JPH0225055B2 - - Google Patents

Info

Publication number
JPH0225055B2
JPH0225055B2 JP57101026A JP10102682A JPH0225055B2 JP H0225055 B2 JPH0225055 B2 JP H0225055B2 JP 57101026 A JP57101026 A JP 57101026A JP 10102682 A JP10102682 A JP 10102682A JP H0225055 B2 JPH0225055 B2 JP H0225055B2
Authority
JP
Japan
Prior art keywords
phenolic resin
bearing
oil
load
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57101026A
Other languages
Japanese (ja)
Other versions
JPS58217820A (en
Inventor
Satoshi Sasano
Toku Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP10102682A priority Critical patent/JPS58217820A/en
Publication of JPS58217820A publication Critical patent/JPS58217820A/en
Publication of JPH0225055B2 publication Critical patent/JPH0225055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は含油フエノール樹脂軸受に関するもの
であつて、その目的とするところは、低負荷から
高負荷にわたつて、安定した摺動特性を保有し、
相手軸を損傷させることなく、更に剛性、耐熱
性、耐衝撃性に優れ、かつ射出成形による量産可
能な含油フエノール樹脂軸受を提供することにあ
る。 従来、無潤滑軸受としては、例えばポリ4フツ
化エチレン(PTFE)、ポリアミド、ポリアセタ
ール、ポリブチレンテレフタレート。ポリカーボ
ネート等の熱可塑性樹脂が広く使用されている。 しかし乍ら、之等の軸受製品は自己潤滑性及び
耐摩耗性に優れた性質を有するが、この性質を十
分に機能させる使用範囲は、低速、低荷重の領域
に限定され、高速、高荷重等の高負荷条件に於け
る使用には耐えることが出来ない。 この為に、上記樹脂に潤滑油を配合して、負荷
限界の向上を図る試みがなされているが、かかる
含油樹脂の摩擦特性は、非含油樹脂に比較し改善
されるが、ベースとなる合成樹脂が熱可能性であ
る為、耐熱性が低いこと、剛性が小さいこと等に
より、負荷が大となると変形を生じ、或は摩擦熱
による溶融だきつき現象等を生じ、使用範囲を大
幅に拡大することは不可能であつた。 一方、フエノール樹脂を軸受材料とする場合に
は、耐熱性、剛性が優れ、かつ高温下に於ても溶
融軟化しないという利点を有するが、フエノール
樹脂自体、本質的に摩擦係数が極めて高く、通常
のフエノール樹脂材料を無潤滑軸受に使用するこ
とは出来ない。 其の為、フエノール樹脂にグラフアイト、二硫
化モリブデン、PTFE等の固体潤滑剤を配合した
軸受材料が開発されているが、固体潤滑剤の添加
のみでは摩擦特性の改善に限界があり、負荷限界
に関しても、前述の熱可塑性樹脂と大差の無い特
性を得られるに過ぎなかつた。 又フエノール樹脂材料の低摩擦化を図る為に、
フエノール樹脂積層硬化物に、成形後含油させた
軸受材も研究されているが、油の保持力が低く定
期的に給油が必要となり、完全な無潤滑軸受とは
言い難い。しかも積層材である為に、固体潤滑剤
の量的制約が有り無潤滑軸受としての効果は期待
し難い。 更に、フエノール樹脂の脆さを改善する為に、
補強材としてガラス繊維、或はカーボン繊維を上
記固体潤滑剤と複合させることも行われている
が、之等の繊維は機械的強度は改善するが、軸受
としては相手軸を摩耗させるという欠点を有して
いる。 本発明者等は、上述した様な従来技術の欠点を
解決し、フエノール樹脂を主体とする無潤滑軸受
材を完成する為鋭意研究の結果、フエノール樹脂
に補強材として芳香族ポリアミド繊維、固体潤滑
剤としてグラフアイト、二硫化モリブデン、
PTFE粉末、メラミンシアヌール酸誘導体、芳香
族ポリエステル等のうち一種又は二種以上、更に
流体潤滑剤として潤滑油を適当な配合割合で組合
せた結果、低負荷から高負荷まで広範囲にわたり
安定した摺動特性を示し、相手軸を損傷させるこ
とがなく、剛性、耐衝撃性、耐熱性にも優れ、か
つ射出成形による均質製品の量産可能な含油フエ
ノール軸受を開発することに成功したものであ
る。 以下に、本発明に係るフエノール樹脂軸受の特
徴を更に具体的に説明する。 本発明に係る含油フエノール樹脂軸受は前記の
ように低負荷から高負荷に到る広い範囲にわたり
優れた摺動特性を発揮することを特徴とする。 即ち、潤滑油の被膜が形成され難い低速、高荷
重、間欠運動、揺動運動等の各条件下に於ては、
グラフアイト、二硫化モリブデン等の固体潤滑剤
の有する優れた潤滑作用により、良好な耐摩擦、
耐摩耗特性が確保され、又高速、高荷重の厳しい
条件下では摺動面の摩擦による発熱により内部よ
り潤滑油が摺動面上に滲出して、油膜を形成する
ことにより優れた摺動特性が発揮されて軸受の負
荷能力は飛躍的に増大する。 又、本発明に於ては、補強材として芳香族ポリ
アミド繊維を使用しているが、該繊維は機械的強
度の向上に寄与するばかりでなく、耐摩耗性の向
上にも大きな効果を示し、更に従来のガラス繊維
やカーボン繊維にみられる相手軸を摩耗させる作
用も全くみられない。 本発明に於て使用するフエノール樹脂は、勿論
一般的なフエノール樹脂に限定されるものではな
く、ホウ素変性樹脂、ケイ素変性樹脂、リン変性
樹脂、重金属変性樹脂、エラストマー変性樹脂、
その他の各種変性樹脂、及び芳香族アルキルエー
テルとフエノールとを結合させた樹脂、4−ヒド
ロキシスチレンを重合させた樹脂等も含まれる。 本発明に於て使用するグラフアイト、二硫化モ
リブデン、PTFE粉末、メラミンシアヌール酸誘
導体、芳香族エステルはいわゆる固体潤滑剤とし
て市販されている粉末状のもので、例えば商品名
として、グラフアイトはCPB30(中越黒鉛工業
所)、PTEF粉末はポリミストF−5(アライドケ
ミカル社)、メラミンシアヌール酸誘導体はMCA
(油化メラミン社)、芳香族ポリエステルはE−
101(住友化学社)があり、これ等を単独で或いは
2種以上組合せて使用してもよい。 固体潤滑剤の粒子径は1〜200ミクロン、特に
10〜100ミクロンのものが望ましい。粒子径が大
きすぎる場合には、均一混合性や成形性等に難点
が生じ、空隙のない緻密な成形品が得難くなる。 固体潤滑剤の添加量は10〜50wt%がよく、使
用する固体潤滑剤の種類によつて異るが、例えば
グラフアイト単独で使用する場合は20〜40wt%、
二硫化モリブデン単独の場合は25〜45wt%が望
ましい。尚、以下に示す%は特にことわらない限
り重量百分率を示すものとする。 添加量が10%未満の場合は、固体潤滑剤の添加
効果が小さい為、特性のバラツキが大となり、か
つ十分な耐摩擦、耐摩耗性が得難い。 又50%を超える場合は、材料の混合性、成形性
が著しく悪化すると共に材料強度が低下する。 本発明に於て使用する芳香族ポリアミド繊維と
しては米国デユポン社製のケブラ−49、ノーメツ
クス、帝人社製のコーネツクス等があり、之を添
加することにより、軸受材の機械的強度が向上す
るのみならず耐摩耗性も向上する。 当該繊維の添加量は5〜25%特に10〜15%が望
ましい。即ち添加量が5%未満の場合は、強化材
としての効果が十分発揮されず、又25%以上では
均一混合性や成形性が著しく損われる。 次に本発明に於いて使用する潤滑油は、スピン
ドル油、流動パラフイン、マシン油、タービン
油、冷凍機油、シリンダー油、ギヤー油、等の軽
質油から重質油までの総ての鉱物油や合成炭化水
素、エステル系、シリコーン系等の各種合成潤滑
油を利用することが出来る。更に之等潤滑油に極
圧添加剤、酸化防止剤等の各種添加剤が添加され
ていても何等支障を来たさない。 之等潤滑油の添加量は1〜10%が適当である。
即ち添加量が1%未満の場合は、十分な潤滑効果
が得られず、又10%を超える場合には潤滑油の均
一分散が困難となり、成形性が甚だしく悪化する
と共に機械的強度も大幅に低下する。 尚潤滑油の配合は、各種金属塩、活性炭等の担
体を使用しても良く、若しくは配合材料中に直接
添加することも可能である。何れの場合も加熱ロ
ール等の溶融混練機を使用することにより、均一
に分散させることが出来る。 以上申述べた様な実験結果を総合して本発明が
完成したのである。 以下に本発明に係るフエノール樹脂軸受につい
て、其の製造方法、構成について実施例に基いて
説明し、後述する比較例との比較に於いて、本発
明の効果を説明する。 尚下記の実施例及び各比較例はいづれもフエノ
ール樹脂としては、ノボラツク型フエノール樹脂
粉末、ミレツクス2410(三井東圧社製)を用い、
芳香族ポリアミド繊維としては、コーネツクス
(帝人社製)2デニール、カツト長1mmを使用し
た。 実施例 ノボラツク型フエノール樹脂粉末45部(重量比) リン片状天然グラフアイト 35〃 二硫化モリブデン 5〃 芳香族ポリアミド繊維 10〃 タービン油 5〃 を混合して溶融混練し、さらに冷却後粉砕するこ
とにより成形材料を得た。 この成形材料をインライン射出成形機を用い
て、金型温度180℃硬化時間45秒の条件で〓20×〓
23×15mmのブツシユ状軸受試験片を作成しした。
この試験片をラジアル・ジヤーナル式軸受試験機
を用い、荷重10Kg/cm2、すべり速度30m/min、
試験時間70hr(連続運転)、相手軸 構造用炭素鋼
(S45C)、潤滑無潤滑、の条件によつて摺動特性
を測定した。 次に、それらの結果及び後述する累積荷重試験
による負荷限界(限界PV値)を後述する比較例
の試験片により測定した結果とについて、
軸受特性を比較したところ表に示す通りであつ
た。 次に上記実施例に対する比較例として、、
、、3種配合組成のブツシユ状軸受試験片を
前記実施例と同様の方法で作製し、実施例と同一
条件下に軸受特性の測定を行つた。 比較例 ノボラツク型フエノール樹脂粉末 45部 リン片状天然グラフアイト 40〃 二硫化モリブデン 5〃 芳香族ポリアミド繊維 10〃 比較例 ノボラツク型フエノール樹脂粉末 45部 PTFE樹脂粉末 45〃 芳香族ポリアミド繊維 10〃 比較例 ノボラツク型フエノール樹脂粉末 45部 木 粉 30〃 PTFE樹脂粉末 25〃 表に示す様に摩擦係数、摩耗量、限界荷重の
何れも格段に優れている。
The present invention relates to an oil-impregnated phenolic resin bearing, and its purpose is to have stable sliding characteristics from low to high loads,
It is an object of the present invention to provide an oil-impregnated phenolic resin bearing that does not damage a mating shaft, has excellent rigidity, heat resistance, and impact resistance, and can be mass-produced by injection molding. Conventionally, non-lubricated bearings include polytetrafluoroethylene (PTFE), polyamide, polyacetal, and polybutylene terephthalate. Thermoplastic resins such as polycarbonate are widely used. However, although these bearing products have excellent self-lubricating and wear-resistant properties, the range of use in which these properties are fully utilized is limited to low-speed, low-load areas; It cannot withstand use under high load conditions such as For this reason, attempts have been made to improve the load limit by blending lubricating oil into the above resins, but although the frictional properties of such oleoresins are improved compared to non-oleoresins, Since the resin is heat-resistant, it has low heat resistance and low rigidity, so if a large load is applied, it may deform or melt and sag due to frictional heat, greatly expanding the range of use. It was impossible. On the other hand, when using phenolic resin as a bearing material, it has the advantage of excellent heat resistance and rigidity, and does not melt and soften even at high temperatures. However, phenolic resin itself inherently has an extremely high coefficient of friction, and phenolic resin materials cannot be used in non-lubricated bearings. For this reason, bearing materials have been developed in which solid lubricants such as graphite, molybdenum disulfide, and PTFE are blended with phenolic resin, but there is a limit to the improvement of friction characteristics with the addition of solid lubricants alone, and the load limit Also, the properties obtained were only the same as those of the above-mentioned thermoplastic resins. In addition, in order to reduce the friction of phenolic resin materials,
Bearing materials made of cured phenolic resin laminates impregnated with oil after molding are also being studied, but these have low oil retention and require regular lubrication, so they cannot be considered completely lubrication-free bearings. Furthermore, since it is a laminated material, there is a quantitative restriction on the amount of solid lubricant, making it difficult to expect it to be effective as a non-lubricated bearing. Furthermore, in order to improve the brittleness of phenolic resin,
Glass fibers or carbon fibers have been used as reinforcing materials in combination with the above-mentioned solid lubricants, but although these fibers improve mechanical strength, they have the disadvantage of wearing out the mating shaft when used as a bearing. have. The inventors of the present invention solved the above-mentioned drawbacks of the conventional technology and, as a result of intensive research to complete a non-lubricated bearing material mainly made of phenolic resin, found that aromatic polyamide fiber was used as a reinforcing material in addition to phenolic resin, and solid lubricant was found. graphite, molybdenum disulfide,
As a result of combining one or more of PTFE powder, melamine cyanuric acid derivatives, aromatic polyester, etc., and lubricating oil as a fluid lubricant in an appropriate proportion, stable sliding over a wide range from low to high loads is achieved. We have succeeded in developing an oil-impregnated phenol bearing that exhibits the following characteristics, does not damage the mating shaft, has excellent rigidity, impact resistance, and heat resistance, and can be mass-produced into homogeneous products by injection molding. Below, the features of the phenolic resin bearing according to the present invention will be explained in more detail. As described above, the oil-impregnated phenolic resin bearing according to the present invention is characterized by exhibiting excellent sliding characteristics over a wide range from low loads to high loads. That is, under various conditions such as low speed, high load, intermittent motion, and rocking motion, where it is difficult to form a lubricating oil film,
The excellent lubricating effect of solid lubricants such as graphite and molybdenum disulfide provides good friction resistance and
Abrasion resistance is ensured, and under severe conditions of high speed and high load, lubricating oil oozes out from inside onto the sliding surface due to heat generation due to friction on the sliding surface, forming an oil film, resulting in excellent sliding characteristics. As a result, the bearing's load capacity increases dramatically. Furthermore, in the present invention, aromatic polyamide fibers are used as reinforcing materials, and these fibers not only contribute to improving mechanical strength, but also have a great effect on improving abrasion resistance. Furthermore, there is no effect of wearing out the mating shaft, which is seen in conventional glass fibers and carbon fibers. The phenolic resin used in the present invention is of course not limited to general phenolic resins, but includes boron-modified resins, silicon-modified resins, phosphorus-modified resins, heavy metal-modified resins, elastomer-modified resins,
Various other modified resins, resins in which aromatic alkyl ether and phenol are combined, resins in which 4-hydroxystyrene is polymerized, etc. are also included. The graphite, molybdenum disulfide, PTFE powder, melamine cyanuric acid derivative, and aromatic ester used in the present invention are powders that are commercially available as so-called solid lubricants. CPB30 (Chuetsu Graphite Industries), PTEF powder is Polymist F-5 (Allied Chemical Co., Ltd.), melamine cyanuric acid derivative is MCA
(Yuka Melamine Co., Ltd.), aromatic polyester is E-
101 (Sumitomo Chemical Co., Ltd.), and these may be used alone or in combination of two or more. The particle size of solid lubricants is 1 to 200 microns, especially
Preferably 10 to 100 microns. If the particle size is too large, problems arise in uniform mixing properties, moldability, etc., and it becomes difficult to obtain a dense molded product without voids. The amount of solid lubricant added is preferably 10 to 50 wt%, depending on the type of solid lubricant used, but for example, when graphite is used alone, it is 20 to 40 wt%,
In the case of molybdenum disulfide alone, 25 to 45 wt% is desirable. Note that the percentages shown below indicate weight percentages unless otherwise specified. If the amount added is less than 10%, the effect of adding the solid lubricant is small, resulting in large variations in properties and making it difficult to obtain sufficient friction and wear resistance. If it exceeds 50%, the mixability and moldability of the material will deteriorate significantly, and the strength of the material will decrease. Examples of the aromatic polyamide fibers used in the present invention include Kevlar-49 manufactured by DuPont in the United States, Nomex, and Cornex manufactured by Teijin, and the addition of these fibers only improves the mechanical strength of the bearing material. This also improves wear resistance. The amount of the fiber added is preferably 5 to 25%, particularly 10 to 15%. That is, if the amount added is less than 5%, the effect as a reinforcing material will not be sufficiently exhibited, and if it is more than 25%, uniform mixing properties and moldability will be significantly impaired. Next, the lubricating oil used in the present invention includes all mineral oils ranging from light oils to heavy oils such as spindle oil, liquid paraffin, machine oil, turbine oil, refrigeration oil, cylinder oil, and gear oil. Various synthetic lubricating oils such as synthetic hydrocarbon, ester, and silicone lubricants can be used. Furthermore, even if various additives such as extreme pressure additives and antioxidants are added to the lubricating oil, no problem will arise. The appropriate amount of lubricating oil to be added is 1 to 10%.
In other words, if the amount added is less than 1%, a sufficient lubricating effect cannot be obtained, and if it exceeds 10%, it becomes difficult to uniformly disperse the lubricating oil, resulting in extremely poor formability and a significant decrease in mechanical strength. descend. When blending the lubricating oil, carriers such as various metal salts and activated carbon may be used, or it may be added directly to the blended materials. In either case, uniform dispersion can be achieved by using a melt kneader such as a heating roll. The present invention was completed by combining the experimental results as described above. EXAMPLES Below, the manufacturing method and structure of the phenolic resin bearing according to the present invention will be explained based on examples, and the effects of the present invention will be explained in comparison with comparative examples described later. In the following Examples and Comparative Examples, the phenolic resin used was a novolac type phenolic resin powder, Millex 2410 (manufactured by Mitsui Toatsu Co., Ltd.).
The aromatic polyamide fiber used was Cornex (manufactured by Teijin), 2 denier, and cut length 1 mm. Example: 45 parts (by weight) of novolac-type phenolic resin powder, flaky natural graphite 35〃 Molybdenum disulfide 5〃 Aromatic polyamide fiber 10〃 Turbine oil 5〃 are mixed together, melted and kneaded, and further cooled and crushed. A molding material was obtained. Using an in-line injection molding machine, this molding material was molded at a mold temperature of 180°C and a curing time of 45 seconds.
A bush-shaped bearing test piece measuring 23 x 15 mm was prepared.
This test piece was tested using a radial/journal bearing tester at a load of 10 kg/cm 2 and a sliding speed of 30 m/min.
The sliding characteristics were measured under the following conditions: test time 70 hours (continuous operation), mating shaft structural carbon steel (S45C), no lubrication. Next, regarding these results and the results of measuring the load limit (limit PV value) by the cumulative load test described later using the test piece of the comparative example described later,
A comparison of bearing characteristics was as shown in the table. Next, as a comparative example to the above example,
Bush-shaped bearing test pieces having three types of compositions were prepared in the same manner as in the above example, and bearing characteristics were measured under the same conditions as in the example. Comparative example Novolac type phenolic resin powder 45 parts Scale-like natural graphite 40〃 Molybdenum disulfide 5〃 Aromatic polyamide fiber 10〃 Comparative example Novolac type phenolic resin powder 45 parts PTFE resin powder 45〃 Aromatic polyamide fiber 10〃 Comparative example Novolac type phenolic resin powder 45 parts Wood powder 30〃 PTFE resin powder 25〃 As shown in the table, the friction coefficient, amount of wear, and limit load are all extremely superior.

【表】 次に上記各試験片について、同じくラジアル、
ジヤーナル型試験機を用いて、無潤滑、相手軸を
構造用炭素鋼(S45C)として、30分毎に累積荷
重を行なう試験を速度30m/minと60m/minの
条件下に行つた荷重に対する摩擦係数の変化を第
1図及び第2図に示す如くである。 即ち図に示す通り実施例(図中a)の試験片は
荷重の累積、運転時間の経過に拘らず摩擦係数は
増大せず極めて安定状態を示したが、比較例
(図中b)、(図中c)、及び(図中d)の試
験片は摩擦係数は急上昇し、それぞれX点に於い
て焼付現象を生じた。 以上詳述した様に、本発明に係るフエノール樹
脂軸受は従来品に比して、低負荷から高負荷にわ
たつて、安定して、優れた摺動特性を維持し、か
つ相手軸を損傷させ、或は焼き付きを生ずる等の
欠点を有せず、而も剛性、耐衝撃性、耐熱性も良
好であつて、而も射出成形による量産も可能な軸
受である。
[Table] Next, for each test piece above, radial,
Using a journal type testing machine, without lubrication, with the mating shaft made of structural carbon steel (S45C), a cumulative load test was conducted every 30 minutes at speeds of 30 m/min and 60 m/min. The changes in the coefficients are shown in FIGS. 1 and 2. That is, as shown in the figure, the test piece of the example (a in the figure) showed an extremely stable state with no increase in the friction coefficient regardless of the cumulative load or the passage of operating time, but the test piece of the comparative example (b in the figure) The friction coefficients of the test pieces c) and (d) in the figure increased rapidly, and a seizure phenomenon occurred at the X point in each case. As detailed above, the phenolic resin bearing according to the present invention maintains stable and excellent sliding characteristics from low loads to high loads, and does not damage the mating shaft compared to conventional products. The bearing does not have any drawbacks such as seizure or seizure, has good rigidity, impact resistance, and heat resistance, and can be mass-produced by injection molding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はすべり速度30m/minにおける各試験
片の累積荷重に対する摩擦係数の変化を図示す
る。第2図は同じく、すべり速度60m/minにお
ける試験結果を示す。 図中、a……実施例、b……比較例、c……
比較例、d……比較例、の各試験結果を示し
Xは軸受材料の焼付き点を示す。
FIG. 1 illustrates the change in friction coefficient with respect to the cumulative load of each test piece at a sliding speed of 30 m/min. Figure 2 also shows the test results at a sliding speed of 60 m/min. In the figure, a... Example, b... Comparative example, c...
Comparative example, d... Comparative example, each test result is shown, and X shows the seizure point of the bearing material.

Claims (1)

【特許請求の範囲】[Claims] 1 フエノール樹脂に、補強繊維として芳香族ポ
リアミド繊維5〜25wt%、固体潤滑剤としてグ
ラフアイト、二硫化モリブデン、メラミンシアヌ
ール酸誘導体、PTFE粉末、芳香族ポリエステル
それぞれ単独又は2種以上を組合わせたもの10〜
50wt%、及び潤滑油1〜10wt%を混練配合し、
射出成形してつくることを特徴とする無給油フエ
ノール樹脂軸受。
1 Phenol resin, 5 to 25 wt% aromatic polyamide fiber as reinforcing fiber, graphite, molybdenum disulfide, melamine cyanuric acid derivative, PTFE powder, and aromatic polyester as solid lubricants, each alone or in combination of two or more. Things 10~
Knead and blend 50wt% and lubricating oil 1 to 10wt%,
An oil-free phenolic resin bearing that is manufactured by injection molding.
JP10102682A 1982-06-11 1982-06-11 Phenol resin bearing Granted JPS58217820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10102682A JPS58217820A (en) 1982-06-11 1982-06-11 Phenol resin bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10102682A JPS58217820A (en) 1982-06-11 1982-06-11 Phenol resin bearing

Publications (2)

Publication Number Publication Date
JPS58217820A JPS58217820A (en) 1983-12-17
JPH0225055B2 true JPH0225055B2 (en) 1990-05-31

Family

ID=14289676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10102682A Granted JPS58217820A (en) 1982-06-11 1982-06-11 Phenol resin bearing

Country Status (1)

Country Link
JP (1) JPS58217820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465159U (en) * 1990-10-03 1992-06-05

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141743A (en) * 1983-12-28 1985-07-26 Uchiyama Mfg Corp Material composition for bearing sealant
JPS60248766A (en) * 1984-05-24 1985-12-09 Asahi Organic Chem Ind Co Ltd Phenolic resin molding material
JPS60248767A (en) * 1984-05-24 1985-12-09 Asahi Organic Chem Ind Co Ltd Phenolic resin molding material for compression molding
JP2793629B2 (en) * 1989-05-09 1998-09-03 オイレス工業株式会社 Phenolic resin composition for sliding members
JP3193691B2 (en) * 1998-09-29 2001-07-30 大同メタル工業株式会社 Bearing structure
DE202011100921U1 (en) * 2011-05-19 2012-08-22 Ebm-Papst Mulfingen Gmbh & Co. Kg Electric motor with slide bearing assembly made of plastic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537565A (en) * 1976-07-09 1978-01-24 Ishikawajima Harima Heavy Ind Coiler winding shaft
JPS5641244A (en) * 1979-09-08 1981-04-17 Matsushita Electric Works Ltd Phenolic resin molding material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537565A (en) * 1976-07-09 1978-01-24 Ishikawajima Harima Heavy Ind Coiler winding shaft
JPS5641244A (en) * 1979-09-08 1981-04-17 Matsushita Electric Works Ltd Phenolic resin molding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465159U (en) * 1990-10-03 1992-06-05

Also Published As

Publication number Publication date
JPS58217820A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
CN103201531B (en) composite sliding bearing
US5498654A (en) Sliding bearing material
JPH0480062B2 (en)
GB2136439A (en) Bearing material incorporating polyether ketone and ptfe
JPH07268126A (en) Lubricating resin composition
JPH0225055B2 (en)
US5080970A (en) Poly cyano aryl ether bearing materials
US20190226525A1 (en) Sliding member
WO2018062357A1 (en) Slide member
JP2954638B2 (en) Synthetic resin composition for sliding members
JPH0238636B2 (en)
US4075111A (en) Heavy metal chalcogenide-polyimide lubricative composites
JPH03292366A (en) Wear-resistant resin composition
JP2790692B2 (en) Polyphenylene sulfide resin composition
JP3026269B2 (en) Sliding material
US4294712A (en) Self-lubricating bearing
JPS6011061B2 (en) Sliding member composition
US3717576A (en) Graphite fluoride-synthetic resin composite material
JPH0645757B2 (en) Sliding member composition
JP3018559B2 (en) Sliding material
JPH0124927B2 (en)
JPS6036180B2 (en) Synthetic resin composition with excellent lubricity
JPS6210165A (en) Resin bearing material and production thereof
JPS59179659A (en) Oil-containing synthetic resin composition
JP2018059085A (en) Sliding member and method of producing the same