JPH02251247A - Catalyst for decomposing nitrogen oxide - Google Patents

Catalyst for decomposing nitrogen oxide

Info

Publication number
JPH02251247A
JPH02251247A JP1070570A JP7057089A JPH02251247A JP H02251247 A JPH02251247 A JP H02251247A JP 1070570 A JP1070570 A JP 1070570A JP 7057089 A JP7057089 A JP 7057089A JP H02251247 A JPH02251247 A JP H02251247A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
present
catalysts
nitrogen oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1070570A
Other languages
Japanese (ja)
Inventor
Masakazu Iwamoto
正和 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1070570A priority Critical patent/JPH02251247A/en
Publication of JPH02251247A publication Critical patent/JPH02251247A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst for efficiently removing nitrogen monoxide even from gas low in the concn. of nitrogen monoxide by containing Cu and a metal such as Co or Ni in zeolite. CONSTITUTION:Copper and one or more kind of a metal selected from Co, Ni, La and Ce are introduced into zeolite of xM2/nO.Al2O3.ySiO2.zH2O (wherein n is a valency of a cation M, x=0.8-2.0, y>=2.0 and z>=0) by an ion exchange method or an impregnation method. Since the catalyst thus obtained is enhanced in the decomposition activity of NO, said catalyst removes nitrogen monoxide efficiently even from gas low in the concn. of nitrogen monoxide.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒素酸化物を含むガスから、それを分解によっ
て除去する触媒に関するものであり、さらに詳しくは銅
とCo等を含有し、特に−酸化窒素を分解するゼオライ
ト系分解触媒に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a catalyst that removes nitrogen oxides from a gas containing nitrogen oxides by decomposition. This invention relates to a zeolite-based decomposition catalyst that decomposes nitrogen oxide.

[従来の技術] 環境保全の観点から、大気汚染物質の除去は大きな社会
的な課題である。とりわけ産業活動の拡大に伴う燃焼廃
ガスの浄化は、現在の緊急課題である。固定発生源であ
る工場や、移動発生源である自動車から排出されるガス
中に含まれる窒素化合物は、光化学スモッグの原因と言
われ人体に有害のガスである。特に、−酸化窒素(NO
)は除去がむずかしく、検討課題となっている。
[Prior Art] From the perspective of environmental conservation, the removal of air pollutants is a major social issue. In particular, purification of combustion waste gas accompanying the expansion of industrial activities is a current urgent issue. Nitrogen compounds contained in gases emitted from factories, which are stationary sources, and automobiles, which are mobile sources, are said to be the cause of photochemical smog and are harmful to the human body. In particular, -nitric oxide (NO
) is difficult to remove and is an issue to be considered.

これまでにも幾つかの方法が考えられている。Several methods have been considered so far.

例えば接触還元法と呼ばれる方法は、アンモニアや水素
等の還元剤を用い触媒上で、NOをN2とN20にして
除去する方法である。しかしながら還元剤を利用するた
め、その回収や漏洩の対策が必要で、規模が大きな固定
発生源については有効だが、自動車のような移動発生源
には適さない。
For example, a method called catalytic reduction method is a method of removing NO by converting it into N2 and N20 on a catalyst using a reducing agent such as ammonia or hydrogen. However, since it uses a reducing agent, measures are needed to recover it and prevent leakage, and although it is effective for large-scale stationary sources, it is not suitable for mobile sources such as cars.

一方、排気ガス中に酸素をほとんど含まない、還元雰囲
気のガソリンエンジンの廃ガス浄化には、これまでに種
々の触媒が開発されて一般に使用されている。しかしな
がらこれらの触媒は、酸素共存下では実用に適さない。
On the other hand, various catalysts have been developed and are commonly used to purify the exhaust gas of gasoline engines in a reducing atmosphere where the exhaust gas contains almost no oxygen. However, these catalysts are not suitable for practical use in the coexistence of oxygen.

ところでNOの接触分解、すなわちNoを直接N2と0
2に分解する方法は、排気ガスを触媒層に通じるだけで
すみ、極めて簡便なため利用範囲は広い。これについて
も従来より触媒が見いだされている。すなわち、Pt 
、Cu 0SCo系触媒がNOの分解活性に効果がある
が、いずれも生成する酸素によって被毒を受けると言う
課題があった。通常ディーゼルエンジンの廃ガスは酸素
を含むため、これまでの触媒では対応できず、新規な触
媒の開発が望まれている。
By the way, catalytic decomposition of NO, that is, directly converting NO into N2 and 0
The method of decomposition into 2 requires only passing the exhaust gas through the catalyst layer, and is extremely simple and can be used in a wide range of applications. Catalysts have been found for this as well. That is, Pt
, Cu0SCo-based catalysts are effective in NO decomposition activity, but both have the problem of being poisoned by the generated oxygen. Diesel engine waste gas usually contains oxygen, which cannot be handled by conventional catalysts, and the development of new catalysts is desired.

[発明の解決すべき課題] 前記の課題に対して幾つかの触媒が提案されている。例
えば、特開昭80−12り250号公報では銅を含む特
異なゼオライトが、酸素を含む系でNOの分解に効果が
あることが開示されている。また、銅を含むペロブスカ
イトがこれに有効であることも、“rcHEMIsTR
Y LETTBR誌J 、 1988年、第1797〜
1800頁”に記載されている。しかしながら、これら
はNo濃度がかなり高い場合は効果があるが、低濃度で
は活性が低く、さらに高活性な触媒を開発する必要があ
る。
[Problems to be Solved by the Invention] Several catalysts have been proposed to solve the above problems. For example, JP-A-80-12-250 discloses that a special zeolite containing copper is effective in decomposing NO in a system containing oxygen. It is also known that perovskites containing copper are effective for this purpose.
Y LETTBR Magazine J, 1988, No. 1797~
However, although these are effective when the No concentration is quite high, their activity is low at low concentrations, and it is necessary to develop catalysts with even higher activity.

本発明は、かかる上記の課題を解決すべくなされたもの
で、NOの分解活性をさらに向上させた窒素酸化物の分
解触媒を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a nitrogen oxide decomposition catalyst with further improved NO decomposition activity.

[課題を解決するための手段] 本発明者は前記の目的を達成するために検討を行った結
果、ゼオライトに複数の金属を担持することで、高活性
な触媒を見いだし本発明を完成するにいたった。
[Means for Solving the Problems] As a result of conducting studies to achieve the above object, the present inventor found a highly active catalyst by supporting a plurality of metals on zeolite, and completed the present invention. It happened.

すなわち本発明は、ゼオライトに、鋼とCoqNi 、
La、Ceから選ばれる少くとも1種の金属とを含有さ
せたことを特徴とする窒素酸化物の分解触媒を提供する
ものである。
That is, the present invention includes zeolite, steel, CoqNi,
The present invention provides a nitrogen oxide decomposition catalyst characterized by containing at least one metal selected from La and Ce.

本発明で言うゼオライトとは、結晶性アルミノケイ酸塩
であり、組成は次式で表される。
The zeolite referred to in the present invention is a crystalline aluminosilicate, and the composition is represented by the following formula.

XM2ym O・Aj 20s   Fst 02  
 ZH20(nは陽イオンMの原子価、Xは0.8〜2
.0の範囲の数、yは2.0以上の数、2は0以上の数
である) ゼオライトの基本構造はSl 、AJ、Oが規則正しく
三次元的に結合したもので、構造単位の相違により、種
々の結晶構造を採る。ゼオライトには多くの種類が知ら
れているが、X線回折によって特徴づけられ、その結晶
構造により名称が異なる。例えば天然品として、モルデ
ナイト、エリオナイト、シャバサイト等があり、合成品
としてはA型、X型、Y型、ZSM−5等が知られてい
る。
XM2ym O・Aj 20s Fst 02
ZH20 (n is the valence of the cation M, X is 0.8-2
.. (a number in the range of 0, y is a number of 2.0 or more, 2 is a number of 0 or more) The basic structure of zeolite is a regular three-dimensional combination of Sl, AJ, and O, and due to the difference in structural units , adopts various crystal structures. Many types of zeolite are known, but they are characterized by X-ray diffraction and have different names depending on their crystal structure. For example, natural products include mordenite, erionite, chabasite, etc., and synthetic products include A type, X type, Y type, ZSM-5, etc.

本発明で使用するゼオライトは特に限定されない。天然
品、合成品どちらでもかまわないが、前者では不純物を
含み精製に手間がかかることから、合成品が好ましく用
いられる。
The zeolite used in the present invention is not particularly limited. Either natural products or synthetic products may be used, but synthetic products are preferably used because the former contain impurities and require time and effort to purify.

ゼオライトの合成は、適当なシリカ源、アルミナ源、ア
ルカリ源を混合し、100〜250℃程度の水熱条件下
で結晶化させることで容易に得られる。
Zeolite can be easily synthesized by mixing appropriate silica sources, alumina sources, and alkali sources and crystallizing the mixture under hydrothermal conditions at about 100 to 250°C.

また前記の混合物にテンプレートと呼ばれる有機物を添
加して、水熱合成によって得られるものもある。ゼオラ
イトは一般に市販されて′おり、それらを用いてもよい
。本発明で好ましく用いられるゼオライトは、Y型、モ
ルデナイト型、ZSM−5等である。
There are also products obtained by hydrothermal synthesis by adding an organic substance called a template to the above-mentioned mixture. Zeolites are generally commercially available and may be used. Zeolites preferably used in the present invention are Y type, mordenite type, ZSM-5, etc.

本発明に用いるゼオライトの810□/ A j 20
3 (モル比)は2以上、特に2〜t、oooの範囲が
好ましい。
810□/A j 20 of the zeolite used in the present invention
3 (molar ratio) is preferably 2 or more, particularly in the range of 2 to t, ooo.

本発明において、金属のゼオライトへの導入方法は特に
限定されない。ゼオライト中のカチオンと目的とする金
属カチオンを交換するイオン交換法や、ゼオライトを目
的とする金属を含む溶液に浸す含浸法等が挙げられる。
In the present invention, the method of introducing metal into zeolite is not particularly limited. Examples include an ion exchange method in which cations in the zeolite are exchanged with the desired metal cations, and an impregnation method in which the zeolite is immersed in a solution containing the desired metal.

本発明で用いる金属の原料化合物はどの様な形でもかま
わない。例えば、硫酸塩、塩酸塩、硝酸塩、有機酸塩、
金属の複合塩等が例示される。また金属の導入に際し、
銅とC0% Ni、 5LaSCeから選ばれる少なく
とも 1種の金属との導入順はどちらが先でも構わない
The metal raw material compound used in the present invention may be in any form. For example, sulfates, hydrochlorides, nitrates, organic acid salts,
Examples include metal complex salts. Also, when introducing metals,
The order in which copper and at least one metal selected from C0% Ni and 5LaSCe are introduced does not matter first.

本発明において銅とCo 、N i SL a s C
eから選ばれる少なくとも 1種の金属(以下、Mとい
う)との割合はモル比でCu / Mが0.1〜100
゜好ましくは1.0〜lOである。また合計の担持量は
ゼオライトのSi 02 /AJ20s比によって異な
るが、ゼオライト中のカチオンと、金属との交換率で表
わすなら、交換率が5〜500%、好ましくは10〜3
00%である。
In the present invention, copper and Co, N i SL a s C
The molar ratio of Cu/M to at least one metal selected from e (hereinafter referred to as M) is 0.1 to 100.
゜Preferably 1.0 to 1O. The total supported amount varies depending on the Si 02 /AJ20s ratio of the zeolite, but if expressed as the exchange rate between cations in the zeolite and metal, the exchange rate is 5 to 500%, preferably 10 to 3.
It is 00%.

本発明の触媒の使用温度は、300〜800℃の範囲、
好ましくは400〜700℃である。また本発明の触媒
と処理ガスとの接触時間は限定されるものではない。
The operating temperature of the catalyst of the present invention is in the range of 300 to 800 °C,
Preferably it is 400-700°C. Further, the contact time between the catalyst of the present invention and the processing gas is not limited.

本発明の触媒の工業的な使用方法は、触媒を適当な形に
して反応装置に充填することが挙げられる。例えば、シ
リカ・アルミナ等の無機酸化物や粘土をバインダーとし
て、球状、柱状、ハニカム状にすることが考えられる。
An industrial method of using the catalyst of the present invention includes charging the catalyst into a reactor in an appropriate form. For example, it is possible to use inorganic oxides such as silica or alumina or clay as a binder to form a spherical, columnar, or honeycomb shape.

またゼオライトを金属導入前に成型しておき、その後金
属を導入する方法もある。いずれにしても特に限定され
るものではない。
Another method is to mold the zeolite before introducing the metal, and then introduce the metal. In any case, it is not particularly limited.

[発明の効果] 本発明の触媒を用いることで、−酸化窒素の濃度が低い
ガスからも、効率よく一酸化窒素を除去できる。
[Effects of the Invention] By using the catalyst of the present invention, nitrogen monoxide can be efficiently removed even from a gas with a low concentration of -nitrogen oxide.

[実施例] 次に、実施例等によって本発明を更に詳しく述べる。[Example] Next, the present invention will be described in more detail with reference to Examples.

実施例1〜4 市販のNaY型ゼオライト(Si O2/AJ20、比
が約5のもの)を用いて、通常のイオン交換法にて、イ
オン交換率が約30%になように銅をゼオライトに導入
した。さらにこの銅を導入したゼオライトに、イオン交
換率が約30%になるようにCo s N 1 、L 
a s Ceを各々イオン交換法にて導入して触媒を得
た。
Examples 1 to 4 Using a commercially available NaY type zeolite (SiO2/AJ20, ratio of about 5), copper was added to the zeolite using a normal ion exchange method so that the ion exchange rate was about 30%. Introduced. Furthermore, Co s N 1 , L was added to this copper-introduced zeolite so that the ion exchange rate was about 30%.
Catalysts were obtained by introducing as Ce by an ion exchange method.

実施例5〜8 実施例1と反対にCo s N i 、L a SCe
を各々先にイオン交換法で実施例1〜4で用いたゼオラ
イトに導入した後、次に銅を導入して触媒を得た。なお
イオン交換率は実施例1と同様である。
Examples 5 to 8 Contrary to Example 1, Co s N i , L a SCe
were first introduced into the zeolites used in Examples 1 to 4 by an ion exchange method, and then copper was introduced to obtain a catalyst. Note that the ion exchange rate is the same as in Example 1.

比較例1〜5 Cu、Co、Nl 、La、Ceのみをイオン交換率が
約30%になるように実施例1〜8で用いたゼオライト
に導入して触媒を得た。
Comparative Examples 1 to 5 Catalysts were obtained by introducing only Cu, Co, Nl, La, and Ce into the zeolite used in Examples 1 to 8 so that the ion exchange rate was about 30%.

実験例 実施例1〜8および比較例1〜5で得られた触媒を打錠
成型の後枠いて、粒径を揃えたもので活性評価を行なっ
た。触媒1.0gを流通式の反応器にいれて、Heガス
を流しながらで徐々に昇温しで500℃にした。そこで
−酸化窒素5.0voJ%を含むHeガスを流して反応
させ、生成物をガスクロマトグラフィーで分析し、転化
率(%)を求めた。なお転化率の値は、反応後2.0時
間を経過したものである。
Experimental Examples The catalysts obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were molded into tablets, and the catalysts were molded into tablets and the particle sizes were made uniform, and the activity was evaluated. 1.0 g of the catalyst was placed in a flow reactor, and the temperature was gradually raised to 500° C. while flowing He gas. Therefore, He gas containing 5.0 voJ% of -nitrogen oxide was caused to flow, and the product was analyzed by gas chromatography to determine the conversion rate (%). Note that the conversion rate values are obtained 2.0 hours after the reaction.

これらの結果を第1表に示す。These results are shown in Table 1.

第1表に示されるように、実施例1〜8の触媒は比較例
1〜5の触媒に比較して、金属導入の順序に拘らず高い
触媒活性を示すことが判る。
As shown in Table 1, it can be seen that the catalysts of Examples 1 to 8 exhibit higher catalytic activity than the catalysts of Comparative Examples 1 to 5, regardless of the order of metal introduction.

第  1  表 特許出願人   岩 本 正 和Table 1 Patent applicant: Masakazu Iwamoto

Claims (1)

【特許請求の範囲】[Claims] 1.ゼオライトに、銅とCo、Ni、La、Ceから選
ばれる少なくとも1種の金属とを含有させたことを特徴
とする窒素酸化物の分解触媒。
1. A catalyst for decomposing nitrogen oxides, characterized in that zeolite contains copper and at least one metal selected from Co, Ni, La, and Ce.
JP1070570A 1989-03-24 1989-03-24 Catalyst for decomposing nitrogen oxide Pending JPH02251247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1070570A JPH02251247A (en) 1989-03-24 1989-03-24 Catalyst for decomposing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070570A JPH02251247A (en) 1989-03-24 1989-03-24 Catalyst for decomposing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02251247A true JPH02251247A (en) 1990-10-09

Family

ID=13435341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070570A Pending JPH02251247A (en) 1989-03-24 1989-03-24 Catalyst for decomposing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02251247A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389942A (en) * 1989-08-31 1991-04-15 Tosoh Corp Exhaust gas purifying catalyst and purifying method with it utilized therefor
US5206196A (en) * 1990-12-18 1993-04-27 Tosoh Corporation Catalyst for purifying exhaust gas
US5413976A (en) * 1992-09-30 1995-05-09 Mazda Motor Corporation Exhaust gas purification catalyst
FR2728806A1 (en) * 1994-12-29 1996-07-05 Inst Francais Du Petrole ADSORBENTS USEFUL IN PROCESSES FOR PURIFYING ATMOSPHERES POLLUTED WITH NITROGEN OXIDE
US6074973A (en) * 1998-03-20 2000-06-13 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
KR100385716B1 (en) * 2001-02-05 2003-05-27 코오롱건설주식회사 Catalyst comprising clinoptilolite for removing nitrogen oxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389942A (en) * 1989-08-31 1991-04-15 Tosoh Corp Exhaust gas purifying catalyst and purifying method with it utilized therefor
US5206196A (en) * 1990-12-18 1993-04-27 Tosoh Corporation Catalyst for purifying exhaust gas
US5413976A (en) * 1992-09-30 1995-05-09 Mazda Motor Corporation Exhaust gas purification catalyst
FR2728806A1 (en) * 1994-12-29 1996-07-05 Inst Francais Du Petrole ADSORBENTS USEFUL IN PROCESSES FOR PURIFYING ATMOSPHERES POLLUTED WITH NITROGEN OXIDE
BE1010539A3 (en) * 1994-12-29 1998-10-06 Inst Francais Du Petrole Method of treatment of polluted by an atmosphere of nitrogen oxide.
US6074973A (en) * 1998-03-20 2000-06-13 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
KR100385716B1 (en) * 2001-02-05 2003-05-27 코오롱건설주식회사 Catalyst comprising clinoptilolite for removing nitrogen oxide

Similar Documents

Publication Publication Date Title
US7238641B2 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide
US5078981A (en) Method for catalytically decomposing nitrogen oxides
JPH02251247A (en) Catalyst for decomposing nitrogen oxide
JP2851444B2 (en) Exhaust gas purification method
JP2852667B2 (en) Method for producing nitrogen oxide decomposition catalyst
JP2734476B2 (en) Catalyst for direct catalytic cracking of nitrogen oxides
JP2892396B2 (en) Nitrogen oxide decomposition catalyst
JP3242126B2 (en) Nitrogen oxide removal method
JPH02251248A (en) Catalyst for decomposing nitrogen oxide
JP2892410B2 (en) Method for producing nitrogen oxide decomposition catalyst
JPH04260441A (en) Catalyst and method for purifying exhaust gas
JP2892395B2 (en) Nitrogen oxide decomposition catalyst
JP3579745B2 (en) Exhaust gas purification method
JPH03127628A (en) Direct catalytic cracking catalyst for nitrogen oxides
JPH0386213A (en) Method for catalytically decomposing nitrogen oxide
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH03217218A (en) Method for removing nitrogen oxide
JPH06277521A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH04363144A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH0780317A (en) Waste gas purification catalyst and method for removing nox
JPH04235743A (en) Preparation of catalyst for purifying exhaust gas
JPH0194946A (en) Highly active decomposition catalyst for nitrogen oxide and contact decomposition method of nitrogen oxide
JPH0780314A (en) Waste gas purification catalyst, its production and method for removing nox
JPH03293041A (en) Catalyst for catalytic decomposition of nitrogen oxide and catalytic decomposition method
JPH06269675A (en) Catalyst for purifying exhaust gas and purification of nitrogen oxide