JPH02250387A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH02250387A
JPH02250387A JP7212589A JP7212589A JPH02250387A JP H02250387 A JPH02250387 A JP H02250387A JP 7212589 A JP7212589 A JP 7212589A JP 7212589 A JP7212589 A JP 7212589A JP H02250387 A JPH02250387 A JP H02250387A
Authority
JP
Japan
Prior art keywords
layer
conduction band
multilayer structure
band
structure including
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7212589A
Other languages
Japanese (ja)
Other versions
JP2817174B2 (en
Inventor
Yoshiyasu Ueno
上野 芳康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7212589A priority Critical patent/JP2817174B2/en
Publication of JPH02250387A publication Critical patent/JPH02250387A/en
Application granted granted Critical
Publication of JP2817174B2 publication Critical patent/JP2817174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To readily acquire a high conversion efficiency by providing a specified semiconductor mixed crystal layer inside a resonator having a pair of projection edge faces which are vertical to a lamination surface of a multilayer structure including an active layer which is concerned with light emission. CONSTITUTION:A second higher harmonics generation layer 16 which consists of a semiconductor mixed crystal layer whose energy differential between a first conduction band and a second conduction band at a GAMMA point in a Brillouin zone is approximately the same as that between the first conduction band and a first valence band is provided to an inside of a resonator which consists of a multilayer structure including an active layer 12 which is concerned with light emission, and a pair of edge faces which are vertical to a lamination surface of the multilayer structure. The second harmonic generation layer 16 is formed monolithically in this way of the same substrate together with the multilayer structure including the active layer. Thereby, it is possible to eliminate the necessity of assembly operation and to acquire a semiconductor layer of high combination efficiency and high conversion efficiency readily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は情報処理用の高密度光記録に用いる半導体レー
ザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser used for high-density optical recording for information processing.

〔従来の技術〕[Conventional technology]

単色性とコヒーレンシーの高いレーザ光を用いた光記録
においてその記録密度を高めるためにはできる限り短い
波長の発振光が必要である。従来、室温CW発振できる
最短波長の限界としてはApGaInP系による640
nmが得られている (Erectronics  L
et、  vol、23(1987)P、1327  
)  。
In order to increase the recording density in optical recording using a laser beam with high monochromaticity and high coherency, it is necessary to oscillate light with the shortest possible wavelength. Conventionally, the shortest wavelength limit for room-temperature CW oscillation was 640 nm by the ApGaInP system.
nm has been obtained (Electronics L
et, vol, 23 (1987) P, 1327
).

これよりさらに短いコヒーレント光源としてはプロトン
交換法を用いたLiNbO3導波路による第2高調波素
子を半導体レーザと組み合わせたものがあり(応用物理
vo1.56(1987)P、1637 ) 、420
nmの光が得られている。
As a coherent light source even shorter than this, there is one that combines a second harmonic element using a LiNbO3 waveguide using the proton exchange method with a semiconductor laser (Applied Physics vol. 1.56 (1987) P, 1637), 420
nm light is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体レーザから出射されるレーザ光を導波路型の第2
高調波素子に結合させる場合、高い変換効率を得るため
には非常に高い工作精度が必要であり、量産には不向き
である。また、整った出力光を得るほどに工作精度を上
げることは事実上困難である。
The laser light emitted from the semiconductor laser is passed through a waveguide type second
When coupled to a harmonic element, extremely high machining precision is required to obtain high conversion efficiency, making it unsuitable for mass production. Furthermore, it is practically difficult to increase the machining accuracy to the extent that a uniform output light is obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は組立て工程を全く必要としないで、モノリシッ
クに成長した半導体結晶を第2高調波素子に用いた半導
体レーザであり、ブリユリアンゾーン中のr点における
第1伝導帯と第2の伝導帯のエネルギー差が第1伝導帯
と第1価電子帯のエネルギー差にほぼ等しい半導体混晶
層から成る第2高調波発生層を、発光に与る活性層を含
む多層構造と、この多層構造の積層面に垂直な一対の端
面とで成る共振器の内部に持つことを特徴とした構成で
ある。
The present invention is a semiconductor laser in which a monolithically grown semiconductor crystal is used as a second harmonic element without requiring any assembly process, and the first conduction band and the second conduction band at the r point in the Brillouin zone. A second harmonic generation layer consisting of a semiconductor mixed crystal layer in which the energy difference between This structure is characterized by having the resonator inside a resonator consisting of a pair of end faces perpendicular to the laminated surface.

〔作用〕[Effect]

本発明の半導体レーザの中で主要な役割を果たす第2高
調波発生層(以下S80層と略す)を成している半導体
混晶のエネルギーバンドを第2図に、吸収スペクトルを
第3図に示す、以下、これらの図を参照しながら本発明
の詳細な説明する。
The energy band of the semiconductor mixed crystal forming the second harmonic generation layer (hereinafter referred to as S80 layer) which plays a major role in the semiconductor laser of the present invention is shown in Figure 2, and the absorption spectrum is shown in Figure 3. The present invention will now be described in detail with reference to these figures.

該SHG層のエネルギーバンドは第2図に示すように第
2伝導帯3と第1伝導帯2のエネルギー差が第1伝導帯
2と第1価電子帯1のエネルギー差にほぼ等しく、とも
にhνである。半導体レーザが発振している時、共振器
内にある該SHG層においてエネルギーhνの光子密度
が非常に高くなるため第1価電子帯の電子はエネルギー
hνの光子を2ケ吸収して第2伝導帯3へ共鳴励起され
る。
As shown in FIG. 2, the energy band of the SHG layer is such that the energy difference between the second conduction band 3 and the first conduction band 2 is almost equal to the energy difference between the first conduction band 2 and the first valence band 1, and both hν It is. When a semiconductor laser oscillates, the density of photons with energy hν in the SHG layer in the cavity becomes extremely high, so electrons in the first valence band absorb two photons with energy hν and enter the second conduction band. It is resonantly excited to band 3.

第3図(a)はレーザ発振していない時の5HGJIの
吸収スペクトルを示す、共振器内でレーザ発振が始まり
、前述の如く2光子共鳴励起が充分に増大すると第2伝
導帯3と第1価電子帯1の間゛で光励起による反転分布
が生じ、第2高調波5が得られる。この時のSHG層の
吸収スペクトルを第3図(b)に示す。また、基本波発
振強度の注入電流依存性および第2高調波光強度の基本
波光強度依存性をそれぞれ第4図(a)、(b)に示す
Figure 3(a) shows the absorption spectrum of 5HGJI when no laser oscillation is occurring.Laser oscillation begins within the resonator, and as mentioned above, when the two-photon resonance excitation increases sufficiently, the second conduction band 3 and the first Population inversion occurs due to optical excitation between the valence bands 1, and a second harmonic 5 is obtained. The absorption spectrum of the SHG layer at this time is shown in FIG. 3(b). Further, the dependence of the fundamental wave oscillation intensity on the injection current and the dependence of the second harmonic light intensity on the fundamental wave light intensity are shown in FIGS. 4(a) and 4(b), respectively.

本発明は上述のSHG層が、活性層を含む多層構造と共
に同一基板上にモノリシックに形成されるので組立作業
が不要となり、結合効率、変換効率の高いSHG層を備
えた半導体レーザが容易に得られる。
In the present invention, since the above-mentioned SHG layer is monolithically formed on the same substrate together with the multilayer structure including the active layer, assembly work is not required, and a semiconductor laser equipped with the SHG layer with high coupling efficiency and conversion efficiency can be easily obtained. It will be done.

〔実施例〕〔Example〕

第1図に本発明の実施例を示す。両ヘキ開面で構成され
る共振器は電流注入領域22と第2の高調波発生領域2
3から成る。電流注入領域22はn型クラッド層11と
p型クラッド層13とでクラッド層よりも禁制帯幅の狭
い活性層12を挟んだ通常のダブルへテロ(DH)m造
であり、電流注入による第1伝導帯−第1価電子帯間の
反転分布が基本波hνのゲインを与え、共振器内にレー
ザ発振を起せる。第2高調波発生領域23には前述の半
導体混晶層で成る第2高調波発生層16が設けられてお
り、エネルギーhνの基本波4により2光子励起されて
エネルギー2hνの第2高調波5を発生する。レーザ素
子出力光としては基本波4と第2高調波5の混在光が得
られる。
FIG. 1 shows an embodiment of the present invention. The resonator composed of both hexagonal planes has a current injection region 22 and a second harmonic generation region 2.
Consists of 3. The current injection region 22 is a normal double hetero (DH) structure in which an active layer 12 having a forbidden band width narrower than that of the cladding layer is sandwiched between an n-type cladding layer 11 and a p-type cladding layer 13. The population inversion between the first conduction band and the first valence band provides a gain of the fundamental wave hv, and laser oscillation can occur within the resonator. The second harmonic generation region 23 is provided with a second harmonic generation layer 16 made of the semiconductor mixed crystal layer described above, which is two-photon excited by the fundamental wave 4 of energy hν to produce a second harmonic 5 of energy 2hν. occurs. A mixed light of the fundamental wave 4 and the second harmonic 5 is obtained as the laser element output light.

第5図に第2高調波発生層となる半導体混晶材料の設計
例を示す。横軸は該3元混晶材料の混晶比Xを示す。両
端x=0.x=1はそれぞれ2元化合物半導体AC,B
Cである。縦軸は第1価電子帯エネルギーを基準とした
エネルギーを示す。
FIG. 5 shows a design example of a semiconductor mixed crystal material that becomes the second harmonic generation layer. The horizontal axis indicates the mixed crystal ratio X of the ternary mixed crystal material. Both ends x=0. x=1 are binary compound semiconductors AC and B, respectively
It is C. The vertical axis indicates energy based on the first valence band energy.

図中、混晶比”yc=xcの時にEC2EC1=E01
−Evが成り立ち、第2高調波発生層に適する。
In the figure, when the mixed crystal ratio “yc=xc”, EC2EC1=E01
-Ev holds and is suitable for the second harmonic generation layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、緑・青・紫などの短波長領域で室温C
W動作可能な半導体レーザを得ることができる。
According to the present invention, temperature C
A semiconductor laser capable of W operation can be obtained.

第2高調波の波長は基本波の1/2となるため、光記録
読出し用光源として用いた場合、4倍の記録密度の情報
を読出すことが可能である。
Since the wavelength of the second harmonic is 1/2 that of the fundamental wave, when used as a light source for optical recording and reading, it is possible to read information with a recording density four times higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、第2図は第2高調波
発生層のバンド構造を示す図、第3図は第2高調波発生
層の吸収スペクトルを示す図、第4図は基本波光強度お
よび第2高調波光強度を示す図、第5図は第2高調波発
生層となる半導体混晶材料の設計例を示す図である。 図中、1は第1価電子帯、2は第1伝導帯、3は第2伝
導帯、4は基本波、5は第2高調波、12は活性層、1
6は第2高調波発生層を示す。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the band structure of the second harmonic generation layer, Fig. 3 is a diagram showing the absorption spectrum of the second harmonic generation layer, and Fig. 4 is a diagram showing an absorption spectrum of the second harmonic generation layer. 5 is a diagram showing the fundamental wave light intensity and the second harmonic light intensity, and FIG. 5 is a diagram showing a design example of the semiconductor mixed crystal material that becomes the second harmonic generation layer. In the figure, 1 is the first valence band, 2 is the first conduction band, 3 is the second conduction band, 4 is the fundamental wave, 5 is the second harmonic, 12 is the active layer, 1
6 indicates a second harmonic generation layer.

Claims (1)

【特許請求の範囲】[Claims] 発光に与る活性層を含む多層構造と、この多層構造の積
層面に垂直な一対の出射端面とで成る共振器内に、ブリ
ュリアンゾーン中のΓ点における第1伝導帯と第2伝導
帯のエネルギー差が第1伝導帯の第1価電子帯のエネル
ギー差にほぼ等しい半導体混晶層を持つことを特徴とし
た半導体レーザ。
A first conduction band and a second conduction band at the Γ point in the Brillouin zone are formed in a resonator consisting of a multilayer structure including an active layer that participates in light emission and a pair of emission end faces perpendicular to the laminated surface of this multilayer structure. A semiconductor laser comprising a semiconductor mixed crystal layer in which the energy difference between the first conduction band and the first valence band is approximately equal to the energy difference between the first conduction band and the first valence band.
JP7212589A 1989-03-23 1989-03-23 Semiconductor laser Expired - Fee Related JP2817174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7212589A JP2817174B2 (en) 1989-03-23 1989-03-23 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7212589A JP2817174B2 (en) 1989-03-23 1989-03-23 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH02250387A true JPH02250387A (en) 1990-10-08
JP2817174B2 JP2817174B2 (en) 1998-10-27

Family

ID=13480293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7212589A Expired - Fee Related JP2817174B2 (en) 1989-03-23 1989-03-23 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2817174B2 (en)

Also Published As

Publication number Publication date
JP2817174B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
Yeh Applied photonics
US5321718A (en) Frequency converted laser diode and lens system therefor
US6879615B2 (en) FCSEL that frequency doubles its output emissions using sum-frequency generation
KR100283829B1 (en) Optical device, laser light source and method of manufacturing laser device and optical device
Vakhshoori et al. Blue‐green surface‐emitting second‐harmonic generators on (111) B GaAs
JP2596195B2 (en) Vertical resonator type surface input / output photoelectric fusion device
JPH05313220A (en) Face emission type second higher harmonic forming element
JPS6218082A (en) Semiconductor laser device
JPH11346021A (en) Light-emitting device and manufacture thereof
US7502393B2 (en) Light-emitting device having resonator and light source unit including the light-emitting device
US20060120415A1 (en) Blue laser beam oscillating method and system
JP2817174B2 (en) Semiconductor laser
JPS60186083A (en) Distributed feedback type semiconductor laser element
US4713818A (en) Optical bistable device
JP2006186348A (en) Light-emitting device and light source apparatus provided therewith
JP4496029B2 (en) LD pumped solid state laser device
Matsubara et al. An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser.
JP3785503B2 (en) Semiconductor laser
JPS6184891A (en) Semiconductor laser element
JP2790536B2 (en) Ultrashort light pulse generator
US5337399A (en) Wavelength conversion element
JPS5948973A (en) Semiconductor laser
JPH02262389A (en) Semiconductor laser device and its manufacture
JPH01293589A (en) Integrated-type light-emitting element
JP2007005608A (en) Semiconductor laser, manufacturing method therefor and solid laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees