JPH02250947A - Corrosion-resistant zirconium-base alloy - Google Patents

Corrosion-resistant zirconium-base alloy

Info

Publication number
JPH02250947A
JPH02250947A JP1069363A JP6936389A JPH02250947A JP H02250947 A JPH02250947 A JP H02250947A JP 1069363 A JP1069363 A JP 1069363A JP 6936389 A JP6936389 A JP 6936389A JP H02250947 A JPH02250947 A JP H02250947A
Authority
JP
Japan
Prior art keywords
zirconium
corrosion
based alloy
resistant
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1069363A
Other languages
Japanese (ja)
Inventor
Yoshinori Eito
栄藤 良則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP1069363A priority Critical patent/JPH02250947A/en
Publication of JPH02250947A publication Critical patent/JPH02250947A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To improve the nodular corrosion resistance of the zirconium alloy by irradiating the surface of a Zr-base alloy as a final manufactured article manufacture from a pure Zr sponge as raw material with corpuscular rays. CONSTITUTION:Alloy elements are added to a pure Zr sponge 1 as raw material, which is subjected to arc melting, thereafter undergoes beta-forging, solution treatment and alpha-forging, then is subjected to hot working and annealing, repeatedly to cold rolling and annealing and is thereafter irradiated with corpuscular rays to obtain the final manufactured article. As the irradiating corpuscular rays, electron rays and ions can be considered. As the temp. at which the corpuscular rays are emitted, the temp. range where the reformation of solid soln. of precipitated substance by the irradiation preferentially occurs and precipitation is hard to occur is needed to select. In this way, the depleted zone in the solid soln. components of the alloy elements produced in the Zr-base alloy at the manufacturing stage such as annealing and rolling can be eliminated. Thus, nodular corrosion caused by the above depleted zone can be suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子炉の炉心構成材料に係り、特に耐ノジユ
ラー腐食性に好適な燃料被覆管あるいは炉心構造材料と
して使用できる耐食性のすぐれたジルコニウム基合金に
関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to core constituent materials for nuclear reactors, and in particular to zirconium, which has excellent corrosion resistance and can be used as fuel cladding tubes or core structural materials suitable for nodular corrosion resistance. Regarding base alloys.

[従来の技術] 沸騰水型軽水炉においては、燃料被覆管やチャンネルボ
ックス、スペーサ等の炉心構成材料としてジルコニウム
基合金が使用されている。これは中性子経済や高温水あ
るいは水蒸気中における耐食性を考慮して開発されたも
のである。しかしながら、これらの燃料被覆管や炉心構
造材には、原子炉の運転中にノジュラー腐食と呼ばれる
局部腐食が発生する。ノジュラー腐食は照射が進むにつ
れて成長し、その腐食層が厚くなると剥離することもあ
る。この様なノジュラー腐食の発生は、燃料被覆管や炉
心構造材の減肉をもたらすとともに、剥離によって炉水
中の放射能濃度を増加させ、原子炉の定期検査時の作業
者の被曝量を増加させる恐れがある。
[Prior Art] In boiling water type light water reactors, zirconium-based alloys are used as core constituent materials such as fuel cladding tubes, channel boxes, and spacers. This was developed considering neutron economy and corrosion resistance in high temperature water or steam. However, localized corrosion called nodular corrosion occurs in these fuel cladding tubes and core structural materials during operation of the nuclear reactor. Nodular corrosion grows as irradiation progresses, and as the corrosion layer becomes thicker, it may peel off. The occurrence of such nodular corrosion not only leads to thinning of the fuel cladding and core structural materials, but also increases the radioactivity concentration in the reactor water due to flaking, increasing the radiation exposure of workers during regular reactor inspections. There is a fear.

将来、原子炉燃料の経済性を向上させるために、燃料や
炉心構造材の使用期間を延長させる計画が進行している
が、現行よりも長期間の使用に対する燃料被覆管や炉心
構造材の安全性や信頼性、あるいは定検作業時の被曝量
低減の観点から、ジルコニウム基合金の耐ノジユラー腐
食性が注目されている。
In order to improve the economic efficiency of nuclear reactor fuel in the future, plans are underway to extend the useful life of fuel and core structural materials, but the safety of fuel cladding and core structural materials for longer-term use than currently is in progress. The nodular corrosion resistance of zirconium-based alloys is attracting attention from the viewpoint of safety, reliability, and reduction of radiation exposure during periodic inspection work.

その対称の一例として、特開昭57−116739号公
報に示されるように、ジルコニウム基合金基体の全体に
わたり金属間化合物を粒界または亜粒界に沿って連鎖状
に偏析させることにより耐ノジユラー腐食性を向上させ
る方法が提案されている。しかしながら、この連鎖状に
偏析させた金属間化合物の原子炉内の使用条件下におけ
る安定性が確かめられておらず、炉内でその性能を発揮
し得るかどうかが疑問であり、特に長期間の使用には十
分な手段とはいい難い。
As an example of such symmetry, as shown in Japanese Patent Application Laid-Open No. 57-116739, the intermetallic compound is segregated in a chain along the grain boundaries or sub-boundaries throughout the zirconium-based alloy substrate to prevent nodular corrosion. Methods have been proposed to improve sex. However, the stability of this intermetallic compound segregated in a chain under the operating conditions in a nuclear reactor has not been confirmed, and there are doubts as to whether it can demonstrate its performance in a reactor, especially over a long period of time. It cannot be said that it is a sufficient means for use.

[発明が解・・・決しようとする課題]本発明は、上記
実状に鑑みてなされたものであり、その目的とするとこ
ろは、燃料被覆管、あるいはチャンネルボックスやスペ
ーサなどの炉心構造材に適する耐ノジユラー腐食性に優
れたジルコニウム基合金を提供することにある。
[Problem to be solved by the invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to solve the problem in core structural materials such as fuel cladding tubes, channel boxes, and spacers. The object of the present invention is to provide a suitable zirconium-based alloy with excellent nodular corrosion resistance.

[課題を解決するための手段] 上記課題を解決するための本発明に係る耐食性ジルコニ
ウム基合金の構成は、原子炉の炉心構成材料として使用
される耐食性ジルコニウム基台金において、原料の純ジ
ルコニウムスポンジから複数段階の製造工程を径で製造
された最終製品のジルコニウム基合金の表面に、粒子線
照射を施こして、該ジルコニウム基合金のノジュラー腐
食を抑制するようにしたことである。
[Means for Solving the Problems] In order to solve the above problems, the structure of the corrosion-resistant zirconium-based alloy according to the present invention is such that, in the corrosion-resistant zirconium base metal used as a core constituent material of a nuclear reactor, pure zirconium sponge as a raw material The surface of the final product of the zirconium-based alloy, which has been manufactured through a multi-step manufacturing process, is subjected to particle beam irradiation to suppress nodular corrosion of the zirconium-based alloy.

[作用コ 軽水冷却型原子炉の燃料被覆管や炉心構造材として現在
利用されているジルコニウム基合金はジルカロイである
。ジルカロイは強度や耐食性を向上させるために、ジル
コニウムにスズ、鉄、クロム、ニッケルなどを少量添加
したものである。これらの合金元素のうち鉄、クロム、
ニッケルはジルコニウム中の固溶濃度が低く、添加量が
固溶限を超えているために1通常の状態ではジルコニウ
ムと金属間化合物を形成して、ジルカロイ母材中に析出
している。
[Works] Zircaloy is a zirconium-based alloy currently used as fuel cladding and core structural material for light water-cooled nuclear reactors. Zircaloy is made by adding small amounts of tin, iron, chromium, nickel, etc. to zirconium to improve strength and corrosion resistance. Among these alloying elements, iron, chromium,
Since nickel has a low solid solution concentration in zirconium and the amount added exceeds the solid solubility limit, under normal conditions it forms an intermetallic compound with zirconium and precipitates in the Zircaloy base material.

上記の金属間化合物は、主にジルカロイ製品製造工程の
焼鈍時に生成する。第2図は、原料の純Zrスポンジか
ら燃料被覆管の素管を製造する従来の製造工程のフロー
図である。溶体化処理により偏在化していた合金元素が
均一化されるが、その後の熱間押出しや焼鈍の過程でジ
ルコニウム中に過飽和に固溶していた合金元素が析出す
る0合金元素の析出は均一には生じず、そのために固溶
成分の分布も不均一になる。このためジルカロイ母材中
に合金元素の固溶成分が局所的に欠乏した領域が発生す
る。
The above-mentioned intermetallic compounds are mainly generated during annealing in the Zircaloy product manufacturing process. FIG. 2 is a flowchart of a conventional manufacturing process for manufacturing a raw fuel cladding tube from pure Zr sponge as a raw material. The unevenly distributed alloying elements become uniform through solution treatment, but during the subsequent hot extrusion and annealing process, the alloying elements that were supersaturated in solid solution in zirconium precipitate.0 The precipitation of alloying elements becomes uniform. does not occur, and as a result, the distribution of solid solution components also becomes non-uniform. For this reason, regions where solid solution components of alloying elements are locally depleted occur in the Zircaloy base material.

ノジュラー腐食の生成機構については以下に説明する0
合金元素固溶成分の欠乏領域が存在するジルカロイを腐
食させると、欠乏領域では合金元素が存在せずジルコニ
ウムと同様の腐食挙動を示すことになる。このためジル
コニウムを酸化させたときと同様の多孔質のzro2型
酸化膜が欠乏領域の表面に形成される。それ以外の領域
では酸化膜中に合金元素が取込まれる。合金元素である
鉄、クロム、ニッケルは原子価が2価あるいは3価であ
り、ジルコニウムは4価であるため、合金元素を取込ん
だジルコニウムの酸化物中には、電荷のバランスを取る
ために酸素の空孔が生じ、2rO,x型の酸化物になる
。ZrO,−x型の酸化物はZrO□型酸化物に比べて
非常に緻密な構造をしており、腐食に対して保護被膜の
役割を果たすようになる。このために欠乏領域では酸化
剤である水が金属表面にの直接接触し、腐食反応が反応
律速となるのに対して、保護被膜の生じた領域では、保
護被膜中の酸素の拡散が律速となり1両者の間で腐食速
度が大きく異なってしまう。その結果、欠乏領域で局所
的に酸化が進行し、ノジュラー腐食が形成される。
The formation mechanism of nodular corrosion is explained below.
When Zircaloy is corroded in which there is a region deficient in solid solution components of alloying elements, the depleted region exhibits corrosion behavior similar to that of zirconium since no alloying elements are present. Therefore, a porous ZRO2 type oxide film similar to that when zirconium is oxidized is formed on the surface of the depleted region. In other regions, alloy elements are incorporated into the oxide film. The alloying elements iron, chromium, and nickel are divalent or trivalent, and zirconium is tetravalent, so in order to balance the charge, zirconium oxide containing alloying elements contains Oxygen vacancies are generated, resulting in a 2rO,x type oxide. The ZrO,-x type oxide has a much more dense structure than the ZrO□ type oxide, and plays the role of a protective film against corrosion. For this reason, in the deficient region, water, which is an oxidizing agent, comes into direct contact with the metal surface, and the corrosion reaction becomes the rate-limiting reaction, whereas in the region where a protective film has formed, the diffusion of oxygen in the protective film becomes the rate-limiting reaction. 1. The corrosion rate differs greatly between the two. As a result, oxidation progresses locally in the depleted region, forming nodular corrosion.

ところが、炉内におけるノジュラー腐食の成長速度を調
べてみると、照射の進行にともない成長速度が低下して
いることがわかった。第3図にノジュラー腐食の厚さの
燃焼度依存性を示した。第3図において、14は、ノジ
ュラー腐食の厚さのバラツキの範囲を、実線13は最少
二乗法によるフィッティング曲線を示す、ノジュラー腐
食の厚さは燃焼度に対して飽和する傾向にあることがわ
かる。すなわち、ジルコニウム基合金の表面に発生した
ノジュラー腐食は、炉内での使用中にその成長速度が低
下している。炉内で使用後のジルカロイ−2被覆管の微
細組織を、透過型電子顕微鏡およびエネルギー分散型X
線分析装置を用いて観察・分析した結果、金属間化合物
の析出物からジルカロイ−2母材中に合金元素が再固溶
していることがわかった。照射後の母材組織をll!察
すると、Zr (Cr、Fe)、型およびZr2(Ni
、Fe)型の析出物の存在が認められ、これをX線分析
装置を用いて分析した。
However, when we investigated the growth rate of nodular corrosion inside the reactor, we found that the growth rate decreased as the irradiation progressed. Figure 3 shows the burnup dependence of nodular corrosion thickness. In Fig. 3, 14 indicates the range of variation in the thickness of nodular corrosion, and solid line 13 indicates a fitting curve based on the least squares method. It can be seen that the thickness of nodular corrosion tends to be saturated with respect to burnup. . That is, the growth rate of nodular corrosion occurring on the surface of a zirconium-based alloy decreases during use in a furnace. The microstructure of the Zircaloy-2 cladding tube after use in the furnace was examined using a transmission electron microscope and an energy dispersive X-ray microscope.
As a result of observation and analysis using a line analyzer, it was found that alloying elements were re-dissolved in the Zircaloy-2 base material from precipitates of intermetallic compounds. The base material structure after irradiation! As expected, Zr (Cr, Fe), type and Zr2 (Ni
, Fe) type precipitates were observed, and this was analyzed using an X-ray analyzer.

第4図は、析出物中のFe、Cr、Niの元素濃度と、
析出物の中心位置からの距離(μm)との関係を、取ま
とめて示した関係図である。
Figure 4 shows the elemental concentrations of Fe, Cr, and Ni in the precipitate,
FIG. 3 is a relationship diagram summarizing the relationship with the distance (μm) from the center position of the precipitate.

すなわち、炉内で使用後(照射後)のジルカロイ−2の
母材中には、Fa、Cr、Niが再固溶していることが
あきらかとなった。この合金元素の再固溶現象により、
欠乏領域が消滅し、ノジュラー腐食の成長が抑制された
That is, it became clear that Fa, Cr, and Ni were re-dissolved in the Zircaloy-2 base material after being used in the furnace (after irradiation). Due to this re-solid solution phenomenon of alloying elements,
The depletion region disappeared and the growth of nodular corrosion was suppressed.

この発見から、高速中性子の照射により、析出していた
合金元素が熱力学的には起こり得ない過飽和な状態まで
固溶することがわかった。その結果ジルカロイ−2の耐
食性が向上し、ノジュラー腐食の成長速度が照射によっ
て低下した。
This discovery revealed that irradiation with fast neutrons causes the precipitated alloying elements to form a solid solution to a supersaturated state, which is thermodynamically impossible. As a result, the corrosion resistance of Zircaloy-2 was improved and the growth rate of nodular corrosion was reduced by irradiation.

本発明は上記の、照射によりジルカロイ母材中に合金元
素が過飽和に固溶し、合金元素の欠乏領域を消滅させ、
耐ノジユラー腐食性が向上するという事実の発見にもと
すいて生まれたものである。
The present invention provides the above-mentioned irradiation to cause the alloying element to become a supersaturated solid solution in the Zircaloy base material, to eliminate the alloying element-deficient region,
This was born out of the discovery that the nodular corrosion resistance was improved.

本発明からなるジルコニウム基合金の原子炉の炉心に装
荷して使用すると、少なくとも表面の合金元素固溶成分
の欠乏領域が消滅しており、局部的な腐食は生じず、ノ
ジュラー腐食の発生を防止することができる。
When the zirconium-based alloy of the present invention is loaded and used in the core of a nuclear reactor, at least the region deficient in solid solution components of alloying elements on the surface disappears, local corrosion does not occur, and the occurrence of nodular corrosion is prevented. can do.

[実施例] 以下本発明の一実施例を、第1図を用いて説明する。第
1図は、本発明に係わる耐食性ジルコニウム基合金から
なる燃料被覆管の製造工程の流れ図である。
[Example] An example of the present invention will be described below with reference to FIG. FIG. 1 is a flowchart of the manufacturing process of a fuel cladding tube made of a corrosion-resistant zirconium-based alloy according to the present invention.

第1図の構成は、原料の純Zrスポンジ1に、合金元素
を添加2し、アーク溶解の後にβ−鍛造4、溶体化処理
5、α−鍛造6を径て、熱間加エフ、焼なまし8の次に
冷間圧延9と焼なまし10を繰返した後に1本発明に係
る粒子線照射11を実施し、最終製品12を得る。
In the configuration shown in Figure 1, an alloying element 2 is added to a pure Zr sponge 1 as a raw material, and after arc melting, it is passed through β-forging 4, solution treatment 5, and α-forging 6, followed by hot processing and sintering. After annealing 8, cold rolling 9 and annealing 10 are repeated, and then particle beam irradiation 11 according to the present invention is performed to obtain a final product 12.

つぎに、製造工程の動作を、流れにしたがって説明する
Next, the operation of the manufacturing process will be explained according to the flow.

原料の純Zrスポンジ1に所定の合金元素(Sn、Fa
、Cr、Niなど)を添加2し、プレスにより圧縮成型
して円柱状ブリケットを作る。これを不活性雰囲気下で
溶接し電極に仕上げ、これをアーク溶解3してインゴッ
トにする。成型のためにインゴットを約1000℃に加
熱し、β鍛造4する。これを1000℃以上で数時間保
持し、その後急冷して溶体化処理5する。この溶体化処
理5により偏在していた合金元素の分布が均一化される
。溶体化処理によって生じた表面酸化膜の除去及び寸法
調整のために、700℃前後のα領域温度範囲内で予備
加熱後α鍛造6する。これを700℃−前後の熱間加エ
フにより素管にする。加工による歪を除去するため、1
0”’ −10−’Torrの高真空下650℃で焼な
まし8する。冷間圧延9により外径を絞り肉厚を薄くす
る。所定の寸法に達するまで中間に焼なまし10をはさ
んで数回冷間圧延9を繰り返す。最後に10−’−10
−’T。
Predetermined alloying elements (Sn, Fa
, Cr, Ni, etc.) 2 and compression molded using a press to make cylindrical briquettes. This is welded under an inert atmosphere to form an electrode, which is arc melted (3) to form an ingot. For molding, the ingot is heated to about 1000°C and β-forged 4. This is held at 1000° C. or higher for several hours, and then rapidly cooled and subjected to solution treatment 5. This solution treatment 5 makes the distribution of the unevenly distributed alloying elements uniform. In order to remove the surface oxide film produced by the solution treatment and adjust the dimensions, α forging 6 is performed after preheating within the α region temperature range of around 700°C. This is made into a blank tube by hot processing at around 700°C. In order to remove distortion due to processing, 1
Annealing 8 at 650°C under a high vacuum of 0"'-10-' Torr. The outer diameter is reduced by cold rolling 9 to reduce the wall thickness. Annealing 10 is performed in the middle until the predetermined dimensions are reached. Repeat cold rolling 9 several times with a sandwich.Finally, 10-'-10
-'T.

rrの高真空下で580℃前後の再結晶化焼鈍を行う。Recrystallization annealing is performed at around 580° C. under a high vacuum of rr.

溶体化処理5後の熱間加エフや焼なまし8および10に
より固溶していた合金元素が析出し、欠乏領域が生成す
る。この欠乏領域を消滅させるために、第1図に示した
ように、最終工程として本発明に係る粒子線照射11を
実施する。
During the hot processing F after the solution treatment 5 and annealing steps 8 and 10, the alloying elements that were in solid solution are precipitated, and a depletion region is generated. In order to eliminate this depletion region, as shown in FIG. 1, particle beam irradiation 11 according to the present invention is performed as a final step.

照射する粒子線としては、電子線とイオンとが考えられ
る。電子線は高エネルギーで電流密度の高いものが比較
的容易に得られる。さらに、物質との相互作用がイオン
に比較して生じにくいため、同一エネルギーで比較する
と飛程が長く、照射の効果をより深くまで及ぼすことが
できる0例えば、百方電子ボルトの電子線をジルコニウ
ムに照射すると、その最大飛程は約600μmであり、
陽子を同一エネルギーで照射したときの約百倍になる。
Possible particle beams to be irradiated include electron beams and ions. Electron beams with high energy and high current density can be obtained relatively easily. Furthermore, since interactions with substances are less likely to occur compared to ions, the range is longer and the irradiation effect can be exerted more deeply when compared with the same energy.For example, an electron beam of 100 electron volts is The maximum range is about 600μm,
This is approximately 100 times more powerful than when protons are irradiated with the same energy.

イオンを照射する場合は、合金元素のイオンを用いると
有利である。この場合は、イオン照射によって合金元素
が再固溶する効果よりも、合金元素を打ち込むことによ
り、合金元素固溶成分の濃度を高める効果のほうが大き
い。
When irradiating with ions, it is advantageous to use ions of alloying elements. In this case, the effect of increasing the concentration of the solid solution component of the alloying element by implanting the alloying element is greater than the effect of redissolving the alloying element as a solid solution by ion irradiation.

また、粒子線照射による析出物の再固溶を迅速に行うた
め、六方晶ジルコニウム中の拡散が速い元素を合金元素
に選択すると良い。拡散の速い元素とは、六方晶ジルコ
ニウム中で格子間位置を拡散し得る元素で、これは原子
半径がジルコニウムの0.85倍以下の元素に相当する
6第5図に原子半径と六方晶ジルコニウム中の拡散係数
との関係を示した。破線15は原子半径がジルコニウム
の0.85倍に相当する位置を示している。第5図から
、原子半径がジルコニウムの0.85倍以下の元素は、
拡散係数が飛躍的に大きいことがわかる。なかでもコバ
ルト、ニッケル、鉄は拡散係数が大きく、ジルコニウム
基合金の添加元素として適している。
In addition, in order to rapidly re-dissolve the precipitate by particle beam irradiation, it is preferable to select an element that diffuses quickly in hexagonal zirconium as the alloying element. A fast-diffusing element is an element that can diffuse at interstitial sites in hexagonal zirconium, and this corresponds to an element whose atomic radius is 0.85 times or less than that of zirconium.6 Figure 5 shows the atomic radius and hexagonal zirconium. The relationship between the diffusion coefficient and the diffusion coefficient was shown. A broken line 15 indicates a position where the atomic radius corresponds to 0.85 times that of zirconium. From Figure 5, the elements whose atomic radius is 0.85 times or less than zirconium are:
It can be seen that the diffusion coefficient is dramatically large. Among them, cobalt, nickel, and iron have large diffusion coefficients and are suitable as additive elements for zirconium-based alloys.

粒子線を照射する温度としては、照射による析出物の再
固溶が優先的に起こり、析出が起こりにくい温度領域を
選択する必要がある。炉内で使用されたジルカロイ−2
の観察・分析結果から、300℃(573K)前後の照
射温度では、鉄、クロム、ニッケルは再固溶しているこ
とがわかる。
As the temperature at which the particle beam is irradiated, it is necessary to select a temperature range in which re-solid solution of precipitates due to irradiation occurs preferentially and precipitation is difficult to occur. Zircaloy-2 used in the furnace
From the observation and analysis results, it can be seen that iron, chromium, and nickel re-dissolve in solid solution at an irradiation temperature of around 300°C (573K).

また、550℃(823K)の照射後焼鈍で過飽和に再
固溶していた合金元素が析出している。ジルコニウムと
鉄、クロム、ニッケルとの金属間化合物の融点はそれぞ
れ1600℃(1873K)。
In addition, the alloying elements that had been re-dissolved in supersaturation during post-irradiation annealing at 550°C (823K) were precipitated. The melting points of intermetallic compounds of zirconium, iron, chromium, and nickel are each 1600°C (1873K).

1675℃(1948K)、1200℃(1473K)
である。再固溶や析出は、照射欠陥の挙動や拡散によっ
て支配される現象で、融点の絶対温度で規格化すると、
かなり一般化できることが知られている。再固溶が生じ
ている温度は、絶対温度で表示したときの融点で規格化
した値を用いて表すと、それぞれ0.31 (573/
1873)。
1675℃ (1948K), 1200℃ (1473K)
It is. Re-solid solution and precipitation are phenomena controlled by the behavior and diffusion of irradiation defects, and when normalized by the absolute temperature of the melting point,
It is known to be quite generalizable. The temperature at which solid solution occurs again is 0.31 (573/
1873).

0.29 (573/1948)、0.39 (573
/1473)で、照射後焼鈍により析出した温度の規格
化した値は0.44 (823/1873)、0.42
 (823/1948)、0.56 (823/147
3)である、このことから、金属間化合物の融点で規格
化した温度の0.4倍以下の温度で照射するのが好まし
いことがわかる。
0.29 (573/1948), 0.39 (573
/1473), the normalized value of the temperature at which precipitation occurred by annealing after irradiation was 0.44 (823/1873), 0.42
(823/1948), 0.56 (823/147
3). From this, it can be seen that it is preferable to irradiate at a temperature that is 0.4 times or less the temperature normalized by the melting point of the intermetallic compound.

[発明の効果] 本発明によれば、焼鈍・圧延等の製造工程でジルコニウ
ム基合金に生じた合金元素固溶成分の欠乏領域を消滅さ
せることができるので、合金元素固溶成分の欠乏領域が
原因で発生していたノジュラー腐食を抑制することがで
き、安全性・信頼性に優れたジルコニウム基合金製の燃
料被覆管や、スペーサ・チャンネルボックスなどの炉心
構造材を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to eliminate the region deficient in solid solution components of alloying elements that occurs in the zirconium-based alloy during manufacturing processes such as annealing and rolling. It is possible to suppress the nodular corrosion caused by this, and it is possible to provide core structural materials such as fuel cladding tubes made of zirconium-based alloys, spacers and channel boxes, which have excellent safety and reliability.

以上要するに、燃料被覆管、チャンネルボックス、スペ
ーサなどの炉心構成材料に好適な、耐ノジユラー腐食性
にすぐれたジルコニウム基合金を提供することである。
In summary, it is an object of the present invention to provide a zirconium-based alloy with excellent nodular corrosion resistance and suitable for core constituent materials such as fuel cladding tubes, channel boxes, and spacers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるジルコニウム基合金製燃料被覆
管の製造工程を表わすフロー図、第2図は従来のジルコ
ニウム基合金製燃料被覆管の製造工程を表わすフロー図
、第3図は炉内で使用した燃料被覆管の外表面に生成し
たノジュラー腐食の厚さと燃焼度との相関を示す特性図
、第4図は炉内で使用したジルカロイ−2中の析出物か
ら再固溶した合金元素濃度と析出物からの距離との関係
を示す特性図、第5図は六方晶ジルコニウム中における
金属元素の拡散係数とその原子半径との相関を示す特性
図。 〈符号の説明〉 1・・・純ジルコニウムスポンジ、2・・・合金元素添
加、3・・・アーク溶解、4・・・β−鍛造、5・・=
溶体化処理、6・・・α−鍛造、7・・・熱間加工、8
・・・焼なまし、9・・・冷間圧延、10・・・焼なま
し、11・・・粒子線照射、12・・・最終製品、13
・・・最小二乗法によるフィッティング曲線、14・・
・ノジュラー腐食の厚さのバラツキの範囲、15・・・
原子半径がジルコニウムの0.85倍に相当する位置。
Fig. 1 is a flow diagram showing the manufacturing process of a zirconium-based alloy fuel cladding tube according to the present invention, Fig. 2 is a flowchart showing the manufacturing process of a conventional zirconium-based alloy fuel cladding tube, and Fig. 3 is a flowchart showing the manufacturing process of a conventional zirconium-based alloy fuel cladding tube. Figure 4 shows the relationship between the thickness of nodular corrosion formed on the outer surface of the fuel cladding tube used in the furnace and the burnup. FIG. 5 is a characteristic diagram showing the relationship between concentration and distance from a precipitate, and FIG. 5 is a characteristic diagram showing the correlation between the diffusion coefficient of a metal element in hexagonal zirconium and its atomic radius. <Explanation of symbols> 1...Pure zirconium sponge, 2...Alloying element addition, 3...Arc melting, 4...β-forging, 5...=
Solution treatment, 6...α-forging, 7... Hot working, 8
... Annealing, 9... Cold rolling, 10... Annealing, 11... Particle beam irradiation, 12... Final product, 13
...fitting curve by least squares method, 14...
・Range of variation in thickness of nodular corrosion, 15...
A position where the atomic radius is equivalent to 0.85 times that of zirconium.

Claims (1)

【特許請求の範囲】 1、原子炉の炉心構成材料として使用される耐食性ジル
コニウム基合金において、原料の純ジルコニウムスポン
ジから複数段階の製造工程を径て製造された最終製品の
ジルコニウム基合金の表面に、粒子線照射を施こして、
該ジルコニウム基合金のノジュラー腐食を抑制するよう
にしたことを特徴とする耐食性ジルコニウム基合金。 2、照射する粒子線を、電子線としたことを特徴とする
請求項1記載の耐食性ジルコニウム基合金。 3、照射する粒子線を、イオンとしたことを特徴とする
請求項1記載の耐食性ジルコニウム基合金。 4、照射するイオンを、ジルコニウム基合金の成分元素
のイオンとしたことを特徴とする請求項3記載の耐食性
ジルコニウム基合金。 5、ジルコニウム基合金中に、原子半径がジルコニウム
の0.85倍以下の金属元素を、少なくとも1種以上添
加し、粒子線照射による析出物分布の均一化を迅速に実
施できるようにしたことを特徴とする請求項1記載の耐
食性ジルコニウム基合金。 6、ジルコニウム基合金中に添加する原子半径がジルコ
ニウムの0.85倍以下の金属元素として、コバルト、
鉄、ニッケルの中から1種以上を選択したことを特徴と
する請求項5記載の耐食性ジルコニウム基合金。 7、粒子線を照射する温度を、ジルコニウムと添加合金
元素とが形成する金属間化合物の融点(絶対温度)の0
.4倍以下としたことを特徴とする請求項5記載の耐食
性ジルコニウム基合金。
[Claims] 1. In a corrosion-resistant zirconium-based alloy used as a core constituent material of a nuclear reactor, the surface of the final product of the zirconium-based alloy is manufactured from pure zirconium sponge as a raw material through a multi-step manufacturing process. , by applying particle beam irradiation,
A corrosion-resistant zirconium-based alloy characterized in that nodular corrosion of the zirconium-based alloy is suppressed. 2. The corrosion-resistant zirconium-based alloy according to claim 1, wherein the particle beam to be irradiated is an electron beam. 3. The corrosion-resistant zirconium-based alloy according to claim 1, wherein the irradiated particle beam is an ion. 4. The corrosion-resistant zirconium-based alloy according to claim 3, wherein the ions to be irradiated are ions of constituent elements of the zirconium-based alloy. 5. At least one metal element with an atomic radius of 0.85 times or less than zirconium is added to the zirconium-based alloy, making it possible to quickly uniformize the precipitate distribution by particle beam irradiation. The corrosion-resistant zirconium-based alloy according to claim 1. 6. Cobalt, as a metal element with an atomic radius of 0.85 times or less than zirconium, to be added to the zirconium-based alloy
The corrosion-resistant zirconium-based alloy according to claim 5, characterized in that one or more selected from iron and nickel. 7. Set the particle beam irradiation temperature to 0, which is the melting point (absolute temperature) of the intermetallic compound formed by zirconium and the additional alloying element.
.. The corrosion-resistant zirconium-based alloy according to claim 5, characterized in that the corrosion resistance is 4 times or less.
JP1069363A 1989-03-23 1989-03-23 Corrosion-resistant zirconium-base alloy Pending JPH02250947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069363A JPH02250947A (en) 1989-03-23 1989-03-23 Corrosion-resistant zirconium-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069363A JPH02250947A (en) 1989-03-23 1989-03-23 Corrosion-resistant zirconium-base alloy

Publications (1)

Publication Number Publication Date
JPH02250947A true JPH02250947A (en) 1990-10-08

Family

ID=13400401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069363A Pending JPH02250947A (en) 1989-03-23 1989-03-23 Corrosion-resistant zirconium-base alloy

Country Status (1)

Country Link
JP (1) JPH02250947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104264087A (en) * 2014-10-16 2015-01-07 苏州热工研究院有限公司 Preparation method for Zr (zirconium)-Nb (niobium)-Cu (copper) system alloy
CN105734474A (en) * 2016-03-29 2016-07-06 浙江大学 Treatment process used for improving cold rolling performance of titanium and zirconium alloy high in zirconium content
CN106048308A (en) * 2016-07-14 2016-10-26 燕山大学 Method for improving plasticity and mechanical property of metal zirconium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104264087A (en) * 2014-10-16 2015-01-07 苏州热工研究院有限公司 Preparation method for Zr (zirconium)-Nb (niobium)-Cu (copper) system alloy
CN105734474A (en) * 2016-03-29 2016-07-06 浙江大学 Treatment process used for improving cold rolling performance of titanium and zirconium alloy high in zirconium content
CN106048308A (en) * 2016-07-14 2016-10-26 燕山大学 Method for improving plasticity and mechanical property of metal zirconium

Similar Documents

Publication Publication Date Title
JP2638351B2 (en) Fuel assembly
JP2003149365A (en) Manufacturing method of niobium-containing zircalloy nuclear fuel cladding with excellent corrosion resistance
JPH0344275B2 (en)
RU2239892C2 (en) Method for producing thin components from zirconium base alloy and plates produced by this method
EP0155603B1 (en) Cladding tube for nuclear fuel and nuclear fuel element having this cladding tube
KR100284643B1 (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP6734867B2 (en) Zirconium alloy for nuclear fuel cladding having excellent corrosion resistance and method for producing the same
JPH0843568A (en) Coating withstanding nodular corrosion and manufacture of coating
EP3241920A1 (en) Method for manufacturing nuclear fuel zirconium part by using multi-stage hot-rolling
JPH02250947A (en) Corrosion-resistant zirconium-base alloy
JPS60190554A (en) Structural member made of zirconium base alloy and its manufacture
JPH0718007B2 (en) Method for manufacturing zirconium-based alloy member
JP2002536542A (en) Zirconium and niobium alloys containing erbium as consumable neutron poison, method for preparing the same, and parts containing the alloys
EP1634973A1 (en) Method of manufacturing a nuclear reactor component in zirconium alloy
JPH03140446A (en) Manufacture of core equipment constituted of zirconium-base alloy
JPH0336248A (en) Corrosion resisting zirconium-base alloy and its production
JPH04136787A (en) Corrosion-resistant zirconium base alloy and preparation thereof
JPH04309895A (en) Manufacture of fuel bundle for nuclear reactor
JP3172731B2 (en) Structural materials and fuel assemblies for high burnup fuel assemblies
KR100296952B1 (en) New zirconium alloys for fuel rod cladding and process for manufacturing thereof
JPS6024494A (en) Manufacture of metal zirconium for composite type fuel coated pipe
Castanon Nitrogen Ion Bombardment of Fuel Cladding Materials
JPH095485A (en) Nuclear fuel cladding tube and manufacture thereof
JPH1081929A (en) Zirconium alloy and alloy pipe and their production
JPS6250485A (en) Zirconium alloy member