JPH02251609A - Polyacrylonitrile yarn-based yarn for producing graphite yarn - Google Patents
Polyacrylonitrile yarn-based yarn for producing graphite yarnInfo
- Publication number
- JPH02251609A JPH02251609A JP7309089A JP7309089A JPH02251609A JP H02251609 A JPH02251609 A JP H02251609A JP 7309089 A JP7309089 A JP 7309089A JP 7309089 A JP7309089 A JP 7309089A JP H02251609 A JPH02251609 A JP H02251609A
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- boron
- particles
- fiber
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 30
- 239000010439 graphite Substances 0.000 title claims abstract description 30
- 229920002239 polyacrylonitrile Polymers 0.000 title claims description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052796 boron Inorganic materials 0.000 claims abstract description 31
- 239000002245 particle Substances 0.000 claims abstract description 26
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims abstract description 11
- 230000001737 promoting effect Effects 0.000 claims abstract description 7
- 229920001577 copolymer Polymers 0.000 claims abstract description 6
- 239000000835 fiber Substances 0.000 claims description 62
- 238000000034 method Methods 0.000 abstract description 25
- 229920000642 polymer Polymers 0.000 abstract description 19
- 239000002904 solvent Substances 0.000 abstract description 5
- 239000011882 ultra-fine particle Substances 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 abstract description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 abstract description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 15
- 238000005087 graphitization Methods 0.000 description 14
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 6
- 229910052740 iodine Inorganic materials 0.000 description 6
- 239000011630 iodine Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 150000001639 boron compounds Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- -1 alkoxide compound Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000007770 graphite material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000002166 wet spinning Methods 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- HFZWRUODUSTPEG-UHFFFAOYSA-N 2,4-dichlorophenol Chemical compound OC1=CC=C(Cl)C=C1Cl HFZWRUODUSTPEG-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- LTEHWCSSIHAVOQ-UHFFFAOYSA-N tripropyl borate Chemical compound CCCOB(OCCC)OCCC LTEHWCSSIHAVOQ-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は黒鉛繊維製造用ポリアクリロニトリル系′a維
、特にプラスチックスをマトリックスとする複合材に用
いられる高性能黒鉛繊維製造に供する前駆体繊維に関す
る。Detailed Description of the Invention [Industrial Field of Application] The present invention relates to polyacrylonitrile-based a fibers for producing graphite fibers, particularly precursor fibers for producing high-performance graphite fibers used in composite materials having plastics as a matrix. Regarding.
[従来技術]
炭素繊維は比強度や比弾性率が金属材料などに比べ高い
ので、近年、ゴルフシャフト、釣竿などのスポーツ、レ
ジャー分野や宇宙航空用途を主体に軽量構造材として大
量に使用されるに至っている。そのM要の拡大に伴って
品質の一層の向上が望まれており、最近強度の改善には
大きな進歩が見られる。またより高弾性率化がハンドリ
ング特性の改良を伴って進んでいる。これにより構造材
のより薄肉化が期待される。[Prior art] Carbon fiber has higher specific strength and specific modulus than metal materials, so in recent years it has been used in large quantities as a lightweight structural material, mainly for golf shafts, fishing rods, sports, leisure fields, and aerospace applications. It has reached this point. With the expansion of M requirements, further improvements in quality are desired, and great progress has recently been made in improving strength. In addition, higher modulus of elasticity is being achieved along with improvements in handling characteristics. This is expected to result in thinner structural materials.
ところでポリアクリロニトリル系黒鉛繊維は難黒鉛質り
、上述の技術改良にもかかわらずピッチ系黒鉛繊維のよ
うに容易に高弾性率を得ることは難しいため、少なくと
も2000℃の最高処理温度で処理され、多くの場合2
500°Cを超えている。このような高温の熱処理装置
としては耐熱性から黒鉛材が用いられるが、黒鉛材も2
000℃を超える高温では昇華によって徐々に減耗する
ため生産の障害となっている。障害の程度は黒鉛化温度
が高い程大きくなるので、出来るだけ低温で弾性率を高
くすることが生産性の観点から重要である。この問題に
対し古くか・ら種々の改良技術が提案されている。それ
らの多くは黒鉛化炉の方式あるいは構造に関するもの、
黒鉛化時の昇温速度あるいは降温速度や張力の適正化に
関するもの、および触媒黒鉛化に関するものが主流であ
った。By the way, polyacrylonitrile-based graphite fibers are non-graphitic, and despite the above-mentioned technical improvements, it is difficult to easily obtain a high modulus of elasticity like pitch-based graphite fibers, so they are treated at a maximum treatment temperature of at least 2000°C. In many cases 2
The temperature exceeds 500°C. Graphite material is used for such high-temperature heat treatment equipment due to its heat resistance, but graphite material also has 2
At high temperatures exceeding 1,000°C, it gradually wears out due to sublimation, which is an obstacle to production. Since the degree of damage increases as the graphitization temperature increases, it is important from the viewpoint of productivity to increase the elastic modulus at as low a temperature as possible. Various improvement techniques have been proposed for this problem since ancient times. Many of them are related to the method or structure of graphitization furnaces,
The main topics were related to optimization of temperature increase rate or temperature decrease rate and tension during graphitization, and topics related to catalytic graphitization.
本発明に関係する触媒黒鉛化に関しては、黒鉛材料の分
野で古くから検討され、数多くの金属にその効果が認め
られている。その中で炭素繊維に通用され、物性の改善
が認められているのはホウ素である。ホウ素は他の金属
と異なり固溶体を形成できる点が特徴であり、そのこと
が物性改善に働いていると考えられている。例えば特公
昭47−50331号公報、特公昭48−9801号公
報、USP3656904号明縦書には黒鉛化時の雰囲
気にホウ素化合物を用いる方法、あるいは原料繊維にホ
ウ素化合物を含浸付着させる方法が開示されている。ま
た特公昭48−43580号公報には例えばボロン−プ
ロポキシドの様な金属アルコキシド化合物を繊維形成前
に含有させる方法が示されている。Catalytic graphitization related to the present invention has been studied for a long time in the field of graphite materials, and its effects have been recognized for many metals. Among these, boron is commonly used in carbon fibers and has been shown to improve physical properties. Unlike other metals, boron is characterized by its ability to form solid solutions, and this is thought to work to improve physical properties. For example, Japanese Patent Publication No. 47-50331, Japanese Patent Publication No. 48-9801, and US Pat. ing. Further, Japanese Patent Publication No. 48-43580 discloses a method in which a metal alkoxide compound such as boron propoxide is added before fiber formation.
なおホウ素粒子含有アクリル系繊維およびその焼成物に
間して、特公昭60−4738;3号公報で金属炭化物
含有成形物の製造法として開示されているが、その方法
では本発明の課題である高い弾性率を有する黒鉛繊維を
得ることは不可能である。Regarding boron particle-containing acrylic fibers and fired products thereof, Japanese Patent Publication No. 60-4738; No. 3 discloses a method for producing metal carbide-containing molded products, but this method is a subject of the present invention. It is not possible to obtain graphite fibers with high elastic modulus.
[発明が解決しようとする課題]
しかしながら、黒鉛化雰囲気にホウ素化合物を用いる方
法は炉内に分解物が堆積すること、ホウ素の利用効率が
悪いことが大きな問題である。また原料繊維にホウ素な
含浸付着させる方法は、ホウ素化合物が粗大粒子として
繊維内部に存在するために、触媒効果が充分に生かされ
ないという問題や繊維の緻密性に対して悪影響がある。[Problems to be Solved by the Invention] However, the method of using a boron compound in the graphitization atmosphere has major problems such as the accumulation of decomposed products in the furnace and poor utilization efficiency of boron. In addition, the method of impregnating and adhering raw material fibers with boron has the problem that the boron compound is present inside the fibers as coarse particles, so that the catalytic effect is not fully utilized, and it has a negative effect on the denseness of the fibers.
また金属アルコキシド化合物を繊維形成前に含有させる
方法は、ポリアクリロニトリルの紡糸に通常用いられる
水が、該化合物を分解するためベンゼン、エタノール、
キシレン等の有機溶媒を用いる必要があり、工業的に非
常に不利な条件となっている。Furthermore, in the method of incorporating a metal alkoxide compound before fiber formation, the water normally used for spinning polyacrylonitrile decomposes the compound, so benzene, ethanol, etc.
It is necessary to use an organic solvent such as xylene, which is a very disadvantageous industrial condition.
従来技術はこのような欠点がある。The prior art has such drawbacks.
本発明者らはこのような従来技術に対し、触媒黒鉛化の
ためのホウ素の繊維へのより効率的で、かつより効果的
な導入方法について鋭意検討し、本発明に至ったもので
ある。すなわち本発明の課題は、より低温の黒鉛化処理
でより高い弾性率を有する黒鉛繊維を得ることにある。The inventors of the present invention have conducted extensive studies on a more efficient and effective method of introducing boron into fibers for catalytic graphitization in light of such conventional techniques, and have arrived at the present invention. That is, an object of the present invention is to obtain graphite fibers having a higher elastic modulus through graphitization treatment at a lower temperature.
[課題を解決するための手段]
本発明の課題は85 w t%以上のアクリロニトリル
、0.1〜4wt%の耐炎化促進成分を主成分とする共
重合体からなり、かつホウ素含有粒子をホウ素として0
.05〜3wt%含有する黒鉛fi&it製造用ポリア
クリロニトリル系繊維によって解決することができる。[Means for Solving the Problems] The object of the present invention is to make boron-containing particles consisting of a copolymer whose main components are 85 wt% or more of acrylonitrile and 0.1 to 4 wt% of a flame resistance promoting component. as 0
.. This problem can be solved by using polyacrylonitrile fibers for producing graphite fi&it containing 05 to 3 wt%.
まず、本発明繊維の構成について説明する。First, the structure of the fiber of the present invention will be explained.
すなわち、本発明繊維はアクリロニトリルと耐炎化成分
を主体とする共重合成分からなる。この際、アクリロニ
トリルは全ポリマーに対し、85wt%以上、好ましく
は90 w t%以上が必要である。85 w t%以
下では繊維の軟化点が低下し耐炎化時に接着が生じ、得
られる黒鉛繊維の物性が低くなる。That is, the fiber of the present invention consists of a copolymerized component mainly consisting of acrylonitrile and a flame-resistant component. At this time, the amount of acrylonitrile is required to be 85 wt% or more, preferably 90 wt% or more, based on the total polymer. If the content is less than 85 wt%, the softening point of the fibers decreases and adhesion occurs during flame resistance, resulting in poor physical properties of the graphite fibers obtained.
また、アクリロニトリルの共重合成分である耐炎化促進
成分としては、例えばアクリル酸、メタクリル酸、イタ
コン酸あるいはそれらの塩類等の従来から知られている
耐炎化促進能を有するビニール系単量体を挙げることが
できる。これらの成分は全ポリマに対して0.1wt%
〜4wt%、好ましくは0.3wt%〜1wt%が必要
である。Examples of the flame resistance promoting component which is a copolymerization component of acrylonitrile include vinyl monomers that have the ability to promote flame resistance, such as acrylic acid, methacrylic acid, itaconic acid, or their salts. be able to. These components are 0.1wt% of the total polymer
~4 wt%, preferably 0.3 wt% to 1 wt% is required.
この成分が0.1wt%以下では、その効果が小さいた
め焼成時、特に耐炎化初期における配向緩和が大きく、
得られる黒鉛繊維の弾性率の低下を招く。また4wt%
以上では、耐炎化の目的である閉環反応以外の好ましく
ない副反応を伴い物性の低下を招きやすくなる。If this component is less than 0.1 wt%, the effect will be small, and orientation relaxation will be large during firing, especially at the initial stage of flame resistance.
This results in a decrease in the elastic modulus of the graphite fibers obtained. Also 4wt%
In this case, undesirable side reactions other than the ring-closing reaction, which is the purpose of flame resistance, are likely to occur, resulting in a decrease in physical properties.
一方、本発明1m維は前記共重合体からなる繊維中に、
更にホウソを分散させる。この粒子としてはホウ素ある
いはホウ素化合物あるいはまたこれらの混合物が用いら
れるが、効果的に弾性率を高めるためには、ホウ素単体
や炭化ホウ素が好ましい。On the other hand, the 1m fiber of the present invention contains fibers made of the copolymer,
Furthermore, disperse the horso. Boron, a boron compound, or a mixture thereof can be used as the particles, but in order to effectively increase the elastic modulus, simple boron or boron carbide is preferable.
また繊維中の前記粒子量はホウ素として0.05wt%
〜3wt%、好ましくは0.3wt%〜1.5wt%が
必要である。このときホウ素量が0.05wt%以下で
は黒鉛化段階におけるホウ素の触媒効果によって黒鉛化
処理の低温化や得られる黒鉛繊維の高弾性率化が達成で
きなくなる。Further, the amount of the particles in the fiber is 0.05 wt% as boron.
~3 wt%, preferably 0.3 wt% to 1.5 wt% is required. At this time, if the amount of boron is less than 0.05 wt %, the catalytic effect of boron in the graphitization stage makes it impossible to lower the temperature of the graphitization treatment and to increase the elastic modulus of the resulting graphite fiber.
一方、3wt%を超えると得られる黒鉛繊維中にホウ素
の炭化物の生成が起こりかえって物性低下を招くことに
なる。ホウ素含有量が3%以下であれば、原料繊維を黒
鉛繊維に転換する過程でホウ素化合物も転換され、得ら
れる黒鉛化繊維中では、ホウ素は固溶体として存在して
いる。On the other hand, if it exceeds 3 wt%, boron carbide will be generated in the graphite fibers obtained, resulting in a decrease in physical properties. If the boron content is 3% or less, boron compounds are also converted during the process of converting raw material fibers into graphite fibers, and boron exists as a solid solution in the graphitized fibers obtained.
更に、前記粒子の平均粒子径は0.1μ以下であること
が好ましい。粒子径がこれより大きいと、径は0.1μ
以下の出来るだけ小さいことが好ましく、このような超
微粒子としては例えばJournal of Ma
terials 5ciencce 22 p7
37 に述べられているようなレーザを用いた気相法
により製造されたホウ素単体の超微粒子を用いることが
望ましい。Furthermore, it is preferable that the average particle diameter of the particles is 0.1 μm or less. If the particle size is larger than this, the diameter is 0.1μ
The following particles are preferably as small as possible, and examples of such ultrafine particles include, for example, Journal of Ma
terials 5cience 22 p7
It is desirable to use ultrafine particles of simple boron produced by a gas phase method using a laser as described in No. 37.
このような超微粒子は二次粒子化により粒子径が大きく
なるのが常であり、重合体溶液への分散に際しては、重
合体溶液と同じ溶媒中での湿式粉砕とろ過により、粗大
粒子を除去することが望ましい。The particle size of such ultrafine particles usually increases due to secondary particle formation, and when dispersing into a polymer solution, coarse particles are removed by wet grinding and filtration in the same solvent as the polymer solution. It is desirable to do so.
なお、前記ホウ素含有粒子の平均粒子径は走査型電子顕
微鏡を用いて計数法にて測、定した。測定装置はB o
u s h&L ombイメージ・アンリシス・シス
テムを用いた。The average particle diameter of the boron-containing particles was determined by a counting method using a scanning electron microscope. The measuring device is B o
A USH&Lomb image analysis system was used.
以上のとおり、本発明繊維はアクリロニトリル、耐炎化
促進成分及びホウ素含有粒子が所定の割合のもとに構成
されたポリアクリロニトリル系繊維であって、この繊維
を黒鉛繊維の原料laI!維とすれば黒鉛化処理の低温
化が可能になり、これによって生産性が一段と向上する
。また、得られる黒鉛繊維は高弾性率であると共にその
高弾性率に対応した機械的特性を有し、ハンドリング特
性も優れたものとなるのである。As described above, the fiber of the present invention is a polyacrylonitrile fiber composed of acrylonitrile, a flame resistance promoting component, and boron-containing particles in a predetermined ratio, and this fiber is used as a raw material for graphite fiber laI! If fibers are used, it will be possible to lower the temperature of the graphitization process, which will further improve productivity. In addition, the obtained graphite fiber has a high modulus of elasticity, has mechanical properties corresponding to the high modulus, and has excellent handling characteristics.
次に本発明繊維の製造例について説明する。Next, an example of manufacturing the fiber of the present invention will be explained.
まず、アクリロニトリル、耐炎化促進成分を主成分とす
るポリアクリロニトリル系重合体は公知の方法により製
造することができる。この際該重合体を溶解し、紡糸が
可能な溶媒としてはジメチルホルムアミド、ジメチルア
セトアミド、ジメチルスルフオキシド等を挙げることが
できる。First, acrylonitrile, a polyacrylonitrile polymer containing a flame resistance promoting component as a main component, can be produced by a known method. At this time, examples of solvents that can dissolve the polymer and allow spinning include dimethylformamide, dimethylacetamide, dimethylsulfoxide, and the like.
次に、ホウ素含有粒子を該重合体溶液に混合するが、こ
の際両者を、均一に分散させる方法としては該重合体溶
液と同じ溶媒にあらかじめ摩砕式ミルで粉砕した該粒子
を例えばホモミキサーの様な混合機を用いて分散せしめ
、その後さらに、例えば約0.1μカラス繊維フイルタ
ーでろ過することが望ましい。Next, the boron-containing particles are mixed with the polymer solution. At this time, a method for uniformly dispersing both particles is to use a homomixer, for example, to mill the particles in the same solvent as the polymer solution using a grinding mill. It is desirable to disperse the mixture using a mixer such as the following, and then further filter it using, for example, a glass fiber filter of about 0.1μ.
このようにして調整された粒子分散液と該重合体溶液を
攪はん機を用いて攪はんしながら均一に混合し、該粒子
が均一に分散した重合体溶液を調整することができる。The particle dispersion liquid prepared in this manner and the polymer solution are uniformly mixed while being stirred using a stirrer to prepare a polymer solution in which the particles are uniformly dispersed.
上記ホウ素含有粒子分散ポリアクリロニトリル系重合体
溶液は公知の湿式紡糸法あるいは乾湿式法などにより繊
維化される。The boron-containing particle-dispersed polyacrylonitrile polymer solution is made into fibers by a known wet spinning method or wet/dry method.
また、ここに得られる原糸としては特に緻密性及び配向
度の高いものが望ましい。すなわち、まず原糸の緻密性
について得られる黒鉛繊維の弾性率を高く保つためには
、黒鉛繊維の緻密性が重要である。ホウ素はその触媒黒
鉛化作用により、黒鉛繊維の比重すなわち緻密性が高く
なるが、原糸と焼成条件を軽視して、ホウ素だけでは黒
鉛繊維の緻密性を高く保つことは困難である。このため
原糸の緻密性はなるべく高く保つことが望ましく、緻密
性の尺度であるヨウ素吸着量で3%以下が好ましい。Furthermore, it is desirable that the yarn obtained here has particularly high density and orientation. That is, first of all, the density of the graphite fiber is important in order to maintain a high elastic modulus of the obtained graphite fiber. Due to its catalytic graphitization effect, boron increases the specific gravity, that is, the density, of graphite fibers, but it is difficult to maintain high density of graphite fibers by using boron alone without considering the fibers and firing conditions. For this reason, it is desirable to maintain the density of the yarn as high as possible, and the iodine adsorption amount, which is a measure of density, is preferably 3% or less.
なお原糸のヨウ素吸着量は次の方法で求めることができ
る。The amount of iodine adsorbed by the yarn can be determined by the following method.
すなわち、ヨウ素50g、2,4−ジクロロフェノール
10g1酢酸90g、およびヨウ化カリウム100g1
t秤量し、水で希釈し、水溶液として1リツトルとする
。該水溶液100m1に乾燥試量0.5gを浸せきし、
60f:0.5℃テ50分吸着処理を行う。処理後試料
を流水中で30分水洗後、遠心脱水する。脱水した試料
を100m1のジメチルスルホキシドに加温溶解し、1
/10規定の硝酸銀水溶液で電位差滴定によりヨウ素の
濃度を求め、乾燥試料に対するヨウ素吸着量を算出する
。ヨウ素の吸着量は原糸内に存在するミクロボイドある
いは構造的に粗な部分の量に対応する。That is, 50 g of iodine, 10 g of 2,4-dichlorophenol, 90 g of acetic acid, and 100 g of potassium iodide.
Weigh it out and dilute it with water to make 1 liter of aqueous solution. Dip a dry sample amount of 0.5 g into 100 ml of the aqueous solution,
60f: Perform adsorption treatment at 0.5°C for 50 minutes. After the treatment, the sample is washed in running water for 30 minutes and then centrifuged to dehydrate. The dehydrated sample was heated and dissolved in 100 ml of dimethyl sulfoxide, and 1
The concentration of iodine is determined by potentiometric titration with a /10 normal silver nitrate aqueous solution, and the amount of iodine adsorbed to the dry sample is calculated. The amount of iodine adsorbed corresponds to the amount of microvoids or structurally coarse portions present within the yarn.
原糸の緻密性は主として製糸条件の中、紡出、凝固条件
、延伸条件、及び付与する油剤に左右される。即ち、湿
式紡糸における凝固に際してはなるべくドラフトが小さ
くなるように、口金寸法や紡糸速度を設定するのが好ま
しい。また湿式紡糸よりは吐出糸を一旦空気中を走行さ
せる乾湿式紡糸の方が、凝固液に接触する以前の空気中
の流動状態で細化が起こり、実質的なドラフトが小さく
なり、容易に緻密な原糸が得られるので好ましい。The density of the raw yarn mainly depends on the spinning conditions, spinning conditions, coagulation conditions, stretching conditions, and the oil agent applied. That is, during coagulation in wet spinning, it is preferable to set the spinneret dimensions and spinning speed so that the draft is as small as possible. In addition, compared to wet spinning, dry-wet spinning, in which the discharged yarn is once run in the air, causes thinning in the fluid state in the air before it comes into contact with the coagulating liquid, which reduces the effective draft and makes it easier to densify. This method is preferable because a raw yarn with a high quality can be obtained.
延伸は緻密な原糸を得る目的からは、乾燥以前の湿潤状
態での延伸を単糸間の接着を生じさせない範囲で、例え
ば3〜4倍と出来る限り高延伸倍率とし、例えば沸騰水
のような高温ですることが好ましい。また、乾燥以前に
適用する油剤は#潤状態の糸条の内部に拡散浸透し、緻
密性を阻害することがあるので、なるべく分子量の大な
るものを選定するのが好ましい。撥水性の高いシリコー
ン系の油剤はこの点本発明に好適である。For the purpose of obtaining a dense raw yarn, stretching is carried out in a wet state before drying at a draw ratio as high as possible, for example 3 to 4 times, within a range that does not cause adhesion between single filaments. It is preferable to do this at a high temperature. Furthermore, since the oil applied before drying may diffuse into the interior of the wet yarn and impair its compactness, it is preferable to select one with as large a molecular weight as possible. In this respect, silicone-based oil agents with high water repellency are suitable for the present invention.
次に原糸の配向度としては85%以上のものが好ましく
用いられる。原糸の配向は得られる黒鉛wcN!1の配
向に影響するが、焼成時特に耐炎化初期の配向緩和が大
きく影響するので、原糸よりは耐炎糸の配向で考える方
がよい。その意味て耐炎糸の配向度は78%以上が好ま
しい。また原糸の単糸繊度は焼成時に単糸内構造差が生
じることからできる限り細いことが弾性率を高くするた
めには有利である。その意味で単繊度は1.5デニール
以下が好ましく、さらに好ましくは0.75デニール以
下である。Next, the degree of orientation of the raw yarn is preferably 85% or more. The orientation of the raw yarn is the obtained graphite wcN! However, it is better to consider the orientation of the flame-resistant yarn rather than the original yarn, since orientation relaxation during firing, especially at the initial stage of flame resistance, has a large effect. In this sense, the degree of orientation of the flame-resistant yarn is preferably 78% or more. In addition, it is advantageous for the single fiber fineness of the raw yarn to be as thin as possible since structural differences within the single yarn occur during firing, in order to increase the elastic modulus. In this sense, the single fineness is preferably 1.5 denier or less, more preferably 0.75 denier or less.
なお、原糸の配向度は次の方法で求めることができる。The degree of orientation of the yarn can be determined by the following method.
すなわち、繊維軸に垂直方向からX線を入射させて得ら
れる赤道線上の回折像の強度分布から下式により求める
。That is, it is determined by the following formula from the intensity distribution of a diffraction image on the equatorial line obtained by making X-rays incident on the fiber axis from a direction perpendicular to the fiber axis.
π(%’)= [(180−H)/180] X100
ここでHは赤道線上の強い回折のデバイ環に沿い測定さ
れた強度分布で原糸の場合はポリアクリミニトリルに由
来し、耐炎糸の場合はグラファイト前駆体構造に由来す
る面指数(002)に相当する。π(%') = [(180-H)/180] X100
Here, H is the intensity distribution measured along the Debye ring of strong diffraction on the equatorial line, and in the case of raw yarn, it is derived from polyacryminitrile, and in the case of flame-resistant yarn, it is the surface index (002) derived from the graphite precursor structure. Equivalent to.
もちろんホウ素含有粒子を含有したポリアクリロニトリ
ル系繊維を黒鉛繊維に転換することを採用すれば、従来
技術との比較で、その効果は明らかであるが、更に原料
繊維を黒鉛繊維に転換する焼成工程においても、緻密性
及び配向を高める条件を採用することにより、従来ポリ
アクリロニトリル系繊維では達成できなかった超高弾性
率の達成が一層容易となる。Of course, if we adopt converting polyacrylonitrile fiber containing boron-containing particles into graphite fiber, the effect will be obvious when compared with conventional technology, but in addition, in the firing process to convert raw material fiber into graphite fiber, However, by adopting conditions that increase density and orientation, it becomes easier to achieve an ultra-high modulus of elasticity that has not been achieved with conventional polyacrylonitrile fibers.
[実施例コ 以下、実施例により本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to Examples.
実施例1
アクリロニトリル99 w t%、メタクリル酸1wt
%、よりなるアクリロニトリル系重合体をジメチルスル
ホキシド(以下、DMSO)溶液中で常法により重合し
、[η] =1.8 (45℃における溶液粘度800
ボイズ)の重合体溶液[A]を得た。この重合体溶液に
別途調整した粒子径O01μ以下のホウ素粒子を10w
t%含有した重合体溶液[B]を10wt%添加し、均
一になるなるまでかき混ぜ重合体溶液[C]にする。Example 1 Acrylonitrile 99 wt%, methacrylic acid 1 wt%
%, an acrylonitrile-based polymer consisting of
A polymer solution [A] of Boies) was obtained. Add 10w of boron particles with a particle size of 001μ or less to this polymer solution, which was prepared separately.
Add 10 wt % of the polymer solution [B] containing t % and stir until it becomes homogeneous to make the polymer solution [C].
重合体溶液[8]は、レーザを用いた気相法等で作られ
たホウ素微粒子をDMSO中で摩砕式ミルで粉砕し、0
.1μのフィルターでろ過した後、ホモミキサーでかき
混ぜながら重合体溶液[A]を加えて、以後の操作が行
いやすい粘度およびホウ素の濃度を調整し作られる。The polymer solution [8] is obtained by pulverizing boron fine particles made by a gas phase method using a laser etc. in DMSO using a grinding mill.
.. After filtering through a 1μ filter, the polymer solution [A] is added while stirring with a homomixer, and the viscosity and boron concentration are adjusted to make subsequent operations easier.
重合体溶液[C]を直径0.2mm、孔数3000の口
金を用い一旦空気中に吐出し、ついて30%、15℃の
DMSO水溶液に導き凝固させた。The polymer solution [C] was once discharged into the air using a nozzle with a diameter of 0.2 mm and 3000 holes, and then introduced into a 30% DMSO aqueous solution at 15° C. to solidify.
凝固糸は水洗、熱水延伸後アミノシロキサンを主成分と
する油剤を付与し、乾燥緻密化後5.5Kg/cm2G
の加圧スチーム中で延伸し、全倍率12.4倍、単糸繊
度0.7dの原糸を採取した。The coagulated thread was washed with water, stretched with hot water, applied with an oil agent mainly composed of aminosiloxane, and dried to a density of 5.5Kg/cm2G.
The fibers were drawn in pressurized steam, and a raw yarn with a total magnification of 12.4 times and a single fiber fineness of 0.7 d was collected.
この原糸は強度7 g / d伸度、11.2%、本文
中に記載した方法で求めたヨウ素吸着量は2゜1%であ
った。X線回折により求めた配向度は90.2%であっ
た。This yarn had a strength of 7 g/d, an elongation of 11.2%, and an iodine adsorption amount of 2.1% as determined by the method described in the text. The degree of orientation determined by X-ray diffraction was 90.2%.
得られた原糸を240〜270℃の温度勾配を有する加
熱空気中で、原長よりも短くならないように、緊張下で
耐炎化を施した。The obtained yarn was flame-resistant under tension in heated air having a temperature gradient of 240 to 270° C. so as not to become shorter than the original length.
耐炎化繊維のX線回折によるグラファイト前駆体構造の
配向度は81.8%であった。The degree of orientation of the graphite precursor structure by X-ray diffraction of the flame-resistant fiber was 81.8%.
かくして得られた耐炎化繊維を、400〜1000℃の
温度勾配を有する窒素雰囲気にシールされた炭化炉に、
原長よりも短くならないように緊張下で炭化し、さらに
最高温度を変更して15%伸長しながら、黒鉛化処理を
行った。得られた黒鉛繊維の物性は、J l5−R−7
601に従って含浸ストランド法によって求めた。結果
を表1に示した。The flame-resistant fiber thus obtained was placed in a carbonization furnace sealed in a nitrogen atmosphere with a temperature gradient of 400 to 1000°C.
Carbonization was performed under tension so that the length did not become shorter than the original length, and graphitization treatment was performed while elongating by 15% by changing the maximum temperature. The physical properties of the graphite fiber obtained are as follows: J15-R-7
601 by the impregnated strand method. The results are shown in Table 1.
比較例1
実施例1の重合体溶液[A]から実施例1と同じ方法で
黒鉛化繊維を得、その物性を表1に示した。Comparative Example 1 A graphitized fiber was obtained from the polymer solution [A] of Example 1 in the same manner as in Example 1, and its physical properties are shown in Table 1.
表1
[発明の効果]
上述したように、本発明の黒鉛繊維製造用ポリアクリロ
ニトリル系wA維は黒鉛繊維に転換する場合に、ホウ素
の触媒効果を最大限に利用でき、優れた力学特性、特に
弾性率の優れた黒鉛繊維を得ることができる。また従来
より低温の黒鉛化処理で、従来と同等の弾性率が得られ
る。更に従来ポリアクリロニトリル系繊維では、達成す
ることが困難であった超高弾性率を達成することが可能
である。Table 1 [Effects of the Invention] As mentioned above, the polyacrylonitrile wA fiber for producing graphite fiber of the present invention can make maximum use of the catalytic effect of boron when converted into graphite fiber, and has excellent mechanical properties, especially Graphite fibers with excellent elastic modulus can be obtained. In addition, the same elastic modulus as before can be obtained by graphitization treatment at a lower temperature than before. Furthermore, it is possible to achieve an ultra-high modulus of elasticity, which has been difficult to achieve with conventional polyacrylonitrile fibers.
Claims (1)
の耐炎化促進成分を主成分とする共重合体からなり、か
つホウ素含有粒子をホウ素として0.05〜3wt%含
有する黒鉛繊維製造用ポリアクリロニトリル系繊維。85wt% or more acrylonitrile, 0.1-4wt%
A polyacrylonitrile fiber for producing graphite fiber, which is made of a copolymer mainly composed of a flame resistance promoting component, and contains boron-containing particles in an amount of 0.05 to 3 wt% as boron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7309089A JPH02251609A (en) | 1989-03-23 | 1989-03-23 | Polyacrylonitrile yarn-based yarn for producing graphite yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7309089A JPH02251609A (en) | 1989-03-23 | 1989-03-23 | Polyacrylonitrile yarn-based yarn for producing graphite yarn |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02251609A true JPH02251609A (en) | 1990-10-09 |
Family
ID=13508294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7309089A Pending JPH02251609A (en) | 1989-03-23 | 1989-03-23 | Polyacrylonitrile yarn-based yarn for producing graphite yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02251609A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106917156A (en) * | 2017-03-07 | 2017-07-04 | 中国科学院宁波材料技术与工程研究所 | A kind of preparation method of boracic polyacrylonitrile fibril and its carbon fiber and graphite fibre |
-
1989
- 1989-03-23 JP JP7309089A patent/JPH02251609A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106917156A (en) * | 2017-03-07 | 2017-07-04 | 中国科学院宁波材料技术与工程研究所 | A kind of preparation method of boracic polyacrylonitrile fibril and its carbon fiber and graphite fibre |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4940948B2 (en) | Flame resistant fiber, carbon fiber and method for producing them | |
Newcomb et al. | The properties of carbon fibers | |
Ko et al. | The microstructure of stabilized fibers | |
JP2009197365A (en) | Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber | |
Hu et al. | Electrospun nanofibers withstandable to high-temperature reactions: synergistic effect of polymer relaxation and solvent removal | |
EP3575454B1 (en) | Acrylonitrile-based fiber manufacturing method | |
JP4604911B2 (en) | Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber | |
JP2007291557A (en) | Carbon fiber and method for producing the same | |
JPWO2011102400A1 (en) | Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber | |
JPH02251609A (en) | Polyacrylonitrile yarn-based yarn for producing graphite yarn | |
JPH05195324A (en) | Precursor for carbon fiber production and method for producing the precursor | |
JP2012193465A (en) | Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber | |
JPH086210B2 (en) | High-strength and high-modulus carbon fiber and method for producing the same | |
JPH02264011A (en) | Acrylic fiber for graphite fibers | |
JP3303424B2 (en) | Method for producing acrylic carbon fiber | |
RU2432422C2 (en) | Fire-resistant fibre, carbon fibre and production method thereof | |
JP2002146681A (en) | Method of producing carbon fiber and precursor thereof and method of applying finishing oil | |
JP3531194B2 (en) | Carbon fiber aggregate | |
JPH0491230A (en) | Production of precursor | |
JPH0637724B2 (en) | Carbon fiber manufacturing method | |
JPH0247311A (en) | Production of carbon fiber | |
JPH0274621A (en) | Graphitized fiber having low density and high elastic modulus | |
JP3002698B2 (en) | Manufacturing method of graphite fiber | |
JPS58109625A (en) | Preparation of carbon fiber | |
JP2024128260A (en) | Carbon fiber precursor fiber and its manufacturing method, and method for manufacturing carbon fiber bundle |