JPH02250242A - Cathode-ray tube - Google Patents

Cathode-ray tube

Info

Publication number
JPH02250242A
JPH02250242A JP30538388A JP30538388A JPH02250242A JP H02250242 A JPH02250242 A JP H02250242A JP 30538388 A JP30538388 A JP 30538388A JP 30538388 A JP30538388 A JP 30538388A JP H02250242 A JPH02250242 A JP H02250242A
Authority
JP
Japan
Prior art keywords
layer
optical
film thickness
layers
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30538388A
Other languages
Japanese (ja)
Inventor
Masatoshi Maeda
真寿 前田
Yoshiyuki Hanada
良幸 花田
Hidemi Nakai
日出海 中井
Yasukazu Morita
森田 安一
Yasuhiko Uehara
上原 保彦
Misao Ikeda
池田 操
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Hitachi Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Sheet Glass Co Ltd filed Critical Hitachi Ltd
Priority to JP30538388A priority Critical patent/JPH02250242A/en
Publication of JPH02250242A publication Critical patent/JPH02250242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To provide good performance of tight contacting with fluorescent substance and accomplish an image of high quality by using an optical interfering filter having periodical stratification of layers consisting of a low refraction factor material, with the optical film thickness specified, and layers consisting of a high refraction factor material. CONSTITUTION:The film constitution of an optical interfering filter include periodic stratification 6 of layers 3 made of a material having a low refraction factor, which is approx. 0.25 times as great as the cutoff wavelength lambda0 with the optical film thickness greater than the center wavelength lambda of the emission spectrum of the fluorescent substance, and layers 2, 4 made of a material having high refraction factor, wherein the two outside located layers shall constitute the ones with low refraction factor. Between this periodic stratification 6 and fluorescent substance layer, are interposed one over another a layer 5 consisting of or chiefly containing SiO2 in an optical film thickness from the fluorescent substance layer 0.05lambda0-0.2lambda0 or 0.47lambda0Xm+ or -0.12lambda0 (m is an integer from 1 to 10), respectively, and the mentioned layer 2 with high refraction factor in an optical film thickness of approx. 0.25lambda+0.125lambda0, and another layer 2 with high refraction factor in an optical film thickness of 0.25lambda+0.125lambda0 is provided between the periodic stratification 6 and the display window inne surface. This provides good performance of tight conatcting with the fluorescent substance, less ripples in the penetrative zone, and easy controllability for the optical film thickness of each film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、テレビジョンの陰極線管の内面と、該陰極線
管の内面に塗布された蛍光体層の間に設けられた、高屈
折率材料と低屈折材料の交互の複数層からなる光学干渉
フィルターを有する陰極線管、とりわけ該蛍光体面に対
向配置された投写レンズを介して、前方の映像をスクリ
ーンに拡大投影する投写型陰極線管に関するものである
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a high refractive index material provided between the inner surface of a television cathode ray tube and a phosphor layer coated on the inner surface of the cathode ray tube. This invention relates to a cathode ray tube having an optical interference filter consisting of a plurality of alternating layers of a low refractive index material and a low refractive index material, and in particular to a projection type cathode ray tube that magnifies and projects an image in front of the screen onto a screen through a projection lens placed opposite to the phosphor surface. be.

[従来の技術] 画像をスクリーン上に投写して大型画像表示を行う投写
型テレビジョンによる表示は、第4図f8+に示される
ように、投写型陰極線管41からの光をレンズ42で集
光する光学系が、青、緑、赤の3原色についてあり、そ
れぞれの画像をスクリーン43上に投写することにより
行われる。ここで用いられる投写型陰極線管41は、第
4図(b)で示されるように投写型陰8i!1j1管4
1の内面に蛍光体層44が塗布され、この蛍光体層44
と投写型陰極線管内面との間に、ショートバスエッヂフ
ィルタなどの交互層からなる光学干渉フィルタ45が設
けられる。かかる光学干渉フィルタとしては、第5図に
示されるように、蛍光体の発光スペクトルの中心波長λ
より若干長い波長λ。をカットオフ波長とする光学干渉
フィルタが用いられ、このような光学干渉フィルタは特
開昭61−273837に開示されている。
[Prior Art] Display using a projection type television that displays a large image by projecting an image onto a screen involves condensing light from a projection type cathode ray tube 41 with a lens 42, as shown in Fig. 4 f8+. There are optical systems for the three primary colors of blue, green, and red, and each image is projected onto the screen 43. The projection type cathode ray tube 41 used here is a projection type cathode ray tube 8i! as shown in FIG. 4(b). 1j1 tube 4
A phosphor layer 44 is coated on the inner surface of 1, and this phosphor layer 44
An optical interference filter 45 consisting of alternating layers, such as a short bath edge filter, is provided between the projection type cathode ray tube and the inner surface of the projection type cathode ray tube. Such an optical interference filter, as shown in FIG.
slightly longer wavelength λ. An optical interference filter having a cutoff wavelength of

[発明が解決しようとする課題] 上記した発光体層と光学干渉フィルタの接着媒体として
は水ガラスが用いられるので、該光学干渉フィルタの最
も外側の層は水ガラスと密着生が良好なSiO□、また
は5i02を主成分とする層である膜構成にすることが
、実用的な密着力を確保するうえで好ましい。最も外側
の層をSiO□からなる低屈折率材料の層とするショー
トバスエッヂフィルタは、低屈折率材料からなるカット
オフ波長の1/4の光学膜厚を有する層をり、高屈折率
材料からなるカットオフ波長の1/4の光学膜厚を有す
る層をHで表すと、その膜構成は(L/2  HL/2
)を繰返し単位とする多層膜に制限されてしまう、投写
型陰極線管の内面に被覆される、ショートバスエッヂフ
ィルタに必要な性能としては、前記した蛍光体層との密
着性が良好なことの他に、透過帯での該蛍光体の発光ス
ペクトルの波長が関与する帯域で透過率が高いこと、反
射帯域で透過。
[Problems to be Solved by the Invention] Since water glass is used as the adhesive medium between the above-mentioned light emitter layer and the optical interference filter, the outermost layer of the optical interference filter is made of SiO□ which has good adhesion to the water glass. , or 5i02 as a main component is preferable in order to ensure practical adhesion. A short bath edge filter whose outermost layer is a layer of a low refractive index material made of SiO If H represents a layer having an optical thickness of 1/4 of the cutoff wavelength, its film structure is (L/2 HL/2
) is limited to a multilayer film with a repeating unit.The performance required for a short bath edge filter, which is coated on the inner surface of a projection cathode ray tube, is that it has good adhesion with the phosphor layer mentioned above. In addition, the transmittance is high in a band related to the wavelength of the emission spectrum of the phosphor in the transmission band, and it is transmitted in the reflection band.

率が低いことが重要であり、また透過帯域で透過率のリ
ップルが少ないことが好ましく、さらに設計された膜構
成が実際の膜の被覆にあたっては、容易に膜厚制御がで
き、作業性よく光学干渉フィルタを製作できることが重
要である。
It is important that the transmittance is low, and it is preferable that there is little ripple in the transmittance in the transmission band.Furthermore, the designed film structure can be used to easily control the film thickness and provide optical coverage with good workability. It is important to be able to fabricate interference filters.

しかしながら、上記特開昭61−273837に開示さ
れている< t、 / 2  Ht、 / 2 )を繰
返し単位とする光学干渉フィルタは、本質的に透過域で
の透過特性のリップルが大きく、このリップルを防止す
るために各層の光学膜厚を、カットオフ波長λ。の1/
4より少しづつ変化させることが必要である。そのため
膜の被覆に際しては、光学モニタではモニタ光量のピー
ク値で各層の膜厚を制御することができず、所定の膜設
計値に正確に制御して膜を被覆することが困難となり、
作業性良く光学干渉フィルタを製作することが困難であ
るという問題点がある。
However, the optical interference filter disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-273837, which has a repeating unit of <t, /2 Ht, /2), inherently has a large ripple in the transmission characteristic in the transmission region, and this ripple In order to prevent this, the optical thickness of each layer is determined by the cutoff wavelength λ. 1/ of
It is necessary to change it little by little from 4. Therefore, when coating a film, it is not possible to control the film thickness of each layer using the peak value of the monitored light intensity using an optical monitor, making it difficult to accurately control the film thickness to a predetermined film design value.
There is a problem in that it is difficult to manufacture optical interference filters with good workability.

[課題を解決するための手段] 前記した問題点を解決する、すなわち蛍光体との密着性
が良<、透過域でのリップルが少く、かつ膜の光学膜厚
の制御が容易な光学干渉フィルタの膜構成は、光学膜厚
が該蛍光体の発光スペクトルの中心波長λより大きいカ
ットオフ波長λ。のほぼ0.25倍である低屈折率材料
の層と高屈折率材料の層とが交互に積層され、かつ両外
側の層が低屈折率材料の層である周期交互層を有し、該
周期交互層と該蛍光体層との間に該蛍光体層から0.0
5λ。〜0.2λ。あるいは0.47λ。×m±0.1
2λ。(mは1以上10以下の整数)の光学膜厚のSi
n、またはSiO□を主成分とする層と、はぼ0.25
λ+0.125λ。の光学膜厚の高屈折率材料の層が順
次膜けられ、さらに該周期交互層と該表示窓内面との間
に0.25λ+0.125λ。の光学膜厚の高屈折率材
料の層が設けられたものである。
[Means for solving the problem] An optical interference filter that solves the above-mentioned problems, that is, has good adhesion to the phosphor, has little ripple in the transmission region, and can easily control the optical thickness of the film. In the film configuration, the optical film thickness has a cutoff wavelength λ that is larger than the center wavelength λ of the emission spectrum of the phosphor. having periodic alternating layers in which layers of a low refractive index material and a layer of a high refractive index material, each of which is approximately 0.25 times as large as 0.0 from the phosphor layer between the periodic alternating layer and the phosphor layer
5λ. ~0.2λ. Or 0.47λ. ×m±0.1
2λ. (m is an integer between 1 and 10)
n, or a layer whose main component is SiO□, and about 0.25
λ+0.125λ. A layer of a high refractive index material having an optical thickness of 0.25λ+0.125λ is sequentially formed between the periodic alternating layer and the inner surface of the display window. A layer of high refractive index material with an optical thickness of .

光学膜厚がカットオフ波長λ。のほぼ0.25倍である
高屈折率材料の層、および低屈折率材料の層をそれぞれ
H,L、  とし、光学膜厚が該蛍光体の発光スペクト
ルの波長λのほぼ0.25倍の高屈折率材料の層をH”
、光学膜厚が0.05λ。〜0.2λ。あるいは0.4
7λ。×m±0.12λ。
The optical film thickness is the cutoff wavelength λ. A layer of a high refractive index material, which is approximately 0.25 times as large as λ, and a layer of a low refractive index material are designated H and L, respectively, and the optical film thickness is approximately 0.25 times the wavelength λ of the emission spectrum of the phosphor. A layer of high refractive index material
, the optical film thickness is 0.05λ. ~0.2λ. Or 0.4
7λ. ×m±0.12λ.

(mは1以上10以下の整数)の5iftまたはSin
gを主成分とする層をL゛で表すと、本発明にががる光
学干渉フィルタが蛍光体層と接着された状態は(1)式
で表すことができる。
(m is an integer from 1 to 10) 5ift or Sin
If the layer containing g as a main component is represented by L, then the state in which the optical interference filter according to the present invention is bonded to the phosphor layer can be expressed by equation (1).

蛍光体層/L’H’(H/2) (LH)K L ()
I/2)H’/表示窓内面          <11
ここでkは、LとHの一対の層の繰り返しを表す整数で
ある。
Phosphor layer/L'H' (H/2) (LH)K L ()
I/2) H'/inner surface of display window <11
Here, k is an integer representing the repetition of a pair of layers L and H.

(1)式は、カットオフ波長λ。の0.25倍を光学膜
厚とする層については、(I(/2  L  H/2)
を基本繰り返し構造を有すると解される。kが1より小
さい、すなわち周期交互層の層数が3より小さいと、カ
ットオフ波長λ。における透過率の遮断特性が敏鋭でな
くなり、蛍光体から出射される光の角度に対する遮断特
性が劣化し、さらに反射帯域の透過率が高くなる。また
kが9より大きい、すなわち周期交互層が19層より大
きいと、光学干渉フィルタの光のカットオフ特性や透過
帯の透過率、リップルなどの特性は良化するが、光学干
渉フィルタの製作に多大の時間を要するようになり、か
つ、より精度の高い膜厚および膜の屈折率の制御を必要
とするので、光学干渉フィルタの製作の再現性が低下す
る。したがって、本発明にかかる光学干渉フィルタのカ
ットオフ波長λ0の0.25倍の光学膜厚を有する周期
交互層の層数は、3〜19層が好ましく、9層〜17層
が最も好ましい。
Equation (1) is the cutoff wavelength λ. For a layer whose optical thickness is 0.25 times that of (I(/2 L H/2)
is understood to have a basic repeating structure. When k is less than 1, that is, the number of periodic alternating layers is less than 3, the cutoff wavelength λ. The cutoff characteristic of the transmittance in the phosphor becomes less sensitive, the cutoff characteristic with respect to the angle of light emitted from the phosphor deteriorates, and the transmittance in the reflection band becomes higher. If k is larger than 9, that is, if the number of periodic alternating layers is larger than 19 layers, the optical cutoff characteristics of the optical interference filter, the transmittance in the transmission band, the ripple, and other characteristics will be improved, but it will be difficult to manufacture the optical interference filter. This takes a lot of time and requires more precise control of the film thickness and refractive index of the film, which reduces the reproducibility of manufacturing the optical interference filter. Therefore, the number of periodic alternating layers having an optical thickness 0.25 times the cutoff wavelength λ0 of the optical interference filter according to the present invention is preferably 3 to 19 layers, most preferably 9 to 17 layers.

発光スペクトルの中心波長λと周期交互層の設計基準と
なるカットオフ波長λ。の関係は、λ。
The center wavelength λ of the emission spectrum and the cutoff wavelength λ serving as the design standard for the periodic alternating layer. The relationship is λ.

は1.10λより大きく、1.50λより小さいことが
好ましく、さらにはλ。は1.10λより大きく1.3
5λより小さいことが最も好ましい。λ。が1.10よ
り小さいとカットオフ波長が蛍光体の発光スペクトルの
中心波長から広がるスペクトル帯内にいり込み、出射光
量を減じる恐れが生じる。
is preferably larger than 1.10λ and smaller than 1.50λ, and furthermore, λ. is greater than 1.10λ and 1.3
Most preferably, it is less than 5λ. λ. When is smaller than 1.10, the cutoff wavelength falls within a spectral band extending from the center wavelength of the emission spectrum of the phosphor, which may reduce the amount of emitted light.

一方λ。が1.50λより大きくなると、透過帯のリッ
プルの大きい領域が発光スペクトルの中心波長に接近し
、大きい出射角度で蛍光体からでる光の遮断が不十分と
なる。さらに、光学干渉フィルタの各層の厚みが増える
ので生産性の観点からも好ましくない。
On the other hand, λ. When is larger than 1.50λ, the region with large ripples in the transmission band approaches the center wavelength of the emission spectrum, and the light emitted from the phosphor is insufficiently blocked at a large emission angle. Furthermore, since the thickness of each layer of the optical interference filter increases, this is not preferable from the viewpoint of productivity.

蛍光体層に対面して設けられるSiO□または5i02
を主成分とする層は、その光学膜厚が上記した範囲をは
ずれる場合は、透過帯域の透過率を著しく低下させる。
SiO□ or 5i02 provided facing the phosphor layer
If the optical thickness of the layer containing as a main component is out of the above range, the transmittance in the transmission band will be significantly reduced.

したがって0,05λ。〜0.2λ。あるいは0.47
λoXm±0.12λo  (mは1以上IO以下の整
数)の範囲内が好ましく、作業時間。
Therefore 0,05λ. ~0.2λ. Or 0.47
The working time is preferably within the range of λoXm±0.12λo (m is an integer greater than or equal to 1 and less than or equal to IO).

光学特性、密着性を考慮すると、特に0.4λ。〜0.
5λ。の範囲が好ましい。ここでSingを主成分とす
る層は、ガラス質の層であることが好ましく、ガラス組
成としては、コーニング(CORNING)社9068
、アールシーニー(RCA)社G999などの組成を有
する層とすることもできる。
Considering optical properties and adhesion, especially 0.4λ. ~0.
5λ. A range of is preferred. Here, the layer containing Sing as a main component is preferably a glassy layer, and the glass composition is Corning Co., Ltd. 9068.
, RCA G999, or the like.

また本発明にかかる高屈折率材料として使用できるもの
は可視域での屈折率が1.8以上の膜になる材料であれ
ばよ< 、TiO2,TazOs+ ZrO2,pro
2゜5nOz、 PrTiO3,InzOa + Zn
Oからなる群から選ばれた1つまたは少くとも2つ以上
の混合物からなるものが好ましく、さらにはTi(hの
膜が最も好ましい。低屈折率材料として使用できるもの
は、5i02またはMgF zが好ましく、得られる光
学フィルタの良好な耐久性を確保する観点からSing
が最も好ましい0本発明の光学干渉フィルタは、1/4
波長の光学膜厚を制御する通常の光学モニタを備えた真
空蒸着装置により、加熱された投写型陰極線管の内面に
エレクトロンビーム加熱方式により、被覆材料を蒸着さ
せる真空蒸着法・や、スパッタリング法により製作する
ことができる。
Further, materials that can be used as high refractive index materials according to the present invention are those that form a film with a refractive index of 1.8 or more in the visible range.
2゜5nOz, PrTiO3, InzOa + Zn
A film made of one or a mixture of at least two selected from the group consisting of O is preferable, and a film of Ti(h) is most preferable. Preferably, from the viewpoint of ensuring good durability of the obtained optical filter, Sing
Most preferably 0, the optical interference filter of the present invention is 1/4
The coating material is deposited on the inner surface of the heated projection cathode ray tube using a vacuum evaporation method using an electron beam heating method using a vacuum evaporation device equipped with a normal optical monitor to control the optical film thickness of the wavelength, or by a sputtering method. It can be manufactured.

[作 用] 本発明にかかる(H/2  L  H/2)を基本繰返
し構造とする周期交互層は、光の干渉作用により光の波
長に対する選択透過性を与えるとともに、発光体からの
出射光に指向性を与える。この交互層の両外側に設けら
れる高屈折率材料からなる層H゛は、透過帯域のリフプ
ルを少なくする作用をし、蛍光体層に対面して設けられ
るSiO□または、SiO!を主成分とする層は、光学
干渉フィルタの光学特性を劣化させることなく、蛍光体
層と光学干渉フィルタを水ガラスで接着するに際し、密
着性を向上させる作用を有する。
[Function] The periodic alternating layers having a basic repeating structure of (H/2 L H/2) according to the present invention provide selective transmittance to wavelengths of light due to the interference effect of light, and also reduce the amount of light emitted from the light emitter. give directionality to. A layer H made of a high refractive index material provided on both outer sides of this alternating layer acts to reduce ripple in the transmission band, and is provided facing the phosphor layer with SiO□ or SiO! The layer containing as a main component has the effect of improving adhesion when bonding the phosphor layer and the optical interference filter with water glass without deteriorating the optical properties of the optical interference filter.

[実施例] 真空蒸着装置に、対角方向の長さがツイフチの投写型陰
極線管のフェースプレートを、厚み1.1鰭、直径30
flのガラス板とともに回転持具にセットし、300℃
に加熱しながら、真空槽内を6、7 X 10−’Pa
に真空排気した。電子ビーム加熱用の相異なる水冷るつ
ぼに、粒状の石英ガラスおよびTi(h焼結ベレットを
充填し、外部からガス導入バルブを調節して真空槽内に
酸素を導入し、一定の酸素分圧下で蒸着した。TiO2
膜の被覆に際しては4. OX 10−”Paに、Si
0g膜の被覆に際しては、1.3 X 10−”Paの
酸素分圧になるように調節した。
[Example] A projection cathode ray tube face plate with a diagonal length of 1.1 fins and a diameter of 30 mm was placed in a vacuum evaporation apparatus.
Set it in a rotating holder together with the fl glass plate and heat it to 300℃.
While heating the inside of the vacuum chamber to 6,7
was evacuated. Different water-cooled crucibles for electron beam heating were filled with granular quartz glass and Ti(h) sintered pellets, and oxygen was introduced into the vacuum chamber by adjusting the gas introduction valve from the outside under a constant oxygen partial pressure. Vapor deposited.TiO2
4. When coating the membrane. OX 10-”Pa, Si
When coating the 0g film, the oxygen partial pressure was adjusted to 1.3 x 10-''Pa.

光学膜厚が165鰭mのTiO,lii CH層)およ
び5t(hlli (Lli) 、 光学膜にカ136
ru++(7)TtOJi (H’層)の被覆には、そ
れぞれ660鰭m、544鰭mの波長の単色光を用いた
光学モニタのいわゆる174波長制御により膜厚制御を
行った。82.5 nmの光学膜厚のTi01層(1/
2H層)は、波長660nmの単色光により、光学モニ
タの蒸着中に記録される透過率曲線から膜厚を定めた。
TiO,lii CH layer with optical film thickness of 165 m) and 5t (hlli (Lli), optical film with 136 m
The coating thickness of the ru++(7)TtOJi (H' layer) was controlled by so-called 174 wavelength control of an optical monitor using monochromatic light with wavelengths of 660 fins and 544 fins, respectively. Ti01 layer (1/
2H layer), the film thickness was determined from the transmittance curve recorded during vapor deposition on an optical monitor using monochromatic light with a wavelength of 660 nm.

また最後の5inf層の285.5鰭mの光学膜厚は、
波長660nmの単色光を用いた174波長制御に基づ
いて行った。前記した光学膜厚のTioz層、 5i(
h層を交互に被覆することにより、蛍光体の発光中心が
544nn+である投写管に適用できる、第1表に示す
膜構成の光学フィルタを作成した。フェースプレートと
同時に回転持具にセットしたガラス板を、真空装置より
取外し、そのガラス板の分光透過特性を測定し第2図の
破線を得た。
In addition, the optical thickness of the last 5 inf layer of 285.5 fins is:
The experiment was performed based on 174 wavelength control using monochromatic light with a wavelength of 660 nm. Tioz layer with the optical thickness described above, 5i (
By alternately coating the h layers, an optical filter having the film configuration shown in Table 1, which can be applied to a projection tube in which the emission center of the phosphor is 544nn+, was created. The glass plate set on the rotary holder at the same time as the face plate was removed from the vacuum apparatus, and the spectral transmission characteristics of the glass plate were measured to obtain the broken line shown in FIG.

第1表 [比較例] 実施例と同じ真空蒸着装置に、対角の長さがツイフチの
投写型陰極線管のフェースプレートを、厚み1、law
、直径30mのガラス板とともに回転持具にセットし、
300℃に加熱しながら、真空槽内を6.7 X 10
−’Paに真空排気し、Sin、膜およびTioz膜を
それぞれ1.3 X 10−”Pa、  4.OX 1
0−”Paの酸素分圧で蒸着し、第2表に示す膜構成の
サンプルを得た。ここでSiO□膜およびTi0z膜の
光学膜厚を、1/4波長の厚みである165鰭mより、
表1に示すように層の中央部分で小さく、層の両端に近
づくにしたがって大きくした。得られたガラス板の分光
透過率を第2図の実線で示す。
Table 1 [Comparative Example] A face plate of a projection type cathode ray tube with a diagonal length of 1/2 inch was placed in the same vacuum evaporation apparatus as in the example.
, set it in a rotating holder together with a glass plate with a diameter of 30 m,
While heating to 300℃, the inside of the vacuum chamber was heated to 6.7 x 10
-'Pa, and the Sin, membrane and Tioz films were each evacuated to 1.3 X 10-''Pa, 4.OX 1
Vapor deposition was carried out at an oxygen partial pressure of 0-''Pa to obtain samples with the film configurations shown in Table 2.Here, the optical thickness of the SiO□ film and the Ti0z film was set to 165 mm, which is the thickness of 1/4 wavelength. Than,
As shown in Table 1, it was small at the center of the layer and increased toward both ends of the layer. The spectral transmittance of the obtained glass plate is shown by the solid line in FIG.

また、第3図の実線は、実施例で得た光学干渉フィルタ
に、波長が544nmの単色光を入射させた場合の透過
率の入射角度依存性を示し、第3図の破線は比較例の光
学干渉フィルタの特性を示す。
Moreover, the solid line in FIG. 3 shows the dependence of the transmittance on the angle of incidence when monochromatic light with a wavelength of 544 nm is incident on the optical interference filter obtained in the example, and the broken line in FIG. The characteristics of an optical interference filter are shown.

第3図から、本発明にかかる光学干渉フィルタは、より
良好な透過率の入射角依存性を有していることが分る。
From FIG. 3, it can be seen that the optical interference filter according to the present invention has better dependence of transmittance on the angle of incidence.

上記の投写管について表示窓面に対して法線方向に54
4nmの単色光を照射し、実球輝度測定を行なった結果
および、蛍光体の塗布性を調べた結果を第3表に示す。
54 in the normal direction to the display window surface for the above projection tube.
Table 3 shows the results of irradiating with 4 nm monochromatic light and measuring the real bulb brightness, as well as the results of examining the coatability of the phosphor.

第3表から本発明にかかる光学干渉フィルタを有する投
写管は、高い輝度が得られ、かつ、蛍光体の塗布性が良
いことが分かる。
It can be seen from Table 3 that the projection tube having the optical interference filter according to the present invention can obtain high brightness and has good phosphor coating properties.

蛍光体が青色(発光の中心波長がたとえば450rv)
の場合は、カットオフ波長を540nm蛍光体が赤色(
発光の中心波長がたとえば612nm)である場合は、
カットオフ波長を740nmとすることにより、前記し
た実施例と同様にして、青色または赤色の光の投写管の
内面に光学干渉フィルタを被覆することにより、3原色
の投写管にそれぞれ適用できる光学干渉フィルタを得る
ことができる。
The phosphor is blue (center wavelength of emission is 450rv, for example)
If the cutoff wavelength is 540nm, the phosphor is red (
For example, if the center wavelength of light emission is 612 nm),
By setting the cutoff wavelength to 740 nm, and coating the inner surface of the projection tube for blue or red light with an optical interference filter in the same manner as in the above embodiment, optical interference can be applied to the projection tubes for each of the three primary colors. You can get filters.

[発明の効果] 本発明にかかる、改良された光学干渉フィルタが設けら
れた陰極線管は、蛍光体の発光輝度を大きく取り出すこ
とができるので、投写管として使用するときは、明るい
映像を得ることができる。
[Effects of the Invention] The cathode ray tube provided with the improved optical interference filter according to the present invention can extract a large amount of luminance from the phosphor, so when used as a projection tube, it is possible to obtain a bright image. I can do it.

また設けられる光学干渉フィルタは、蛍光体とSiO□
またはSfO□を主成分とする層で接しているため、蛍
光体と密着性が良く、ピンホールの発生が少ないので、
高品質の映像が得られる。さらに光学干渉フィルタの作
成にあたっては、作業性が良いので効率よく製作で′き
る。
In addition, the optical interference filter provided is made of phosphor and SiO□
Or, since it is in contact with a layer mainly composed of SfO□, it has good adhesion with the phosphor and produces fewer pinholes.
High quality images can be obtained. Furthermore, when creating an optical interference filter, it is easy to work with, so it can be manufactured efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる光学干渉フィルタを模式的に
示した拡大断面図、第2図は本発明の光学干渉フィルタ
と従来の光学干渉フィルタの透過特性を示す図、第3図
は本発明の光学干渉フィルタおよび従来の光学干渉フィ
ルタの透過率の入射光の角度依存性を示す図、第4図は
光学干渉フィルタが投写管に設置されている状態、およ
び映像が投写テレビジョンにより投射されている状態を
示す図である。 1・・・陰極線管、2・・・光学膜厚がほぼ0.25λ
+0、125λ。である高屈折率材料の層、3・・・光
学膜厚がほぼ0.25λ。である低屈折率材料からなる
層、4・・・光学膜厚がほぼ0.25λ。である高屈折
率材料からなる層、5・・・5iyxまたはSiO□を
主成分とする層、6・・・周期交互層、7・・・光学干
渉フィルタ、41・・・陰極線管、42・・・レンズ、
43.・・・スクリーン、44・・・蛍光体層、45・
・・光学干渉フィルタ。 第 図 波 入λO 長(nm ) 第5 因
FIG. 1 is an enlarged sectional view schematically showing the optical interference filter according to the present invention, FIG. 2 is a diagram showing the transmission characteristics of the optical interference filter of the present invention and a conventional optical interference filter, and FIG. A diagram showing the dependence of the transmittance of the optical interference filter of the invention and the conventional optical interference filter on the angle of incident light. FIG. 4 shows a state in which the optical interference filter is installed in a projection tube and an image is projected by a projection television. FIG. 1...Cathode ray tube, 2...Optical film thickness is approximately 0.25λ
+0, 125λ. A layer of high refractive index material, 3...optical film thickness is approximately 0.25λ. A layer made of a low refractive index material, 4...The optical thickness is approximately 0.25λ. A layer made of a high refractive index material, 5... A layer containing 5iyx or SiO□ as a main component, 6... Periodic alternating layers, 7... Optical interference filter, 41... Cathode ray tube, 42... ··lens,
43. ... Screen, 44 ... Phosphor layer, 45.
...Optical interference filter. Figure Wave input λO length (nm) Fifth factor

Claims (1)

【特許請求の範囲】 1)陰極線管の表示窓の内面上に設けられた蛍光体層と
該表示窓との間に、高屈折率材料の層と低屈折率材料の
層との交互層からなる光学干渉フィルタが設けられた陰
極線管において、該交互層が a)該蛍光体の発光スペクトルの中心波長λより大きい
カットオフ波長λ_0のほぼ0.25倍の光学膜厚を有
し、かつ最も外側の層が低屈折率材料の層である少なく
とも3層からなる周期交互層と b)該周期交互層と該蛍光体層との間に、該蛍光体層側
から順次設けられた0.05λ_0〜0.2λ_0ある
いは0.47λ_0×m±0.12λ_0(mは1以上
10以下の整数)の光学膜厚のSiO_2またはSiO
_2を主成分とする層および、ほぼ0.25λ+0.1
25λ_0の光学膜厚の高屈折率材料の2つの層と c)該周期交互層と該表示窓の内面との間に設けられた
、ほぼ0.25λ+0.125λ_0の光学膜厚の該高
屈折率材料の層とからなる光学干渉フィルタである陰極
線管 2)該光学干渉フィルタのカットオフ波長λ_0が1.
10λ<λ_0<1.50λである特許請求範囲第1項
記載の陰極線管 3)該周期交互層の層数が3〜19である特許請求範囲
第1項または第2項記載の陰極線管 4)該高屈折率材料の層がTiO_2、Ta_2O_5
、ZrO_2、HfO_2、SnO_2、PrTiO_
3、In_2O_3からなる群から選ばれた1つまたは
少なくとも2つ以上の混合物であり、該低屈折率材料の
層がSiO_2またはMgF_2である特許請求範囲第
1項乃至第3項のいずれかの項記載の陰極線管
[Claims] 1) Between the phosphor layer provided on the inner surface of the display window of the cathode ray tube and the display window, a layer of alternating layers of a high refractive index material and a layer of a low refractive index material is formed. In a cathode ray tube provided with an optical interference filter, the alternating layers a) have an optical film thickness approximately 0.25 times the cutoff wavelength λ_0, which is larger than the center wavelength λ of the emission spectrum of the phosphor; b) periodic alternating layers consisting of at least three layers, the outer layer of which is a layer of a low refractive index material; and b) 0.05λ_0 provided between the periodic alternating layers and the phosphor layer in order from the phosphor layer side. SiO_2 or SiO with an optical thickness of ~0.2λ_0 or 0.47λ_0×m±0.12λ_0 (m is an integer from 1 to 10)
A layer mainly composed of _2 and approximately 0.25λ+0.1
c) two layers of high refractive index material with an optical thickness of approximately 0.25λ + 0.125λ_0 between the periodic alternating layers and the inner surface of the display window; 2) The cutoff wavelength λ_0 of the optical interference filter is 1.
10λ<λ_0<1.50λ 3) The cathode ray tube according to claim 1 or 2, wherein the number of periodic alternating layers is 3 to 19. The layer of high refractive index material is TiO_2, Ta_2O_5
, ZrO_2, HfO_2, SnO_2, PrTiO_
3. One or a mixture of at least two selected from the group consisting of In_2O_3, and the layer of the low refractive index material is SiO_2 or MgF_2. Cathode ray tube mentioned
JP30538388A 1988-12-02 1988-12-02 Cathode-ray tube Pending JPH02250242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30538388A JPH02250242A (en) 1988-12-02 1988-12-02 Cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30538388A JPH02250242A (en) 1988-12-02 1988-12-02 Cathode-ray tube

Publications (1)

Publication Number Publication Date
JPH02250242A true JPH02250242A (en) 1990-10-08

Family

ID=17944461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30538388A Pending JPH02250242A (en) 1988-12-02 1988-12-02 Cathode-ray tube

Country Status (1)

Country Link
JP (1) JPH02250242A (en)

Similar Documents

Publication Publication Date Title
KR930002112B1 (en) Display tube
EP0712148B1 (en) Plasma display system
KR950000822B1 (en) Projection television display tube and projection television device comprising at least one such tube
EP0271165B1 (en) Projection television system and display tubes for use therein
US5179318A (en) Cathode-ray tube with interference filter
JPH0546654B2 (en)
US4990824A (en) Color cathode ray tube having interference filter with different pass bands
JPH0278139A (en) Projection type television desplay tube having band passage interference filter and device
JPH0466824B2 (en)
JPH0466825B2 (en)
KR900009083B1 (en) Cathode ray tube with light reflection film
JP2565976B2 (en) Projection television
JPH09283030A (en) Plasma display panel
JPH02250242A (en) Cathode-ray tube
JPH0195450A (en) Method of changing chromaticity of cathode luminescent phospher
CA2049491C (en) Projection cathode-ray tube with uniform optical multiple interference film
JPH03196448A (en) Cathode-ray tube faceplate
JPH06308307A (en) Reflection mirror
JPH0834596B2 (en) Projection television
JPH11133447A (en) Electrode substrate and liquid crystal element using the same, liquid crystal display element, liquid crystal display device and liquid crystal projector
JPH03138838A (en) Projection type cathode-ray tube
JPH03198492A (en) Projector type television unit
JPH03156838A (en) Cathode-ray tube faceplate
JPH03159034A (en) Cathode-ray tube faceplate
JP2543895B2 (en) X-ray image tube and method of manufacturing the same