JPH02250866A - Production of epsilon-caprolactam - Google Patents

Production of epsilon-caprolactam

Info

Publication number
JPH02250866A
JPH02250866A JP1073057A JP7305789A JPH02250866A JP H02250866 A JPH02250866 A JP H02250866A JP 1073057 A JP1073057 A JP 1073057A JP 7305789 A JP7305789 A JP 7305789A JP H02250866 A JPH02250866 A JP H02250866A
Authority
JP
Japan
Prior art keywords
catalyst
cyclohexanone oxime
ether
caprolactam
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1073057A
Other languages
Japanese (ja)
Other versions
JP2676895B2 (en
Inventor
Masaru Kitamura
北村 勝
Hiroshi Ichihashi
宏 市橋
Yasuo Nakamura
安雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1073057A priority Critical patent/JP2676895B2/en
Priority to US07/468,935 priority patent/US4968793A/en
Priority to KR1019900000788A priority patent/KR940005011B1/en
Priority to DE69020172T priority patent/DE69020172T2/en
Priority to EP90300851A priority patent/EP0380364B1/en
Publication of JPH02250866A publication Critical patent/JPH02250866A/en
Application granted granted Critical
Publication of JP2676895B2 publication Critical patent/JP2676895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To readily obtain the subject compound useful as a now material for nylon, etc., in a high selectivity in the elongated life of a catalyst by reacting cyclohexanone oxime in the presence of a solid acid catalyst and in the coexistence of an ether compound under a gaseous reaction condition. CONSTITUTION:Cyclohexanone oxime is subjected to a gaseous phase rearrangement reaction in the presence of a solid acid catalyst, especially a silicon oxide- containing catalyst such as crystalline aluminosilicate having a Si/Al atom ratio of >=5, preferably in a weight ratio of 0.3-15 times the weight of the cyclohexanone oxime in the coexistence of an ether compound of a formula: R1-O-R2 (R1 is CH3 or C2H5; R2 is 1-6C alkyl or phenyl) such as methyl tertbutyl ether, diethyl ether or anisole and, if necessary, a diluting gas such as benzene especially preferably at 300-450 deg.C preferably at a feeding rate of LHSV=0.2-20 hr<-1> to provide the objective compound. The ether compound is separated and recovered for the re-use thereof.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は固体酸触媒を用いて気相反応条件下にシクロヘ
キサノンオキシムからε−カプロラクタムを製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing ε-caprolactam from cyclohexanone oxime under gas phase reaction conditions using a solid acid catalyst.

〈従来の技術及び発明が解決しようとする課題〉ε−カ
プロラクタムはナイロン等の原料として用いられている
重要な基幹化学原料であり、その製造方法としては従来
より、触媒として発煙硫酸あるいは濃硫酸を用い、液相
下にシクロヘキサノンオキシムを転位させる方法が採用
されている。
<Prior art and problems to be solved by the invention> ε-caprolactam is an important basic chemical raw material used as a raw material for nylon, etc., and its manufacturing method has conventionally used fuming sulfuric acid or concentrated sulfuric acid as a catalyst. A method has been adopted in which cyclohexanone oxime is rearranged under the liquid phase.

しかしながら、この方法では多量の発煙硫酸を必要とす
るだけでなく、硫酸アンモニウムを大量に副生ずるとい
う課題を有する。
However, this method not only requires a large amount of fuming sulfuric acid, but also has the problem of producing a large amount of ammonium sulfate as a by-product.

一方、このようなmBを解決する方法として固体酸触媒
を用い、気相下に転位させる方法も種々提案されている
6例えばホウ酸系触媒(特開昭53−37686号、特
公昭46−12125号公報)、シリカ・アルミナ系触
媒(英国特許筒831.927号)、固体リン酸触媒(
英国特許筒881.926号)、複合金属酸化物触媒(
日本化学会°誌、1977、(1)77)、ゼオライト
系触媒(Journal of Catalysis 
 6.247(1966)、特開昭57−139062
号公報)等を用いる方法がある。しかしながら、いずれ
の方法も目的物であるε−カプロラクタムの反応選択率
、触媒寿命、触媒当たりの生産性等あるいは製品ε−カ
プロラクタムの品質などの点で!l!題を有している。
On the other hand, various methods have been proposed to solve mB such as using a solid acid catalyst and rearranging it in the gas phase. Publication No. 831.927), silica-alumina catalyst (British Patent No. 831.927), solid phosphoric acid catalyst (
British Patent No. 881.926), composite metal oxide catalyst (
Journal of the Chemical Society of Japan, 1977, (1) 77), Zeolite Catalysts (Journal of Catalysis)
6.247 (1966), JP-A-57-139062
There is a method using the following. However, both methods have problems in terms of reaction selectivity of the target ε-caprolactam, catalyst life, productivity per catalyst, and quality of the product ε-caprolactam. l! has a problem.

例えば特開昭57−139062号公報には触媒として
40〜60のSl/Al原子比を有するZSM−5等の
結晶性ゼオライトを用いる具体例が示され、シクロヘキ
サノンオキシムの反応率は定量的と記載されているもの
の、と−カプロラクタムの選択率については記載がない
、また触媒寿命については15〜20時間と短い結果が
示されている。
For example, JP-A-57-139062 discloses a specific example of using crystalline zeolite such as ZSM-5 having a Sl/Al atomic ratio of 40 to 60 as a catalyst, and states that the reaction rate of cyclohexanone oxime is quantitative. However, there is no mention of the selectivity of and-caprolactam, and the results show that the catalyst life is as short as 15 to 20 hours.

本発明者らも該公報に記載されているようなSl/Al
原子比のZSM−5系ゼオライトを触媒として実際に検
討したが、触媒の寿命のみならずεカプロラクタムへの
選択率も不十分な値であった。
The present inventors also used Sl/Al as described in the publication.
Although ZSM-5 zeolite with an atomic ratio was actually investigated as a catalyst, not only the life of the catalyst but also the selectivity to ε-caprolactam were found to be insufficient.

一方、特開昭62−123167号公報、特開昭63−
54358号公報にはSi/Al原子比が500以上で
細孔外酸量が特定の値以下である結晶性アルミノシリケ
ート、あるいはSi/金属原子比が500以上である結
晶性メタロシリケートを触媒に用い、た例が示されてい
る。このものの選択率は従来のシリカ系の触媒の技術に
比べて相当改善されており、さらに特開昭62−281
856号公報には結晶性ゼオライトの表面を有機金属化
合物で表面処理することによって、選択率が改良される
ことが示されている。
On the other hand, JP-A-62-123167, JP-A-63-
Publication No. 54358 discloses that a crystalline aluminosilicate with an Si/Al atomic ratio of 500 or more and an amount of acid outside the pores below a specific value, or a crystalline metallosilicate with a Si/metal atomic ratio of 500 or more is used as a catalyst. , an example is shown. The selectivity of this product is considerably improved compared to conventional silica-based catalyst technology, and is further improved in JP-A No. 62-281.
No. 856 discloses that the selectivity can be improved by treating the surface of crystalline zeolite with an organometallic compound.

く課題を解決するための手段〉 本発明者らはこのような現状に鑑み、固体酸触媒を用い
、従来方法よりさらに優れた気相ベックマン転位反応の
検討を進めた結果、反応系にシクロへキサノンオキシム
とともにエーテル化合物を共存させることによってシク
ロへキサノンオキシムの反応率が例えば実質的に100
%付近の条件においても、極めて高い選択率で2−カプ
ロラクタムが得られ、しかも触媒の寿命も著しく向上す
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems> In view of the current situation, the present inventors have proceeded with the study of a gas phase Beckmann rearrangement reaction using a solid acid catalyst, which is superior to the conventional method. By allowing an ether compound to coexist with xanone oxime, the reaction rate of cyclohexanone oxime can be reduced to, for example, substantially 100%.
%, it was found that 2-caprolactam can be obtained with extremely high selectivity, and the life of the catalyst is significantly improved, and the present invention has been completed.

すなわち本発明は、固体酸触媒を用いてシクロへキサノ
ンオキシムからε−カプロラクタムを製造する方法にお
いて、反応系にエーテル化合物を共存させることを特徴
とするε−カプロラクタムの製造法を提供するものであ
る。
That is, the present invention provides a method for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst, which is characterized in that an ether compound is allowed to coexist in the reaction system. be.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、触媒として従来用いられた固体酸が
挙げられる。固体酸のなかでも酸化ケイ素含有触媒、特
に結晶性アルミノシリケートまたは結晶性メタロシリケ
ートが好ましい、特にSi/Al原子比が5以上である
結晶性アルミノシリケートまたはSi/Me原子比(こ
こにMeはGa、Fe、B、Zn、Cr、Be、Co、
La。
In the present invention, conventionally used solid acids can be used as catalysts. Among solid acids, silicon oxide-containing catalysts, particularly crystalline aluminosilicates or crystalline metallosilicates, are preferable, particularly crystalline aluminosilicates with an Si/Al atomic ratio of 5 or more or a Si/Me atomic ratio (where Me is Ga , Fe, B, Zn, Cr, Be, Co,
La.

Ti、Zr、If、V、Ni、Sb、Bi、Cu。Ti, Zr, If, V, Ni, Sb, Bi, Cu.

Nb等から選ばれる1種又は2種以上の金属元素を示す
)が5以上である結晶性メタロシリケートがより好まし
い。Si/Al原子比およびSi/Me原子比は通常の
分析手段、例えば原子吸光法、螢光X線法等により求め
ることができる。
A crystalline metallosilicate in which one or more metal elements selected from Nb etc.) is 5 or more is more preferable. The Si/Al atomic ratio and the Si/Me atomic ratio can be determined by conventional analytical means, such as atomic absorption spectrometry, fluorescent X-ray analysis, and the like.

またこれらの触媒は公知の方法により製造される。かか
る結晶性アルミノシリケートまたは結晶性メタロシリケ
ートには種々の結晶型が知られているが、いわゆるペン
タシル型構造に属するものが特に好ましい。
Moreover, these catalysts are manufactured by known methods. Although various crystal forms are known for such crystalline aluminosilicate or crystalline metallosilicate, those belonging to the so-called pentasil structure are particularly preferred.

本発明においては、反応系にはシクロへキサノンオキシ
ムとともにエーテル化合物を共存させるが、ここで用い
られるエーテル化合物としては次の一般式で示されるエ
ーテルが好ましい。
In the present invention, an ether compound is allowed to coexist with cyclohexanone oxime in the reaction system, and the ether compound used here is preferably an ether represented by the following general formula.

R,−0−R。R, -0-R.

ここにR7はメチル基またはエチル基であり、R2は炭
素数1〜6のアルキル基またはフェニル基である。
Here, R7 is a methyl group or an ethyl group, and R2 is an alkyl group having 1 to 6 carbon atoms or a phenyl group.

具体的にはジメチルエーテル、メチルエチルエーテル、
ジエチルエーテル、メチル−n−プロピルエーテル、メ
チルイソプロピルエーテル、メチル−tar t−ブチ
ルエーテル、アニソール等の1種または2種以上用いる
ことが推奨される。特にR8がメチル基からなるエーテ
ル化合物を1種または2種以上用いればε−カプロラク
タムの選択率および触媒寿命の改良に著しい効果を示し
、より好ましい。
Specifically, dimethyl ether, methyl ethyl ether,
It is recommended to use one or more of diethyl ether, methyl-n-propyl ether, methyl isopropyl ether, methyl-tar t-butyl ether, anisole, and the like. In particular, it is more preferable to use one or more ether compounds in which R8 is a methyl group, as this is highly effective in improving the selectivity of ε-caprolactam and catalyst life.

次に本発明を実施する際の反応方法について述べる。Next, a reaction method for carrying out the present invention will be described.

反応は通常の固定床または流動床方式の気相接触反応で
行なう、原料のシクロヘキサノンオキシムは気体状態で
触媒層と接触反応するが、エーテル化合物は気体状態で
シクロへキサノンオキシムと予め混合しておくか又はシ
クロヘキサノンオキシムとは別々に反応器に供給しても
よい、固定床反応の場合はシクロヘキサノンオキシムと
エーテル化合物が十分混合された状態で触媒層を通過す
るのが好ましい、また、流動床反応の場合には必ずしも
シクロヘキサノンオキシムとエーテル化合物が予め混合
されている必要はなく、それぞれ別々に供給することが
でき、さらにエーテル化合物を分割して添加することも
できる。また、流動床反応の場合にはエーテル化合物を
シクロヘキサノンオキシムより上流側に添加してもよい
The reaction is carried out in a gas phase contact reaction using a normal fixed bed or fluidized bed method.The raw material cyclohexanone oxime reacts with the catalyst layer in a gaseous state, but the ether compound is premixed with the cyclohexanone oxime in a gaseous state. In the case of a fixed bed reaction, it is preferable that the cyclohexanone oxime and the ether compound pass through the catalyst bed in a well-mixed state; In this case, the cyclohexanone oxime and the ether compound do not necessarily need to be mixed in advance, and can be supplied separately, and the ether compound can also be added in portions. Furthermore, in the case of a fluidized bed reaction, an ether compound may be added upstream of the cyclohexanone oxime.

反応系に共存させるエーテル化合物の量は、シクロへキ
サノンオキシムに対して重量比で、通常0.1〜20倍
が適当であり、0.1倍未満ではエーテル化合物の添加
による効果はごく僅かであり、20倍を超える多量のエ
ーテル化合物の添加は不経済であるだけでなく、シクロ
へキサノンオキシムの反応率を低下させるので一般には
好ましくない、ε−カプロラクタムの選択率を高め、触
媒の寿命を改良する目的には、エーテル化合物の共存量
はシクロヘキサノンオキシムに対して重量比で、通常0
.3〜15倍の範囲が好ましい。
The appropriate amount of the ether compound to coexist in the reaction system is usually 0.1 to 20 times the weight of cyclohexanone oxime, and if it is less than 0.1 times, the effect of adding the ether compound will be negligible. Therefore, addition of an ether compound in an amount exceeding 20 times is not only uneconomical but also generally undesirable because it lowers the reaction rate of cyclohexanone oxime, increases the selectivity of ε-caprolactam, and increases the catalyst For the purpose of improving the lifespan, the amount of the ether compound coexisting is usually 0% by weight relative to cyclohexanone oxime.
.. A range of 3 to 15 times is preferred.

反応系には希釈ガスとしてベンゼン、シクロヘキサン、
トルエン等のような反応に不活性な化合物の蒸気あるい
は窒素、二酸化炭素等の不活性ガスを共存させることも
できる。
Benzene, cyclohexane,
The vapor of a compound inert to the reaction, such as toluene, or an inert gas, such as nitrogen or carbon dioxide, may also be coexisting.

反応温度は通常250℃〜500°Cの範囲である。2
50℃未満の温度では反応速度が十分でなく、またε−
カプロラクタムの選択率も低くなる傾向にある。一方、
500℃を越えるとシクロヘキサノンオキシムの熱分解
が無視できなくなるためにε−カプロラクタムの選択率
が低下する。特に好ましい温度範囲は300℃〜450
℃であり、最も好ましい温度範囲は300℃〜400℃
である。
The reaction temperature is usually in the range of 250°C to 500°C. 2
At temperatures below 50°C, the reaction rate is insufficient and ε-
The selectivity of caprolactam also tends to be low. on the other hand,
When the temperature exceeds 500°C, the thermal decomposition of cyclohexanone oxime cannot be ignored, and the selectivity of ε-caprolactam decreases. Particularly preferable temperature range is 300℃~450℃
℃, and the most preferable temperature range is 300℃~400℃
It is.

原料シクロヘキサノンオキシムの供給速度は、通常LH
3V=0.1〜40hr−’ (すなわち触媒1ffi
当りのシクロヘキサノンオキシム供給速度0.1〜40
1/時)から選ばれる。好ましくは0.2〜20hr−
’であり、より好ましくは0.5〜10hr−’の範囲
から選ばれる。
The feed rate of raw material cyclohexanone oxime is usually LH
3V=0.1~40hr-' (i.e. catalyst 1ffi
Cyclohexanone oxime supply rate per unit: 0.1-40
1/hour). Preferably 0.2~20hr-
', more preferably selected from the range of 0.5 to 10 hr-'.

反応混合物からのε−カプロラクタムの分離は、通常の
方法で実施できる0例えば反応生成ガスを冷却して凝縮
させ、次いで抽出、蒸留あるいは晶析等により精製され
たε−カプロラクタムを得ることができる。
Separation of ε-caprolactam from the reaction mixture can be carried out by a conventional method. For example, the reaction product gas is cooled and condensed, and then purified ε-caprolactam can be obtained by extraction, distillation, crystallization, etc.

転位反応系に加えたエーテル化合物は、反応生成物から
分離回収して再利用できる。
The ether compound added to the rearrangement reaction system can be separated and recovered from the reaction product and reused.

また長期間の使用によって活性の低下した触媒は、空気
気流中で焼成することにより容易に元の性能に賦活でき
、繰り返し使用できる。
Further, a catalyst whose activity has decreased due to long-term use can be easily reactivated to its original performance by firing in a stream of air, and can be used repeatedly.

〈発明の効果〉 以上、詳述したとおり本発明によればシクロへキサノン
オキシムの反応率が実質的に100%付近の条件におい
ても、ε−カプロラクタムは極めて高い選択率で製造さ
れる。また本発明の方法では、触媒の寿命が従来の方法
に比べて著しく改良される。さらに反応系に加えたエー
テル化合物は回収して再利用できる0本発明方法は従来
公知の方法に比べて、多くの利点を有するのであるから
、その工業的価値は頗る大である。
<Effects of the Invention> As detailed above, according to the present invention, ε-caprolactam can be produced with extremely high selectivity even under conditions where the reaction rate of cyclohexanone oxime is substantially around 100%. Also, in the process of the present invention, the lifetime of the catalyst is significantly improved compared to conventional processes. Furthermore, the ether compound added to the reaction system can be recovered and reused.The method of the present invention has many advantages over conventionally known methods, and therefore has great industrial value.

〈実施例〉 以下、実施例により本発明を具体的に説明するが、本発
明はこれらに限定されるものではない。
<Examples> The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

参考例(触媒の調製) 1.51のステンレス製オートクレーブにテトラエチル
オルソシリケート(S i  (OC*Hs)4)10
0g、10%水酸化テトラ−n−プロピルアンモニウム
水溶Wi224g、エタノール60gを仕込み充分に撹
拌した。この混合液に、あらかじめ調製した硫酸アルミ
ニウム水溶液48g(Al諺(SO4)!・16HIO
20■/水48g)を加え、30分間激しく撹拌した。
Reference example (preparation of catalyst) Tetraethyl orthosilicate (S i (OC*Hs) 4) 10
0 g of 10% tetra-n-propylammonium hydroxide aqueous solution Wi, and 60 g of ethanol were charged and thoroughly stirred. Add 48 g of aluminum sulfate aqueous solution (Al proverb (SO4)!・16HIO
20 ml/48 g of water) was added and stirred vigorously for 30 minutes.

なお混合溶液のpHは13であった。オートクレーブの
蓋を締めた後、油浴に浸し内温を105℃に保ち400
r。
Note that the pH of the mixed solution was 13. After tightening the lid of the autoclave, immerse it in an oil bath and keep the internal temperature at 105℃ at 400℃.
r.

p、m、以上の回転数で撹拌を行いながら、120時間
の水熱合成を行なった。この間オートクレーブ内の圧力
は2kg/cjから3 kg / c−に達した。水熱
合成終了時のpHは11.8であった。白色の固体生成
物を参考例1と同様に焼成して粉末状白色結晶を得た。
Hydrothermal synthesis was carried out for 120 hours while stirring at rotational speeds of 1, 2, m or more. During this time, the pressure inside the autoclave reached 2 kg/cj to 3 kg/c-. The pH at the end of the hydrothermal synthesis was 11.8. The white solid product was calcined in the same manner as in Reference Example 1 to obtain powdery white crystals.

該結晶を粉末X線回折で分析した結果、ペンタシル型ゼ
オライトと同定された。また、原子吸光分光法による元
素分析の結果、Si/A里原子比は7000であった。
As a result of analyzing the crystals by powder X-ray diffraction, they were identified as pentasil type zeolite. Further, as a result of elemental analysis by atomic absorption spectroscopy, the Si/A satoatomic ratio was 7,000.

この結晶10gに5%塩化アンモニウム水溶液100g
を加え、50〜60°Cで1時間イオン交換処理を行な
い、続いて濾別した。このイオン交換処理操作を4回行
なった後、結晶を01−イオンが検出されなくなるまで
蒸留水で洗浄した。続いて該結晶を120°Cで16時
間乾燥した。得られたアンモニウム塩型の結晶を加圧成
形後、24〜48メツシユに篩分けした。さらに該結晶
を500°Cで1時間窒素ガス流通下に焼成し、触媒を
得た。
100g of 5% ammonium chloride aqueous solution to 10g of this crystal
was added and subjected to ion exchange treatment at 50 to 60°C for 1 hour, followed by filtration. After performing this ion exchange treatment four times, the crystals were washed with distilled water until no 01- ions were detected. Subsequently, the crystals were dried at 120°C for 16 hours. The obtained ammonium salt type crystals were pressure-molded and then sieved into 24 to 48 meshes. Further, the crystals were calcined at 500°C for 1 hour under nitrogen gas flow to obtain a catalyst.

実施例1 内径1cmの石英ガラス製反応管中に、触媒を0.3g
 (0,5m)充填し、窒素気流下に350℃で1時間
予熱処理した0次いでシクロヘキサノンオキシム/メチ
ル−tert−ブチルエーテル/ベンゼン重量比−1/
3.1/10.6の混合溶液を11.5g/hrの供給
速度で反応管に供給し反応させた。この時の空間速度W
/Fは42.5g −hr/ moleであり、触媒層
の温度(反応温度)は350℃であった0反応生成物は
1時間ごとに水冷下に捕集し、ガスクロマトグラフで分
析した。
Example 1 0.3 g of catalyst was placed in a quartz glass reaction tube with an inner diameter of 1 cm.
(0.5 m) was filled and preheated at 350°C for 1 hour under a nitrogen stream. Then cyclohexanone oxime/methyl-tert-butyl ether/benzene weight ratio -1/
A mixed solution of 3.1/10.6 was supplied to the reaction tube at a supply rate of 11.5 g/hr and reacted. Space velocity W at this time
/F was 42.5 g-hr/mole, and the temperature of the catalyst layer (reaction temperature) was 350°C.The reaction product was collected every hour under water cooling and analyzed by gas chromatography.

分析結果を表1に示す。The analysis results are shown in Table 1.

表  1 ここに、空間速度W/Fは次式で計算した値であり、シ
クロへキサノンオキシムの反応率及びεカプロラクタム
の選択率はそれぞれ次式で算出した。
Table 1 Here, the space velocity W/F is a value calculated using the following equation, and the reaction rate of cyclohexanone oxime and the selectivity of ε-caprolactam were calculated using the following equations.

W/ F  (g  ・ hr/  mole)シクロ
へキサノンオキシムの反応率(%)−((X−Y)/X
i xlOO ε−カプロラクタムの選択率(%) −(Z/ (X−Y))xt o。
W/F (g hr/mole) Reaction rate of cyclohexanone oxime (%) - ((X-Y)/X
i xlOO ε-Caprolactam selectivity (%) - (Z/ (X-Y))xt o.

ε−カプロラクタムの収率(%) =Z/Xx 100 なお、X、Y、Zはそれぞれ次のとおりである。Yield of ε-caprolactam (%) =Z/Xx 100 In addition, X, Y, and Z are as follows, respectively.

X−供給した原料シクロへキサノンオキシムのモル数 Y=未反応シクロへキサノンオキシムのモル数2=生成
物中のε−カプロラクタムのモル数比較例 反応系にエーテル化合物を共存させずにシクロへキサノ
ンオキシム/ベンゼン重量比=1/11゜5の混合溶液
を11.5g/hrの供給速度(W/F=36.8)で
反応管に供給したこと以外は実施例1と同じ方法で行な
った。
X - Number of moles of supplied raw material cyclohexanone oxime Y = Number of moles of unreacted cyclohexanone oxime 2 = Number of moles of ε-caprolactam in the product Comparative example Same method as Example 1 except that a mixed solution of hexanone oxime/benzene weight ratio = 1/11°5 was supplied to the reaction tube at a supply rate of 11.5 g/hr (W/F = 36.8). I did it.

反応結果を表2に示す。The reaction results are shown in Table 2.

表2 チル−n−プロピルエーテルの代わりに表3に示すエー
テル化合物および原料組成割合、原料供給速度を変更し
た以外は、実施例1と同様に350°Cの反応温度で反
応を行なった。
Table 2 The reaction was carried out in the same manner as in Example 1 at a reaction temperature of 350°C, except that the ether compound shown in Table 3 was used instead of tyl-n-propyl ether, and the raw material composition ratio and raw material supply rate were changed.

反応結果を表3に示す。The reaction results are shown in Table 3.

実施例2〜4 実施例1に使用したものと同じ触媒を用い、メ手続補正
書(自発) 平成元年12月22日 1、事件の表示 平成1年特許願第73057号 2、発明の名称 ε−カプロラクタムの製造法 3、補正をする者 事件との関係  特許出願人 住 所 大阪市中央区北浜四丁目5番33号名 称 (
209)住友化学工業株式会社代表者   森   英
 雄 4、代理人 住 所 大阪市中央区北浜四丁目5番33号5、補正の
対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 (1)明細書第10頁第18行の「参考例1と同様に」
を「濾別し、ついで濾液のPHが7付近になまで蒸留水
で連続的に洗浄した。白色固体を乾燥後500〜530
℃で4時間、空気流通下に」と補正する。
Examples 2 to 4 Using the same catalyst as that used in Example 1, procedural amendment (spontaneous) December 22, 1989 1, Description of the case 1999 Patent Application No. 73057 2, Title of the invention ε-Caprolactam manufacturing method 3, relationship with the amended case Patent applicant address 4-5-33 Kitahama, Chuo-ku, Osaka Name (
209) Sumitomo Chemical Co., Ltd. Representative: Hideo Mori 4, Agent address: 4-5-33 Kitahama, Chuo-ku, Osaka, Column 6 of “Detailed Description of the Invention” of the specification to be amended; Contents (1) “Same as Reference Example 1” on page 10, line 18 of the specification
was separated by filtration, and then washed continuously with distilled water until the pH of the filtrate was around 7. After drying, the white solid was 500-530
℃ for 4 hours under air circulation.''

以上 手続補正書(自発) 平成2年 1月/7日that's all Procedural amendment (voluntary) January 7th, 1990

Claims (1)

【特許請求の範囲】[Claims] 固体酸触媒を用いて気相反応条件下にシクロヘキサノン
オキシムからε−カプロラクタムを製造する方法におい
て、反応系にエーテル化合物を共存させることを特徴と
するε−カプロラクタムの製造法。
1. A method for producing ε-caprolactam from cyclohexanone oxime under gas phase reaction conditions using a solid acid catalyst, the method comprising coexisting an ether compound in the reaction system.
JP1073057A 1989-01-26 1989-03-23 Process for producing ε-caprolactam Expired - Lifetime JP2676895B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1073057A JP2676895B2 (en) 1989-03-23 1989-03-23 Process for producing ε-caprolactam
US07/468,935 US4968793A (en) 1989-01-26 1990-01-23 Process for producing ε-caprolactam
KR1019900000788A KR940005011B1 (en) 1989-01-26 1990-01-24 Process for producting e-caprolactam
DE69020172T DE69020172T2 (en) 1989-01-26 1990-01-26 Process for the production of epsilon-caprolactam.
EP90300851A EP0380364B1 (en) 1989-01-26 1990-01-26 Process for producing epsilon-caprolactam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073057A JP2676895B2 (en) 1989-03-23 1989-03-23 Process for producing ε-caprolactam

Publications (2)

Publication Number Publication Date
JPH02250866A true JPH02250866A (en) 1990-10-08
JP2676895B2 JP2676895B2 (en) 1997-11-17

Family

ID=13507349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073057A Expired - Lifetime JP2676895B2 (en) 1989-01-26 1989-03-23 Process for producing ε-caprolactam

Country Status (1)

Country Link
JP (1) JP2676895B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544530A1 (en) 1991-11-27 1993-06-02 Sumitomo Chemical Company, Limited Process for producing epsilon-caprolactam by Beckmann-rearrangement in the gas phase in the presence of a zeolite catalyst and water
EP0544531A1 (en) 1991-11-27 1993-06-02 Sumitomo Chemical Company, Limited Process for the preparation of epsilon-caprolactam by Deckamnn-rearrangement in the phase in the presence of a zeolite catalyst and nitrogen-containing compounds
US7060645B2 (en) 2004-06-30 2006-06-13 Sumitomo Chemical Company, Limited Method for manufacturing zeolite and method for manufacturing ε-caprolactam
JP2009114219A (en) * 2001-02-14 2009-05-28 Asahi Kasei Chemicals Corp Method for production of epsilon-caprolactam
EP2157080A2 (en) 2008-08-20 2010-02-24 Sumitomo Chemical Company, Limited Method for producing epsilon caprolactam and method for producing pentasil type zeolite
US7687621B2 (en) 2006-07-04 2010-03-30 Sumitomo Chemical Company, Limited Process for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam
EP2599748A1 (en) 2011-11-30 2013-06-05 Sumitomo Chemical Company Limited Method for producing zeolite molded article and method for producing epsilon-caprolactam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544530A1 (en) 1991-11-27 1993-06-02 Sumitomo Chemical Company, Limited Process for producing epsilon-caprolactam by Beckmann-rearrangement in the gas phase in the presence of a zeolite catalyst and water
EP0544531A1 (en) 1991-11-27 1993-06-02 Sumitomo Chemical Company, Limited Process for the preparation of epsilon-caprolactam by Deckamnn-rearrangement in the phase in the presence of a zeolite catalyst and nitrogen-containing compounds
JP2009114219A (en) * 2001-02-14 2009-05-28 Asahi Kasei Chemicals Corp Method for production of epsilon-caprolactam
US7060645B2 (en) 2004-06-30 2006-06-13 Sumitomo Chemical Company, Limited Method for manufacturing zeolite and method for manufacturing ε-caprolactam
US7687621B2 (en) 2006-07-04 2010-03-30 Sumitomo Chemical Company, Limited Process for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam
EP2157080A2 (en) 2008-08-20 2010-02-24 Sumitomo Chemical Company, Limited Method for producing epsilon caprolactam and method for producing pentasil type zeolite
EP2599748A1 (en) 2011-11-30 2013-06-05 Sumitomo Chemical Company Limited Method for producing zeolite molded article and method for producing epsilon-caprolactam

Also Published As

Publication number Publication date
JP2676895B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JPH0440342B2 (en)
JPS62123167A (en) Production of epsilon-caprolactam
US7060645B2 (en) Method for manufacturing zeolite and method for manufacturing ε-caprolactam
US4968793A (en) Process for producing ε-caprolactam
US4717770A (en) Process for producing epsilon-caprolactam
KR20010066865A (en) A PROCESS FOR PRODUCING PENTACYL-TYPE CRYSTALLINE ZEOLITES AND A PROCESS FOR PRODUCING ε-CAPROLACTAM USING THE SAME
US5304643A (en) Process for producing epsilon-caprolactam
JP2616088B2 (en) Production method of ε-caprolactam
JP3254752B2 (en) Production method of ε-caprolactam
US5354859A (en) ε-caprolactam
JP2018076235A (en) PRODUCTION METHOD OF ε-CAPROLACTAM
JPH02250866A (en) Production of epsilon-caprolactam
JP3254753B2 (en) Method for producing ε-caprolactam
JP3221024B2 (en) Method for producing ε-caprolactam and method for activating solid catalyst for producing ε-caprolactam
JP3301092B2 (en) Method for producing ε-caprolactam
JP3254751B2 (en) Method for producing ε-caprolactam
JP3969078B2 (en) Method for producing pentasil-type zeolite and method for producing ε-caprolactam
JP3221021B2 (en) Method for producing ε-caprolactam
KR100287085B1 (en) Method for preparing E-caprolactam
JP3849408B2 (en) Method for producing pentasil-type crystalline zeolite and method for producing ε-caprolactam
JPH06256304A (en) Production of epsilon-caprolactam
JP2000256308A (en) Solid catalyst for producing epsilon-caprolactam and production of episilon-caprolactam using the same
JPH08253434A (en) Production of high-purity 1,3-cyclohexadiene
JPH09291074A (en) Production of epsilon-caprolactam
JP2000256309A (en) Production of epsilon-caprolactam