JP3254751B2 - Method for producing ε-caprolactam - Google Patents

Method for producing ε-caprolactam

Info

Publication number
JP3254751B2
JP3254751B2 JP26357992A JP26357992A JP3254751B2 JP 3254751 B2 JP3254751 B2 JP 3254751B2 JP 26357992 A JP26357992 A JP 26357992A JP 26357992 A JP26357992 A JP 26357992A JP 3254751 B2 JP3254751 B2 JP 3254751B2
Authority
JP
Japan
Prior art keywords
reaction
caprolactam
cyclohexanone oxime
catalyst
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26357992A
Other languages
Japanese (ja)
Other versions
JPH05201966A (en
Inventor
宏 市橋
勝 北村
浩司 梶栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP26357992A priority Critical patent/JP3254751B2/en
Publication of JPH05201966A publication Critical patent/JPH05201966A/en
Application granted granted Critical
Publication of JP3254751B2 publication Critical patent/JP3254751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体触媒を用いて気相反
応条件下にシクトヘキサノンオキシムからε−カプロラ
クタムを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing .epsilon.-caprolactam from cictohexanone oxime under gas phase reaction conditions using a solid catalyst.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ε−カ
プロラクタムはナイロン等の原料として用いられている
重要な基幹化学原料である。
2. Description of the Related Art ε-Caprolactam is an important basic chemical raw material used as a raw material for nylon and the like.

【0003】本発明者らは、固体触媒を用いて気相反応
条件下、反応系に低級アルコール、エーテル化合物を共
存させてシクロヘキサノンオキシムを転位(ベックマン
転位)させることによるε−カプロラクタムの製造方法
を提案している(特開平2−275850号公報及び特
開平2−250866号公報)。
The present inventors have proposed a process for producing ε-caprolactam by rearranging cyclohexanone oxime (Beckmann rearrangement) in the presence of a lower alcohol and an ether compound in a reaction system under gas phase reaction conditions using a solid catalyst. Japanese Patent Application Laid-Open Nos. 2-275850 and 2-250866.

【0004】本発明者らは、その後さらにシクロヘキサ
ノンオキシムの転位反応について鋭意検討を重ねた結
果、反応系にアンモニアを共存させることにより、シク
ロヘキサノンオキシムが高い転化率で反応する条件にお
いても、極めて高い選択率でε−カプロラクタムが得ら
れ、しかも触媒の寿命が著しく向上することを見出し、
本発明を完成するに至った。
[0004] The present inventors have further studied the rearrangement reaction of cyclohexanone oxime, and as a result, the coexistence of ammonia in the reaction system allows the selection of cyclohexanone oxime to be performed at a very high conversion rate even under conditions in which the reaction proceeds at a high conversion. Ε-caprolactam can be obtained at a rate, and the life of the catalyst is remarkably improved.
The present invention has been completed.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、アン
モニアの共存下、気相でシクロヘキサノンオキシムを
オライトと接触させることを特徴とする工業的に優れた
ε−カプラクタムの製造法を提供するものである。
That is, the present invention provides a method for synthesizing cyclohexanone oxime in the gas phase in the presence of ammonia.
The present invention provides an industrially excellent method for producing an ε-caplactam, which is characterized by being brought into contact with olilite.

【0006】以下、本発明を詳細に説明する。本発明で
は、固体触媒としてゼオライトが用いられ、中でも結晶
性シリカ、結晶性メタロシリケート等がより好ましい。
Hereinafter, the present invention will be described in detail. In the present invention
Is zero zeolite is used as a solid catalyst, among others crystalline silica, crystalline metallosilicate or the like is more preferable.

【0007】本発明における結晶性シリカとは、実質的
にケイ素と酸素とからなるものである。また結晶性メタ
ロシリケートとは、ケイ素と酸素の他に金属を含むもの
であり、例えば金属原子数に対するケイ素原子数の比
(Si/Me原子比)が5以上、好ましくは500以上
のものが挙げられる。ここで金属としてはAl、Ga、
Fe、B、Zn、Cr、Be、Co、La、Ge、T
i、Zr、Hf、V、Ni、Sb、Bi、Cu、Nb等
から選ばれる少なくとも1種の金属が挙げられる。Si
/Me原子比は通常の分析手段、例えば原子吸光法、螢
光X線法等により求めることができる。
[0007] The crystalline silica in the present invention is substantially composed of silicon and oxygen. The crystalline metallosilicate includes a metal in addition to silicon and oxygen, and includes, for example, those having a ratio of the number of silicon atoms to the number of metal atoms (Si / Me atomic ratio) of 5 or more, preferably 500 or more. Can be Here, as the metal, Al, Ga,
Fe, B, Zn, Cr, Be, Co, La, Ge, T
At least one metal selected from i, Zr, Hf, V, Ni, Sb, Bi, Cu, Nb, and the like is included. Si
The / Me atomic ratio can be determined by ordinary analytical means such as an atomic absorption method and a fluorescent X-ray method.

【0008】またこれらの触媒は公知の方法により製造
することができる。これらの結晶性シリカ、結晶性メタ
ロシリケートには種々の結晶型が知られているが、いわ
ゆるペンタシル型構造に属するものが好ましい。
[0008] These catalysts can be produced by a known method. Various crystalline types are known for these crystalline silicas and crystalline metallosilicates, but those belonging to a so-called pentasil type structure are preferred.

【0009】本発明は反応系にアンモニアを共存させる
ことを特徴とするものであるが、かかるアンモニアの使
用量は、供給するシクロヘキサノンオキシムに対してモ
ル比で通常10倍以下が適当であり、好ましくは1倍以
下、さらに好ましくは0.001〜0.8倍の範囲である。
またメチルアミン類、ε−カプロラクタムをアンモニア
と併用することもできる。
The present invention is characterized in that ammonia is allowed to coexist in the reaction system. The amount of ammonia to be used is suitably usually 10 times or less in molar ratio with respect to cyclohexanone oxime to be supplied. Is 1 time or less, more preferably 0.001 to 0.8 times.
Further, methylamines and ε-caprolactam can be used in combination with ammonia.

【0010】本発明においては反応系にアンモニアとと
もにアルコールやエーテル化合物を共存させることもで
きる。この場合、目的物の選択率がさらに向上するので
好ましい。かかるアルコールやエーテル化合物としては
下記一般式(1)で示される化合物が挙げられる。 R1 −O−R2 (1) (式中、R1 はフッ素原子が置換していてもよい低級ア
ルキル基を表し、R2 は水素原子、フッ素原子が置換し
ていてもよい低級アルキル基またはフェニル基を表
す。)アルコールの具体例としては、例えばメタノー
ル、エタノール、n−プロパノール、イソプロパノー
ル、n−ブタノール、sec−ブタノール、イソブタノ
ール、n−アミルアルコール、n−ヘキサノール、2,
2,2−トリフルオロエタノール等の炭素数6以下の低
級アルコールが挙げられ、中でもメタノールおよびエタ
ノールが好ましい。またエーテル化合物としてはR1
メチル基またはエチル基のものが好ましく、例えばジメ
チルエーテル、メチルエチルエーテル、ジエチルエーテ
ル、メチル−n−プロピルエーテル、メチルイソプロピ
ルエーテル、メチル−tert−ブチルエーテル、アニ
ソール等の炭素数8以下のエーテル化合物が挙げられ
る。これらのアルコールおよびエーテル化合物は2種以
上を併用することができ、またアルコールとエーテル化
合物を併用することも可能である。
In the present invention, an alcohol or an ether compound can coexist with ammonia in the reaction system. This case is preferable because the selectivity of the target substance is further improved. Examples of such an alcohol or ether compound include a compound represented by the following general formula (1). R 1 —O—R 2 (1) (wherein, R 1 represents a lower alkyl group optionally substituted with a fluorine atom, and R 2 represents a lower alkyl group optionally substituted with a hydrogen atom or a fluorine atom. Or a phenyl group.) Specific examples of the alcohol include, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, n-amyl alcohol, n-hexanol,
Examples thereof include lower alcohols having 6 or less carbon atoms such as 2,2-trifluoroethanol, and among them, methanol and ethanol are preferable. As the ether compound, those in which R 1 is a methyl group or an ethyl group are preferable, and for example, the carbon number of dimethyl ether, methyl ethyl ether, diethyl ether, methyl-n-propyl ether, methyl isopropyl ether, methyl-tert-butyl ether, anisole, etc. And 8 or less ether compounds. Two or more of these alcohol and ether compounds can be used in combination, and an alcohol and an ether compound can be used in combination.

【0011】本発明は反応系に希釈ガスとしてベンゼ
ン、シクロヘキサン、トルエン等のような反応に不活性
の化合物の蒸気あるいは窒素、二酸化炭素等の不活性ガ
スを共存させることもできる。
In the present invention, a vapor of a compound inert to the reaction such as benzene, cyclohexane, toluene or the like, or an inert gas such as nitrogen or carbon dioxide may coexist as a diluent gas in the reaction system.

【0012】次に本発明を実施する際の反応方法につい
て述べる。原料のシクロヘキサノンオキシムは気体状態
で接触反応させるが、反応は固定床方式、流動床方式の
いずれの方式で実施してもよい。添加するアンモニアは
シクロヘキサノンオキシムと予め混合して反応器に供給
してもよいし、シクロヘキサノンオキシムとは別々に供
給してもよい。後者の場合にはアンモニアを分割して添
加することもできる。また固定床反応の場合はシクロヘ
キサノンオキシムがアンモニアと十分に混合された状態
で触媒層を通過させるのが好ましいため、通常前者の方
法が採用される。
Next, a reaction method for carrying out the present invention will be described. The starting material cyclohexanone oxime is brought into contact in a gaseous state, and the reaction may be carried out in any of a fixed bed system and a fluidized bed system. The ammonia to be added may be mixed with cyclohexanone oxime in advance and supplied to the reactor, or may be supplied separately from cyclohexanone oxime. In the latter case, ammonia can be added in portions. In the case of a fixed bed reaction, it is preferable that cyclohexanone oxime is sufficiently mixed with ammonia to pass through the catalyst layer, and thus the former method is usually employed.

【0013】原料シクロヘキサノンオキシムの空間速度
は、通常WHSV=0.1〜40hr-1(すなわち触媒1kg
当たりのシクロヘキサノンオキシム供給速度が0.1〜4
0kg/hr)であるが、好ましくは0.2〜20hr-1であ
り、より好ましくは0.5〜10hr-1の範囲から選ばれ
る。
The space velocity of the raw material cyclohexanone oxime is usually WHSV = 0.1 to 40 hr -1 (that is, 1 kg of catalyst).
Cyclohexanone oxime supply rate per unit is 0.1 to 4
0 kg / hr), preferably from 0.2 to 20 hr -1 , more preferably from 0.5 to 10 hr -1 .

【0014】本発明の反応温度は通常250〜500℃
であるが、好ましくは300〜450℃であり、さらに
好ましくは300〜400℃である。250℃未満の温
度では反応速度が十分でなく、またε−カプロラクタム
の選択率も低下する傾向がある。一方、500℃を越え
るとε−カプロラクタムの選択率が低下する傾向があ
る。
The reaction temperature of the present invention is usually from 250 to 500 ° C.
However, it is preferably 300 to 450 ° C, more preferably 300 to 400 ° C. At a temperature lower than 250 ° C., the reaction rate is not sufficient, and the selectivity for ε-caprolactam tends to decrease. On the other hand, when the temperature exceeds 500 ° C., the selectivity for ε-caprolactam tends to decrease.

【0015】さらに本発明は、加圧、常圧、減圧下のい
ずれでも実施することができるが、通常0.05〜10kg
/cm2 の圧力下で実施する。
Further, the present invention can be carried out under any of pressurized, normal, and reduced pressures.
Carried out under a pressure of / cm 2 .

【0016】反応混合物からのε−カプロラクタムの分
離精製は、例えば反応生成ガスを冷却して凝縮させ、次
いで抽出、蒸留あるいは晶析等をすることにより行うこ
とができる。
The separation and purification of ε-caprolactam from the reaction mixture can be carried out, for example, by cooling and condensing the reaction product gas, followed by extraction, distillation or crystallization.

【0017】また反応系に加えたアンモニアは、反応生
成物から分離回収して再利用することができる。例えば
反応生成ガスを冷却して凝縮させる際に、アンモニアを
ガス状態で回収することができる。
The ammonia added to the reaction system can be separated and recovered from the reaction product and reused. For example, when the reaction product gas is cooled and condensed, ammonia can be recovered in a gaseous state.

【0018】長時間の使用によって活性の低下した触媒
は、分子状酸素含有ガス中、例えば空気気流中で焼成す
るか、メタノール等のアルコールを加えた分子状酸素含
有ガス中で焼成することにより容易に元の性能に賦活
し、繰り返し使用し得る。
The catalyst whose activity has been reduced by prolonged use can be easily calcined in a molecular oxygen-containing gas, for example, in an air stream, or calcined in a molecular oxygen-containing gas to which alcohol such as methanol is added. Activated to the original performance and can be used repeatedly.

【0019】[0019]

【発明の効果】本発明によればシクロヘキサノンオキシ
ムが高い転化率で反応する条件においても、極めて高い
選択率でε−カプロラクタムが得られ、しかも触媒の寿
命が著しく向上する。
According to the present invention, .epsilon.-caprolactam can be obtained with extremely high selectivity even under conditions in which cyclohexanone oxime reacts at a high conversion, and the catalyst life is remarkably improved.

【0020】[0020]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples.

【0021】参考例1(触媒の調製) 1.5lのステンレス製オートクレーブにテトラエチルオ
ルソシリケート (Si(0C2 5 4 、Al含有量10ppm 以下)1
00g、10%水酸化テトラ−n−プロピルアンモニウ
ム水溶液224.0g、エタノール214gを仕込み、3
0分間激しく攪拌した。混合溶液のpHは13であっ
た。オートクレーブの蓋を締めた後、油浴に浸して内温
を105℃に保ち、400rpm 以上の回転数で攪拌を行
いながら120時間水熱合成を行った。この間オートク
レーブ内の圧力は2〜3kg/cm2 に達した。水熱合成終
了時のpHは11.8であった。白色の固体生成物を濾別
し、次いで洗液のpHが7付近になるまで蒸留水で連続
的に洗浄した。白色固体を乾燥後、空気流通下に500
〜530℃で4時間焼成し、27gの粉末状白色結晶を
得た。該結晶を粉末X線回折で分析した結果、ペンタシ
ル型ゼオライトと同定された。また、原子吸光法による
元素分析の結果、Alの含有量は3ppm であった。この
結晶10gに5%塩化アンモニウム水溶液100gを加
え、50〜60℃で1時間イオン交換処理を行った後、
結晶を濾別した。このイオン交換処理操作を4回行った
後、洗液中にCl- イオンが検出されなくなるまで蒸留
水で結晶を洗浄した。続いて該結晶を120℃で16時
間乾燥し、得られたアンモニウム塩型の結晶を加圧成形
後、24〜48メッシュに篩分けした。さらに該結晶を
窒素ガス流通下に500℃で1時間焼成し、触媒を得
た。
Reference Example 1 (Preparation of catalyst) Tetraethyl orthosilicate (Si (0C 2 H 5 ) 4 , Al content 10 ppm or less) was placed in a 1.5-liter stainless steel autoclave.
100 g, 224.0 g of a 10% aqueous solution of tetra-n-propylammonium hydroxide, and 214 g of ethanol.
Stir vigorously for 0 minutes. The pH of the mixed solution was 13. After closing the autoclave lid, it was immersed in an oil bath to maintain the internal temperature at 105 ° C., and hydrothermal synthesis was performed for 120 hours while stirring at a rotation speed of 400 rpm or more. During this time, the pressure in the autoclave reached 2-3 kg / cm 2 . The pH at the end of the hydrothermal synthesis was 11.8. The white solid product was filtered off and washed successively with distilled water until the pH of the washings was around 7. After drying the white solid, 500
The mixture was calcined at 5530 ° C. for 4 hours to obtain 27 g of powdery white crystals. The crystal was analyzed by powder X-ray diffraction, and as a result, it was identified as a pentasil-type zeolite. As a result of elemental analysis by the atomic absorption method, the Al content was 3 ppm. 100 g of a 5% aqueous ammonium chloride solution was added to 10 g of the crystals, and an ion exchange treatment was performed at 50 to 60 ° C. for 1 hour.
The crystals were filtered off. After performing this ion exchange treatment operation four times, the crystals were washed with distilled water until no Cl - ions were detected in the washing solution. Subsequently, the crystals were dried at 120 ° C. for 16 hours, and the obtained ammonium salt type crystals were subjected to pressure molding and then sieved to 24-48 mesh. Further, the crystals were calcined at 500 ° C. for 1 hour under flowing nitrogen gas to obtain a catalyst.

【0022】参考例2(触媒の処理) 石英ガラス製反応管中に参考例1において調製した触媒
を1g充填し、窒素気流下(4.2l/hr)に500℃で
3時間予熱処理した。次いで100℃まで降温し窒素を
窒素(95容量%)−アンモニア(5容量%)の混合ガ
ス(4.2l/hr)に切り換えて10時間保持した。その
後再び窒素(4.2l/hr)に切り換え、毎分1℃の速度
で350℃まで昇温し1時間保持した。次いで窒素を供
給しながら室温まで冷却した。
REFERENCE EXAMPLE 2 (Treatment of Catalyst) 1 g of the catalyst prepared in Reference Example 1 was filled in a quartz glass reaction tube and preheat-treated at 500 ° C. for 3 hours under a nitrogen stream (4.2 l / hr). Then, the temperature was lowered to 100 ° C., and the nitrogen was switched to a mixed gas (4.2 l / hr) of nitrogen (95% by volume) -ammonia (5% by volume) and maintained for 10 hours. Thereafter, the atmosphere was switched to nitrogen (4.2 l / hr) again, the temperature was raised to 350 ° C. at a rate of 1 ° C. per minute, and held for 1 hour. Then, it was cooled to room temperature while supplying nitrogen.

【0023】実施例1 内径1cmの石英ガラス製反応管中に参考例1で調製した
触媒を0.375g(0.6ml)充填し、窒素気流下(4.2
l/hr)に350℃で1時間予熱処理した。次いで窒素
を窒素(95容量%)−アンモニア(5容量%)の混合
ガス(4.2l/hr)に切り換えた。次に上記混合ガスを
供給しながら、シクロヘキサノンオキシム/メタノール
重量比が1/1.8の混合液を8.4g/hrの速度で反応管
に供給し反応させた。このときのシクロヘキサノンオキ
シムの空間速度WHSVは8hr-1であり、触媒層の温度
(反応温度)は350℃であった。反応は6.25時間継
続した後、すべての供給を止めて終了させた。反応生成
物は水冷下に捕集し、ガスクロマトグラフで分析した。
Example 1 0.375 g (0.6 ml) of the catalyst prepared in Reference Example 1 was filled in a quartz glass reaction tube having an inner diameter of 1 cm, and the reaction mixture was placed in a nitrogen stream (4.2).
1 / hr) at 350 ° C. for 1 hour. Then, nitrogen was switched to a mixed gas (4.2 l / hr) of nitrogen (95% by volume) -ammonia (5% by volume). Next, while supplying the above mixed gas, a mixed liquid having a cyclohexanone oxime / methanol weight ratio of 1 / 1.8 was supplied to the reaction tube at a rate of 8.4 g / hr to cause a reaction. At this time, the space velocity WHSV of cyclohexanone oxime was 8 hr -1 , and the temperature (reaction temperature) of the catalyst layer was 350 ° C. The reaction was continued for 6.25 hours, after which all feeds were stopped and terminated. The reaction product was collected under water cooling and analyzed by gas chromatography.

【0024】尚、ここに空間速度WHSVは次式で算出
し、またシクロヘキサノンオキシムの転化率およびε−
カプロラクタムの選択率もそれぞれ次式で算出した。 WHSV(hr-1)=O/C シクロヘキサノンオキシムの転化率(%)=〔(X−Y)/X〕×100 ε−カプロラクタムの選択率(%)=〔Z/(X−Y)〕×100 また、O、C、X、YおよびZはそれぞれ次のとおりで
ある。 O=シクロヘキサノンオキシムの供給速度(kg/hr) C=触媒重量(kg) X=供給した原料シクロヘキサノンオキシムのモル数 Y=未反応のシクロヘキサノンオキシムのモル数 Z=生成物中のε−カプロラクタムのモル数
Here, the space velocity WHSV is calculated by the following equation, and the conversion of cyclohexanone oxime and ε-
The selectivity of caprolactam was also calculated by the following formula. WHSV (hr -1 ) = O / C Conversion of cyclohexanone oxime (%) = [(XY) / X] × 100 Selectivity (%) of ε-caprolactam = [Z / (XY)] × 100 In addition, O, C, X, Y and Z are as follows. O = feed rate of cyclohexanone oxime (kg / hr) C = weight of catalyst (kg) X = number of moles of raw material cyclohexanone oxime supplied Y = number of moles of unreacted cyclohexanone oxime Z = mole of ε-caprolactam in the product number

【0025】反応終了後、窒素ガス(2.5l/hr)と空
気(2.5l/hr)との混合ガスを0℃に保持したメタノ
ール中にバブリングして得られた窒素、空気およびメタ
ノールの混合ガス(メタノール濃度3.8容量%:0℃で
の飽和濃度)を反応管に供給しながら触媒層を430℃
まで昇温し、その温度で23時間処理した。この操作に
より触媒上に析出した炭素質物質を除去した。
After completion of the reaction, a mixed gas of nitrogen gas (2.5 l / hr) and air (2.5 l / hr) was bubbled into methanol maintained at 0 ° C. to obtain nitrogen, air and methanol. While supplying the mixed gas (methanol concentration 3.8 vol%: saturated concentration at 0 ° C.) to the reaction tube, the catalyst layer was heated to 430 ° C.
And then treated at that temperature for 23 hours. By this operation, the carbonaceous substance deposited on the catalyst was removed.

【0026】次いで窒素ガス(4.2l/hr)を供給しな
がら、温度を350℃まで下げた。
Next, the temperature was lowered to 350 ° C. while supplying nitrogen gas (4.2 l / hr).

【0027】続いて上記と同じ条件で反応と炭素質物質
の除去操作を累計で30回繰り返し実施した。各回の反
応結果を表1に示す。
Subsequently, the reaction and the operation of removing the carbonaceous substance were repeated 30 times in total under the same conditions as described above. The results of each reaction are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1 実施例1において窒素を窒素−アンモニアの混合ガスに
切り換えることなく供給した以外は実施例1と同じ条件
で反応と炭素質物質の除去を累計で30回実施した。各
回の反応結果を表2に示す。
Comparative Example 1 The reaction and the removal of the carbonaceous substance were carried out a total of 30 times under the same conditions as in Example 1 except that nitrogen was supplied without switching to the nitrogen-ammonia mixed gas in Example 1. Table 2 shows the results of each reaction.

【0030】[0030]

【表2】 [Table 2]

【0031】比較例2 内径1cmの石英ガラス製反応管中に参考例1で調製した
触媒の代わりに参考例2で処理された触媒0.375g
(0.6ml)を充填した以外は比較例1と同様の条件で、
反応と炭素質物質の除去操作を累計で30回繰り返し実
施した。各回の反応結果を表3に示す。
Comparative Example 2 0.375 g of the catalyst treated in Reference Example 2 instead of the catalyst prepared in Reference Example 1 was placed in a quartz glass reaction tube having an inner diameter of 1 cm.
(0.6 ml) under the same conditions as in Comparative Example 1,
The reaction and the operation of removing the carbonaceous substance were repeated 30 times in total. Table 3 shows the results of each reaction.

【0032】[0032]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭48−16516(JP,B1) 特公 昭51−33914(JP,B1) 特公 昭46−23745(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C07D 201/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-B-48-16516 (JP, B1) JP-B-51-3914 (JP, B1) JP-B-46-23745 (JP, B1) (58) Field (Int.Cl. 7 , DB name) C07D 201/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アンモニアの共存下、気相でシクロヘキサ
ノンオキシムをゼオライトと接触させることを特徴とす
るε−カプロラクタムの製造法。
1. A process for producing ε-caprolactam, comprising contacting cyclohexanone oxime with zeolite in the gas phase in the presence of ammonia.
JP26357992A 1991-11-27 1992-10-01 Method for producing ε-caprolactam Expired - Fee Related JP3254751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26357992A JP3254751B2 (en) 1991-11-27 1992-10-01 Method for producing ε-caprolactam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-312492 1991-11-27
JP31249291 1991-11-27
JP26357992A JP3254751B2 (en) 1991-11-27 1992-10-01 Method for producing ε-caprolactam

Publications (2)

Publication Number Publication Date
JPH05201966A JPH05201966A (en) 1993-08-10
JP3254751B2 true JP3254751B2 (en) 2002-02-12

Family

ID=26546087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26357992A Expired - Fee Related JP3254751B2 (en) 1991-11-27 1992-10-01 Method for producing ε-caprolactam

Country Status (1)

Country Link
JP (1) JP3254751B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064560A1 (en) * 2001-02-14 2002-08-22 Asahi Kasei Kabushiki Kaisha PROCESS FOR PREPARATION OF ε-CAPROLACTAM
JP4661071B2 (en) * 2004-03-30 2011-03-30 住友化学株式会社 Method for producing ε-caprolactam
TW200808447A (en) 2006-07-04 2008-02-16 Sumitomo Chemical Co Processing for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam
WO2013058121A1 (en) * 2011-10-17 2013-04-25 住友化学株式会社 PRODUCTION METHOD FOR ε-CAPROLACTAM
JP5875843B2 (en) 2011-11-30 2016-03-02 住友化学株式会社 Method for producing zeolite compact and method for producing ε-caprolactam

Also Published As

Publication number Publication date
JPH05201966A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
KR100193349B1 (en) Method for preparing epsilon-caprolactam and activation method of solid catalyst for preparing epsilon-caprolactam
US5304643A (en) Process for producing epsilon-caprolactam
JP3254752B2 (en) Production method of ε-caprolactam
US5354859A (en) ε-caprolactam
US7060645B2 (en) Method for manufacturing zeolite and method for manufacturing ε-caprolactam
US4968793A (en) Process for producing ε-caprolactam
KR20010066865A (en) A PROCESS FOR PRODUCING PENTACYL-TYPE CRYSTALLINE ZEOLITES AND A PROCESS FOR PRODUCING ε-CAPROLACTAM USING THE SAME
JP3254753B2 (en) Method for producing ε-caprolactam
JP2616088B2 (en) Production method of ε-caprolactam
JP3254751B2 (en) Method for producing ε-caprolactam
US6946553B2 (en) Process for producing ε-caprolactam and catalyst for the production
JP2676895B2 (en) Process for producing ε-caprolactam
EP1875964A1 (en) Process for regenerating catalyst for producing a-caprolactam and process for producing e-caprolactam
JP3301092B2 (en) Method for producing ε-caprolactam
JP3221024B2 (en) Method for producing ε-caprolactam and method for activating solid catalyst for producing ε-caprolactam
JP3221021B2 (en) Method for producing ε-caprolactam
KR20060041911A (en) Method for producing -caprolactam and method for reactivating catalyst for production of -caprolactam
KR100287085B1 (en) Method for preparing E-caprolactam
JP3969078B2 (en) Method for producing pentasil-type zeolite and method for producing ε-caprolactam
JP3726816B2 (en) Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam
JP3767562B2 (en) Method for producing ε-caprolactam
JP4681705B2 (en) Process for producing ε-caprolactam and catalyst used therefor
JP4415580B2 (en) Method for producing lactam compound
JP2008229403A (en) REGENERATION METHOD OF CATALYST FOR PRODUCING epsilon-CAPROLACTAM AND METHOD FOR MANUFACTURING epsilon-CAPROLACTAM
JP2000256309A (en) Production of epsilon-caprolactam

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees