許
請求の範囲第1項記載の超電導マグネツト。 3 つめ物を丸線状にしたことを特徴とする特許
請求の範囲第1項記載の超電導マグネツト。 4 つめ物を繊維状にしたことを特徴とする特許
請求の範囲第1項記載の超電導マグネツト。
[Scope of Claims] 1. A superconducting magnet in which a plurality of superconducting wires are passed through the tube and a tubular conductor is wound to allow a refrigerant to flow into a space other than the superconducting wires and housed in a container. A superconducting magnet characterized by having a filling made of a material and an organic resin embedded therein. 2. The superconducting magnet according to claim 1, wherein the claws are square wire-shaped. 3. The superconducting magnet according to claim 1, characterized in that the claws have a round wire shape. 4. The superconducting magnet according to claim 1, characterized in that the claws are in the form of fibers.
JP15673182A 1982-09-10 1982-09-10 Superconductive magnet Granted JPS5947717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15673182A JPS5947717A (en) 1982-09-10 1982-09-10 Superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15673182A JPS5947717A (en) 1982-09-10 1982-09-10 Superconductive magnet

Publications (2)

Publication Number Publication Date
JPS5947717A JPS5947717A (en) 1984-03-17
JPH0225243B2 true JPH0225243B2 (en) 1990-06-01

Family

ID=15634094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15673182A Granted JPS5947717A (en) 1982-09-10 1982-09-10 Superconductive magnet

Country Status (1)

Country Link
JP (1) JPS5947717A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648644B2 (en) * 1984-10-27 1994-06-22 株式会社日立製作所 Superconducting device
JPH0194478U (en) * 1987-12-11 1989-06-21
JP4359415B2 (en) * 2002-05-30 2009-11-04 大昭和精機株式会社 Winding coil manufacturing apparatus and winding coil manufacturing method

Also Published As

Publication number Publication date
JPS5947717A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
US3035115A (en) Electrical component having a serrated core construction and method of making the component
JPH0225243B2 (en)
JPH05283247A (en) Transformer
US20060071747A1 (en) Method for manufacturing superconducting coils
US3662460A (en) Method of making a random wound encapsulated coil
CA2064653C (en) High temperature superconducting coil and method of manufacturing thereof
Perot Construction and test of a synchrotron dipole model using Nb 3 Sn cable
US3336175A (en) Method of construction of helix wave guide
JP2695065B2 (en) Composite superconducting magnet
KR20190113832A (en) Superconducting Wire and Superconducting Coil
JPH01293509A (en) Molded coil
KR102353821B1 (en) Coil assembly for automotive actuators with cotton yarn and their manufacturing methods
JP2500861Y2 (en) Lead wire mounting device
JPS59218708A (en) Coil for electromagnet
JPS5912005B2 (en) superconducting coil
JPH0349366Y2 (en)
JPS59175708A (en) Compound superconductive coil and manufacture thereof
JP3782706B2 (en) Electromagnetic coil and manufacturing method thereof
JP3782707B2 (en) Electromagnetic coil and manufacturing method thereof
JPH03179710A (en) Manufacture of superconducting coil
JPS642429Y2 (en)
JPS607366B2 (en) Superconducting coil device
JPS604587B2 (en) Manufacturing method of resin-embedded coil
JPH0466365B2 (en)
JPS6251114A (en) Nb3sn superconductor