JPH022516B2 - - Google Patents

Info

Publication number
JPH022516B2
JPH022516B2 JP7842382A JP7842382A JPH022516B2 JP H022516 B2 JPH022516 B2 JP H022516B2 JP 7842382 A JP7842382 A JP 7842382A JP 7842382 A JP7842382 A JP 7842382A JP H022516 B2 JPH022516 B2 JP H022516B2
Authority
JP
Japan
Prior art keywords
pipe
circumferential surface
packing
tube
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7842382A
Other languages
Japanese (ja)
Other versions
JPS58196384A (en
Inventor
Kazunari Nakamoto
Kazuyuki Hisada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
Riken Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Nisshin Steel Co Ltd filed Critical Riken Corp
Priority to JP7842382A priority Critical patent/JPS58196384A/en
Publication of JPS58196384A publication Critical patent/JPS58196384A/en
Publication of JPH022516B2 publication Critical patent/JPH022516B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ステンレス鋼管を継手にて接続する
場合の接続部の応力腐食割れを防止する方法に関
するものである。 従来から、鋼管、銅管等の配管は、多くの場
合、管−継手−管と言うように接続して行なつて
いる。このような管と継手との従来行なわれてい
る接続状態の代表的な例を第1図と第2図に示
す。すなわち、内面にメネジを有する締付部材D
を端部外面にオネジを有する継手Bに螺合するこ
とによつて、ワツシヤーEを介してパツキンCを
押圧して管Aの外周面と継手Bの端部内面とに圧
着せしめて、流体をシールするのである。また、
多くの場合、予め管を加工して凹部Aaを設けて
おき、スナツプリングFを嵌装してから締付部材
Dを締付けることにより管Aと継手Bとを係止し
軸方向の耐圧強度を増している。そしてパツキン
CとしてOリング(第1図)や圧着面積が大きく
てより好ましい三角リング(第2図)(第2図の
ごとく三角形状から若干変形されたものも三角リ
ングと称することとする)が使用されてきた。 一方、SUS304、SUS316等のステンレス鋼管
は耐食性が良好なことから近年屋内配管特に給湯
管として使用されるようになつてきている。しか
し、ステンレス鋼管の接続を従来の方法で行ない
給湯管として使用すると、上記いずれのパツキン
を使用した場合でも、パツキンと接するステンレ
ス鋼管に割れが発生し、短期間で水漏れが生じ、
使用不能になるという欠点があつた。 本発明者は、上記のごとき欠点なく長期間使用
し得るステンレス鋼管の接続方法を検討した結
果、割れはパツキンと接するステンレス鋼管の管
外周部に生じた隙間腐食を起点とする応力腐食割
れであること、隙間腐食の伝播速度に比べ応力腐
食割れの伝播速度は著しく大きいこと、また、管
外周面のパツキンとの接触部の残留応力値が20
Kg/mm2以下になるよう管外周面のパツキンとの管
端側接触部から管の凹部の内周面の凸部の管端側
起点部Gまでの距離をとれば応力腐食割れは防止
でき、接続部の寿命を著しく伸ばすことを究明し
て本発明に至つた。 すなわち、接続すべきステンレス鋼管の外径よ
りも内径が大きく、かつ、内周面が軸方向に平行
な平行部に連続して末端に向つて内壁が傾斜して
拡大する拡大部を端部に有する継手を該管に外挿
し、該管と該継手の拡大部との間でパツキンを、
該管の外周に円周方向に設けた凹部に嵌装したス
ナツプリングにより管軸方向位置を規制される締
付部材により押圧して、該パツキンを該継手の拡
大部の内周面と該管の外周面とに圧着せしめてシ
ールするに際し、管外周面のパツキンとの接触部
の残留応力値が20Kg/mm2以下になるよう管外周面
のパツキンとの管端側接触部から管の前記凹部の
内周面の凸部の管端側起点部までの距離をとるこ
とを特徴とするステンレス鋼管接続部の応力腐食
割れ防止方法である。 以下実施例にもとづき、本発明を詳しく説明す
る。 実施例 第1図ならびに第2図の接続方法において、ス
テンレス鋼管外周面のパツキンとの管端側接触部
から管の凹部の内周面の凸部の管端側起点部まで
の距離(第1表では距離と略す)を種々変化させ
ステンレス鋼管を接続し9組の接続管を作成し
た。ステンレス鋼管の径は40A(外径48.6mm)と
80A(外径89.1mm)とし、板厚は1.2mmである。ま
た40Aは非焼鈍管であり、80Aは焼鈍管である。 これら9組の接続管に個別に塩素濃度200ppm、
PH6の水を温度80℃保つて流速0.3m/秒で12ケ
月間通水し、隙間腐食の有無、応力腐食割れの有
無、水漏れの有無を調査した。結果を第1表に示
す。第1表においてNo.3、4、6、8、9が本発
明例であり、No.1、2、5、7が比較例である。
また第1表には接続管の管外周面のパツキンとの
接触部の残留応力値をX線応力測定装置で測定し
た結果を示す。 第1表から判るように比較例はいずれも隙間腐
食が発生し、通水後30日以内に水漏れが発生して
いる。しかし本発明例はいずれも隙間腐食は発生
しているが応力腐食割れは生じておらず、その結
果水漏れ開始までの通水期間は比較例に比べ著し
く長期になつている。 すなわち、管外周面のパツキンとの接触部の残
留応力値を20Kg/mm2以下にするとステンレス鋼管
接続部の寿命を著しく長期化させることができ
る。更に管外周面のパツキンとの管端側接触部か
ら管の前記凹部の内周面の凸部の管端側起点部ま
での距離が13mm以上とした場合に好ましい結果と
なつている。 なお、第1図及び第2図の構造のステンレス鋼
管接続部においては、その締込量はワツシヤーE
の厚みと凹部Aaの径ならびにスナツプリングF
の大きさによつて一義的に決定され、ワツシヤー
Eが継手Bに接した時点で締付けは完了する。ま
た、締付けは通常作業者が締付冶具により締付け
ているが、継手B、締付部材D、及びワツシヤー
Eともステンレス鋼等の硬質な材質で構成されて
おり、ワツシヤーEが継手Bに接触すると締付力
を変化させても、スナツプリングFが凹部Aaを
押す力には差が生じない。 すなわち、管外周面のパツキンとの接触部の残
留応力値を20Kg/mm2以下にするには、管外周面の
パツキンとの管端側接触部から管の前記凹部の内
周面の凸部の管端側起点部までの距離を管外径、
焼鈍の有無等に依存する、例えば第1表の実施例
に記すようにすればよい。
The present invention relates to a method for preventing stress corrosion cracking at a joint when connecting stainless steel pipes with a joint. BACKGROUND ART Conventionally, piping such as steel pipes and copper pipes has often been connected in a pipe-to-fitting-to-pipe arrangement. Typical examples of conventional connections between such pipes and joints are shown in FIGS. 1 and 2. In other words, the tightening member D has a female thread on the inner surface.
By screwing into the fitting B which has a male thread on the outer surface of the end, the packing C is pressed through the washer E to press the outer circumferential surface of the pipe A and the inner surface of the end of the fitting B, and the fluid is pumped. It is sealed. Also,
In many cases, the pipe is machined in advance to form a recess Aa, the snap spring F is fitted, and the tightening member D is tightened to lock the pipe A and the fitting B together, thereby increasing the pressure resistance in the axial direction. ing. As the seal C, there are O-rings (Fig. 1) and triangular rings (Fig. 2), which are more preferable because of their large crimping area (those slightly deformed from the triangular shape as shown in Fig. 2 are also referred to as triangular rings). has been used. On the other hand, stainless steel pipes such as SUS304 and SUS316 have good corrosion resistance and have recently come to be used for indoor piping, especially hot water supply pipes. However, if stainless steel pipes are connected using the conventional method and used as hot water pipes, no matter which type of gasket is used, the stainless steel pipe that comes in contact with the gasket will crack, causing water leakage in a short period of time.
The drawback was that it became unusable. As a result of studying a method for connecting stainless steel pipes that can be used for a long period of time without the above drawbacks, the present inventor found that the cracks are stress corrosion cracks originating from crevice corrosion that occurs on the outer periphery of the stainless steel pipe in contact with the packing. In addition, the propagation speed of stress corrosion cracking is significantly higher than that of crevice corrosion, and the residual stress value at the contact area with the packing on the outer circumferential surface of the pipe is 20.
Stress corrosion cracking can be prevented by keeping the distance from the tube end side contact point with the packing on the tube outer circumferential surface to the tube end side starting point G of the convex part on the inner circumferential surface of the concave part of the tube so that it is less than Kg/mm 2. The present invention was achieved by finding that the lifespan of the connecting portion can be significantly extended. In other words, the inner diameter is larger than the outer diameter of the stainless steel pipe to be connected, and the inner circumferential surface is continuous with the parallel part parallel to the axial direction, and the enlarged part where the inner wall slopes and expands toward the end. Insert the fitting into the pipe, and insert the packing between the pipe and the enlarged part of the fitting.
A tightening member whose position in the axial direction of the pipe is regulated by a snap spring fitted into a recess provided in the circumferential direction on the outer periphery of the pipe is pressed, and the seal is pressed between the inner circumferential surface of the enlarged part of the joint and the pipe. When crimping and sealing the tube to the outer circumferential surface, the concave portion of the tube is moved from the tube end side contact portion with the packing on the outer circumferential surface of the tube so that the residual stress value at the contact portion with the packing on the outer circumferential surface of the tube is 20 kg/mm 2 or less. This is a method for preventing stress corrosion cracking of a stainless steel pipe joint, which is characterized in that the distance between the protrusion on the inner circumferential surface of the pipe and the starting point on the pipe end side is set. The present invention will be explained in detail below based on Examples. Example In the connection method shown in Figs. 1 and 2, the distance from the tube end side contact part with the packing on the outer peripheral surface of the stainless steel pipe to the tube end side starting point of the convex part on the inner peripheral surface of the recessed part of the pipe (first Nine sets of connecting pipes were created by connecting stainless steel pipes by varying the distance (abbreviated as "distance" in the table). The diameter of the stainless steel pipe is 40A (outer diameter 48.6mm).
The size is 80A (outer diameter 89.1mm), and the plate thickness is 1.2mm. Also, 40A is a non-annealed tube, and 80A is an annealed tube. Chlorine concentration of 200ppm was applied to each of these nine sets of connecting pipes.
Water with a pH of 6 was maintained at a temperature of 80°C and flowed through it at a flow rate of 0.3 m/sec for 12 months, and the presence or absence of crevice corrosion, stress corrosion cracking, and water leakage was investigated. The results are shown in Table 1. In Table 1, Nos. 3, 4, 6, 8, and 9 are examples of the present invention, and Nos. 1, 2, 5, and 7 are comparative examples.
Further, Table 1 shows the results of measuring the residual stress value at the contact portion of the outer circumferential surface of the connecting tube with the packing using an X-ray stress measuring device. As can be seen from Table 1, crevice corrosion occurred in all of the comparative examples, and water leakage occurred within 30 days after water was passed. However, in all of the examples of the present invention, although crevice corrosion occurred, stress corrosion cracking did not occur, and as a result, the water flow period until water leakage started was significantly longer than in the comparative examples. In other words, by reducing the residual stress value at the contact portion of the outer peripheral surface of the pipe with the packing to 20 kg/mm 2 or less, the life of the stainless steel pipe joint can be significantly extended. Furthermore, favorable results were obtained when the distance from the tube end side contact portion with the packing on the tube outer circumferential surface to the tube end side starting point of the convex portion on the inner circumferential surface of the recessed portion of the tube was 13 mm or more. In addition, for the stainless steel pipe connections with the structure shown in Figures 1 and 2, the tightening amount is equal to the washer E.
Thickness and diameter of recess Aa and snap spring F
The tightening is uniquely determined by the size of the joint B, and the tightening is completed when the washer E comes into contact with the joint B. In addition, although the tightening is normally done by an operator using a tightening jig, fitting B, tightening member D, and washer E are all made of hard materials such as stainless steel, and when washer E comes into contact with fitting B, Even if the tightening force is changed, there is no difference in the force with which the snap spring F presses the recess Aa. In other words, in order to reduce the residual stress value at the contact area with the packing on the outer peripheral surface of the pipe to 20 kg/mm 2 or less, the convex part on the inner peripheral surface of the recessed part of the pipe should be The distance to the starting point on the pipe end side is the pipe outer diameter,
Depending on the presence or absence of annealing, for example, the examples shown in Table 1 may be used.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、管の接続状態を上半分の
断面で示す図。 A……管、Aa……凹部、B……継手、C……
パツキン、D……締付部材、E……ワツシヤー、
F……スナツプリング、G……管の凹部の内周面
の凸部の管端側起点部。
FIGS. 1 and 2 are upper half cross-sectional views showing how the pipes are connected. A...pipe, Aa...recess, B...fitting, C...
Packing, D...Tightening member, E...Washer,
F...Snat spring, G...Starting point on the tube end side of the convex portion on the inner peripheral surface of the concave portion of the tube.

Claims (1)

【特許請求の範囲】[Claims] 1 接続すべきステンレス鋼管の外径よりも内径
が大きく、かつ、内周面が軸方向に平行な平行部
に連続して末端に向つて内壁が傾斜して拡大する
拡大部を端部に有する継手を該管に外挿し、該管
と該継手の拡大部との間でパツキンを、該管の外
周に円周方向に設けた凹部に嵌装したスナツプリ
ングにより管軸方向位置を規制される締付部材に
より押圧して、該パツキンを該継手の拡大部の内
周面と該管の外周面とに圧着せしめてシールする
に際し、管外周面のパツキンとの接触部の残留応
力値が20Kg/mm2以下になるよう管外周面のパツキ
ンとの管端側接触部から管の前記凹部の内周面の
凸部の管端側起点部までの距離をとることを特徴
とするステンレス鋼管接続部の応力腐食割れ防止
方法。
1 The inner diameter is larger than the outer diameter of the stainless steel pipe to be connected, and the inner peripheral surface has an enlarged part at the end where the inner circumferential surface is continuous with the parallel part parallel to the axial direction and the inner wall slopes and expands toward the end. A fitting is inserted into the pipe, and a gasket is inserted between the pipe and the enlarged part of the joint, and a fastening whose position in the pipe axial direction is regulated by a snap spring fitted into a recess provided in the circumferential direction on the outer periphery of the pipe is used. When pressing the packing with the attached member to press the packing against the inner circumferential surface of the enlarged part of the joint and the outer circumferential surface of the pipe and sealing, the residual stress value at the contact part of the outer circumferential surface of the pipe with the packing is 20 kg/ A stainless steel pipe connection part characterized in that the distance from the tube end side contact part with the packing on the tube outer circumferential surface to the tube end side starting point of the convex part on the inner circumferential surface of the recessed part of the tube is set so as to be less than mm 2 How to prevent stress corrosion cracking.
JP7842382A 1982-05-12 1982-05-12 Method of preventing stress-corrosion cracking of stainless steel pipe connecting section Granted JPS58196384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7842382A JPS58196384A (en) 1982-05-12 1982-05-12 Method of preventing stress-corrosion cracking of stainless steel pipe connecting section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7842382A JPS58196384A (en) 1982-05-12 1982-05-12 Method of preventing stress-corrosion cracking of stainless steel pipe connecting section

Publications (2)

Publication Number Publication Date
JPS58196384A JPS58196384A (en) 1983-11-15
JPH022516B2 true JPH022516B2 (en) 1990-01-18

Family

ID=13661633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7842382A Granted JPS58196384A (en) 1982-05-12 1982-05-12 Method of preventing stress-corrosion cracking of stainless steel pipe connecting section

Country Status (1)

Country Link
JP (1) JPS58196384A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025048U (en) * 1988-06-22 1990-01-12

Also Published As

Publication number Publication date
JPS58196384A (en) 1983-11-15

Similar Documents

Publication Publication Date Title
US2775471A (en) Tube coupling with sealed conical interface
US4711474A (en) Pipe joint seal rings
EP0823578A3 (en) Pipe joint made of resin
US2269629A (en) Tube coupling
US6581981B2 (en) Pipe-fitting with flexible sleeve and cinching nut
CN114930072A (en) Pipe joint structure
US3917324A (en) Pipe joint
JPH022516B2 (en)
JP2849345B2 (en) Pipe fittings
US1821862A (en) Sealing ring for joints
JPH11201345A (en) Socket type pipe joint
JPH0326378Y2 (en)
JP4447261B2 (en) Joining method for press fittings
JPS6318874Y2 (en)
JPS6212138Y2 (en)
JP2843486B2 (en) Fittings for stainless steel pipes
CN217003065U (en) High-pressure packing sealing structure
JPH0564592U (en) Pipe joint structure
RU2167358C2 (en) Pipe thickened threaded joint
JPH0247835Y2 (en)
JP3000009U (en) Joint
JP2864183B2 (en) Joint
JPS628687Y2 (en)
CN114458762A (en) High-pressure packing sealing structure
JPH0110517Y2 (en)