JPH02248092A - Discharge excitation type short pulse laser device - Google Patents

Discharge excitation type short pulse laser device

Info

Publication number
JPH02248092A
JPH02248092A JP6953389A JP6953389A JPH02248092A JP H02248092 A JPH02248092 A JP H02248092A JP 6953389 A JP6953389 A JP 6953389A JP 6953389 A JP6953389 A JP 6953389A JP H02248092 A JPH02248092 A JP H02248092A
Authority
JP
Japan
Prior art keywords
discharge
electrode
auxiliary
primary
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6953389A
Other languages
Japanese (ja)
Inventor
Nobutaka Morohashi
諸橋 信孝
Akira Usui
明 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6953389A priority Critical patent/JPH02248092A/en
Publication of JPH02248092A publication Critical patent/JPH02248092A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a stable glow current, to make laser gas long in service life, and to improve laser oscillation in efficiency by a method wherein an auxiliary electrode is provided between primary electrodes arranged opposed to each other, and electrons are increased in scattering number through the auxiliary electrode. CONSTITUTION:A switch is turned in an ON-state, the voltages between an opening electrode 9 and a primary electrode 8, and the opening electrode 9 and an auxiliary electrode 20 increase rapidly with the fast movement of charges. At this point, as the starting voltages of the auxiliary electrodes 11 and 20 are lower than that of primary discharge, an auxiliary discharge occurs at first on the surface of a dielectric 10 inside an opening provided to the opening electrode 9 and then also between the opening electrode 9 and the auxiliary electrode 20. A part of electrons induced by the auxiliary discharge and other electrons generated through photoionization by ultraviolet rays emitted from the discharge field serve as a seed which enables a primary discharge to be a uniform glow discharge, and then a primary discharge takes place in pulse in a primary discharge space 17 to make laser medium excited, in result laser rays are taken outside.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、気体レーザのうち放電励起型短パルスレー
ザを対象とするものであって、特にその電価部の予備励
起の改善に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to discharge-excited short pulse lasers among gas lasers, and particularly relates to the improvement of preliminary excitation of the electric charge part thereof. be.

〔従来の技術〕[Conventional technology]

第8因は従来の放電励起型短パルスレーザ装置を示す断
面図であり、図において、(1)は高電圧電源、(2)
 、 (5)および(7)はキャパシタ、(3)は高抵
抗、(4)Hスイッチ、(6)はコイル、(8)はレー
ザガス流中に配置され、レーザ光軸方向を長平方向とす
る第1の主電極、(9)は第1の主t !(8)と対向
して配設され、複数個の開孔部を有する第2の主電極で
める開孔XtV、αQは開孔を極(9)の背面に密着し
て配設された誘電体、(6)はこの誘電体αOに密着し
て配設され、開孔tFM(9)と対向する第1の補助v
L極、(2)は熱交換器、(Llに流体ガイド、α4は
ファン、α0はレーザ筐体、α・は絶縁物、αηは主放
電空間、(ト)はレーザガス流の方向を示す矢印、αI
は第1の主を極(8)全載置した金属ベースである。
The eighth factor is a cross-sectional view showing a conventional discharge-excited short pulse laser device. In the figure, (1) is a high voltage power supply, (2)
, (5) and (7) are capacitors, (3) is a high resistance, (4) an H switch, (6) is a coil, and (8) is placed in the laser gas flow, with the laser optical axis direction being the long plane direction. The first main electrode, (9) is the first main t! The apertures XtV and αQ formed by the second main electrode having a plurality of apertures are disposed opposite to the electrode (8) and are disposed so that the apertures are in close contact with the back surface of the pole (9). The dielectric (6) is disposed in close contact with this dielectric αO, and is the first auxiliary v facing the opening tFM (9).
L pole, (2) is the heat exchanger, (Ll is the fluid guide, α4 is the fan, α0 is the laser housing, α・ is the insulator, αη is the main discharge space, (G) is the arrow indicating the direction of the laser gas flow ,αI
is a metal base on which the first main pole (8) is entirely mounted.

次に動作について説明する。まず、回路系について述べ
る。高電圧電源(1)から供給される電荷はキャパシタ
(2)に蓄積される。次いで、スイッチ(4)が導通状
態になると、キャパシタ(2)からスイッチ(4)さら
にアースラインを介してキャパシタ(5)およびコイ/
l’(6)t−経て再びキャパシタ(2)に戻るという
電流ループによって、キャパシタ(2)に蓄積されてい
比電荷はキャパシタ(5)K移行される。この迅速な電
荷の移行に伴って、開孔を極(9)と第1の主電極(8
)の間及び開孔部1i(9)と第1の補助wLWiαυ
との間の電圧が急峻にと昇する。このとき、補助放電の
開始電圧は主放電の開始電圧より低いので、まず、開孔
部ffi (9)に設けられた開孔部においてmx体Q
Q表面に補助放電が起こる。この補助放電で生成される
電子の一部及びこの放電場からの紫外光で光電離でれて
生ずる電子が、主放電をグロー状の均一な放電とする几
めの種となり、次いで、主放電空間αηにおいて、パル
ス的に主放電が起ってレーザ媒質が励起てれ、その結果
レーザ光が取り出される。即ち、第8図に示すように、
第1の主よ 電極(8)と開孔[1i (9)の放電幅へす開孔電極
(9)と第1の補助電極(ロ)の幅が短いので、同時に
電圧を印Wすると放電幅の短い後者間で放電が先に始す
ることになる。
Next, the operation will be explained. First, we will discuss the circuit system. Charge supplied from a high voltage power supply (1) is stored in a capacitor (2). Next, when the switch (4) becomes conductive, a connection is made from the capacitor (2) to the switch (4) and then to the capacitor (5) and the coil/coil via the ground line.
Due to the current loop that returns to the capacitor (2) through l'(6)t-, the specific charge stored in the capacitor (2) is transferred to the capacitor (5)K. Along with this rapid charge transfer, the opening is formed between the pole (9) and the first main electrode (8).
) and between the opening 1i (9) and the first auxiliary wLWiαυ
The voltage between the two rises rapidly. At this time, since the starting voltage of the auxiliary discharge is lower than the starting voltage of the main discharge, first, the mx body Q
Auxiliary discharge occurs on the Q surface. A part of the electrons generated in this auxiliary discharge and the electrons generated by photoionization with ultraviolet light from this discharge field become the seeds for making the main discharge a glow-like uniform discharge, and then the main discharge In the space αη, a main discharge occurs in a pulsed manner to excite the laser medium, and as a result, laser light is extracted. That is, as shown in FIG.
The first main electrode (8) and the discharge width of the aperture [1i (9)] Since the width of the aperture electrode (9) and the first auxiliary electrode (b) are short, if voltage is applied at the same time, a discharge will occur. Discharge begins first between the latter, which has a shorter width.

この場合、コロナ放電が起きるが、この放電と同時に紫
外線が放射される。なお、コロナ放電とは、アーク放電
に移行する前に停止する放電で、アーク放電と同様紫外
線を放射する。
In this case, corona discharge occurs, and ultraviolet rays are emitted at the same time as this discharge. Note that corona discharge is a discharge that stops before transitioning to arc discharge, and like arc discharge, it emits ultraviolet rays.

つぎに、紫外線はその雰囲気中のガス微量分子を解離し
、電子を生成する。紫外線は光なので第1の主電極(8
)と開孔部ff1(9)間の全体に到達でき、これによ
り当然電子はその空間全体に発生することになる。そし
て、発生した電子は強い電界に作用され、次々と開孔部
1i (9)側に移動し、この移動とともに電離作用を
繰返すことにより主放電空間αη全全体電子がうめてし
まう。このとき、レーザ発振に寄与するグロー放電が成
立したことになるのである。なお、当然+イオンも放電
場に残るが、質量が大きいために平均自由行程が小嘔<
、はとんど移動できない。
Next, the ultraviolet light dissociates trace gas molecules in the atmosphere and generates electrons. Since ultraviolet rays are light, the first main electrode (8
) and the opening ff1 (9), and as a result, electrons are naturally generated in the entire space. Then, the generated electrons are acted upon by a strong electric field and move one after another to the opening 1i (9) side, and as the ionization action is repeated along with this movement, the entire main discharge space αη is filled with all the electrons. At this time, glow discharge that contributes to laser oscillation is established. Note that, of course, + ions also remain in the discharge field, but due to their large mass, the mean free path is
, can hardly move.

次に流体系について述べる。一般に、パルス的に主放電
が起った後は主放電空間α25は熱的にも電荷分布の点
からも不均一な状態になっているので、次のパルス主放
電がアークになり易い。このため、次のパルス主放電が
起る前に主放電空間aηのレーザガス管置き換えておく
必要があることから、ファンα祷や流体ガイド(2)及
びレーザガスの放電による温度上昇を防ぐ為の熱交換器
(6)が配設されているのである。
Next, we will discuss the fluid system. Generally, after a main discharge occurs in a pulsed manner, the main discharge space α25 is in a non-uniform state both thermally and in terms of charge distribution, so that the next pulsed main discharge is likely to become an arc. For this reason, it is necessary to replace the laser gas tube in the main discharge space aη before the next pulse main discharge occurs, so it is necessary to replace the laser gas tube in the main discharge space aη. An exchanger (6) is provided.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放電励起型短パルスレーザ装置は以上のように構
成されているので、開孔電極(9)に設けられた開孔部
だけで誘電体(ト)表面に補助放電が発生するため、補
助放電により主放電をグロー状の均一な放電とする念め
の十分な電子を得ることができず、レーザ発振に寄与し
ないアーク放電に移行することになる。したがって、ア
ーク放電によるレーザガスの劣化やレーザ発振効率の低
下を招くという問題点があった。
Since the conventional discharge-excited short pulse laser device is configured as described above, an auxiliary discharge is generated on the surface of the dielectric (G) only by the aperture provided in the aperture electrode (9). Due to the discharge, it is not possible to obtain sufficient electrons to make the main discharge a glow-like uniform discharge, and the main discharge shifts to an arc discharge that does not contribute to laser oscillation. Therefore, there are problems in that the arc discharge causes deterioration of the laser gas and a decrease in laser oscillation efficiency.

この発明は上記のような問題点を解消するためになされ
たもので、レーザガ不の長寿命化を図るとともに、レー
ザ発振効率を向上することができる放電励起型短パルス
レーザ装置を得ることt−目的とする。
This invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a discharge-excited short-pulse laser device capable of prolonging the life of the laser gas and improving laser oscillation efficiency. purpose.

〔課題上解決するための手段〕[Means for solving problems]

この発明に係る放電励起型短パルスレーザ装置は、金属
ペース上に設けられた第1の主電極と、複数の開孔部v
i−有し、上記第1の主電極と対向配置された第2の主
電極と、この第2の主電極の背面に密着して設けられた
誘電体と、この誘電体に密着して設けられ、上記第2の
主電極と対向する第1の補助電極と、表面が誘電体に覆
れ、一方が上記第2の主電極および上記誘電体に接し、
他方が上記金属ベースに固着された第2の補助電極とを
備えたものである。
A discharge-excited short pulse laser device according to the present invention includes a first main electrode provided on a metal paste, and a plurality of openings v.
i-, a second main electrode disposed opposite to the first main electrode, a dielectric provided in close contact with the back surface of the second main electrode, and a dielectric provided in close contact with the dielectric. a first auxiliary electrode facing the second main electrode, the surface of which is covered with a dielectric, one side of which is in contact with the second main electrode and the dielectric;
The other is provided with a second auxiliary electrode fixed to the metal base.

〔作用〕 この発明においては、高電圧を印加することにより第2
の主電極の開孔部において誘電体表面で補助放電が発生
すると同時に、第20主電甑と第2の補助電甑閲でも補
助放電が発生して紫外線による電子を主放電空間にパフ
まく。
[Function] In this invention, by applying a high voltage, the second
At the same time, an auxiliary discharge is generated on the dielectric surface in the opening of the main electrode, and at the same time, auxiliary discharge is also generated in the 20th main electrode and the second auxiliary electrode, and electrons caused by ultraviolet rays are puffed into the main discharge space.

〔発明の笑施例〕[Funny example of invention]

以下、この発明の一冥施例t−一について説明する。第
1図はこの発明による装置の電極部公金拡大した側面断
面図、第2図は正面断面図でらる。
Hereinafter, Example t-1 of this invention will be described. FIG. 1 is an enlarged side sectional view of the electrode portion of the device according to the present invention, and FIG. 2 is a front sectional view.

各図において、四は表面が誘電体で覆われた第2の補助
電極であり、一端が第2の主電極である開孔電極(9)
と誘電体αQに接するとともに、他端が第1の主室fM
(8)と同電位でるる金属ベースα優に固着嘔れ、レー
ザ光軸方向に所定の間隔で配役でれている。なお、この
第2の補助電極(1)以外の構成は従来のものと同一で
おるので説明を省略する。
In each figure, 4 is a second auxiliary electrode whose surface is covered with a dielectric, and one end is an open-hole electrode (9) that is the second main electrode.
and the dielectric αQ, and the other end is in contact with the first main chamber fM
The metal bases α, which are at the same potential as (8), are very firmly fixed and are arranged at predetermined intervals in the direction of the laser optical axis. Note that the configuration other than this second auxiliary electrode (1) is the same as the conventional one, so the explanation will be omitted.

次に動乍について説明する。従来技術で述べ九ように、
スイッチ(4)が導通状態になると、迅速な電荷の移動
に伴って開孔電極(9)と第1の主室Wi(8)の間及
び開孔電極(9)と第1の補助電極(6)、開孔電極(
9)と第2の補助電FM(ホ)との間の電圧が急峻に上
昇する。このとき、第1及び第2の補助電FM(ロ)。
Next, the movement will be explained. As stated in the prior art,
When the switch (4) becomes conductive, charges move rapidly and the gap between the aperture electrode (9) and the first main chamber Wi (8) and between the aperture electrode (9) and the first auxiliary electrode ( 6), Open-hole electrode (
9) and the second auxiliary voltage FM (e) rises sharply. At this time, the first and second auxiliary electric FMs (b).

(1)の開始電圧は主放電の開始電圧より低いので、ま
ず、開孔電11(9)に設けられ次間孔部において誘電
体GOの表面に補助放電が起こると同時に、開孔電極(
9)と第2の補助電f1gO間にも補助放電が生じる。
Since the starting voltage of (1) is lower than the starting voltage of the main discharge, an auxiliary discharge occurs on the surface of the dielectric GO at the secondary hole provided in the hole electrode 11 (9), and at the same time, at the same time,
9) and the second auxiliary voltage f1gO.

この補助放電で生成する電子の一部及びこの放電場から
の紫外光で光電離されて生ずる電子が、主放電をグロー
状の均一な放電とする為の種となり、次いで、主放電空
間αηにおいてパルス的に主放電が起ってレーザ媒質が
励起され、その結果レーザ光が取り出されることになる
A part of the electrons generated in this auxiliary discharge and electrons generated by photoionization by ultraviolet light from this discharge field become seeds for making the main discharge into a glow-like uniform discharge, and then in the main discharge space αη. A main discharge occurs in a pulsed manner to excite the laser medium, and as a result, laser light is extracted.

ところで、グロー放電が放電の最後1で維持するために
は、グロー放電の初期の放電形成が重要な役割を果たす
。放電が最後になると電流の供給が少なくなり、放電路
が一番飛び易い場所に集中する。そして、放電が集中す
ると電子密度、+イオン密度が大きくなジ、プラズマ状
態となってア:り放電へ移行することになる。これをア
フターアークと呼んでいる。このアーク放電は当然レー
ザ励起には寄与せず、しかも悪いことにレーザガスを分
解してガスの劣化を生じせしめることになる。このアフ
ターアーク現象を無く丁ためには、最初の予備励起に関
し、■電子密度を上げる。■電子密度の均一化を図る。
By the way, in order to maintain the glow discharge at the end of the discharge, the discharge formation at the initial stage of the glow discharge plays an important role. At the end of the discharge, the supply of current decreases, and the discharge path is concentrated in the place where it is most likely to fly. Then, when the discharge is concentrated, it becomes a di-plasma state with high electron density and positive ion density, and shifts to a-d discharge. This is called after-arc. Naturally, this arc discharge does not contribute to laser excitation, and worse, it decomposes the laser gas and causes gas deterioration. In order to eliminate this after-arc phenomenon, increase the electron density for the first preliminary excitation. ■Aim to equalize electron density.

という対策t−冥施する必要があるが、まず、■の電子
密度を上げるには、誘電体電極のキャパシタ容量を大き
くするか又は放vL關始電圧を上げるなどの手段がろり
、ま几、■の電子密度を均一化にするには、先に述べ九
ような開孔電極(9)を用いて主放電空間αηに電子を
バラ筐〈という方法がろる。しかし、いづれにしても、
アフターアーク現象を無く丁ことがレーザ全損効率の向
上や、レーザガスの長寿命化に寄与することは明白でお
るので、上記を考慮した予備励起を施すことが必要とな
るのである。
It is necessary to take countermeasures for this, but first, in order to increase the electron density in (2), there are several methods such as increasing the capacitance of the dielectric electrode or increasing the starting voltage of the discharge voltage. In order to make the electron density uniform (2), there is a method of scattering electrons into the main discharge space αη by using the apertured electrode (9) as described above. However, in any case,
It is clear that eliminating the after-arc phenomenon contributes to improving the laser total loss efficiency and extending the life of the laser gas, so it is necessary to perform preliminary excitation in consideration of the above.

そこで、この発明では前述したように、第1の補助電F
M(6)、誘電体QOおよび開孔t FM(9)にて構
成されるキャパシタに、開孔1ac & (9)と第2
の補助電極(1)にて構成されるキャパシタ金加えて予
備励起として投入するエネルギーJjkを増大式ぜ、電
子のバラ1き敷金増大式ぜるものである。これによって
、グロー放電からアーク放電に移行するのが防止される
ため、投入エネルギーの全てがグロー放電に利用ができ
ることになる。
Therefore, in the present invention, as described above, the first auxiliary power F
M(6), dielectric material QO and aperture tFM(9), aperture 1ac & (9) and second
In addition to the capacitor formed by the auxiliary electrode (1), the energy Jjk input as preliminary excitation is increased, and the electron rose 1 is used as a deposit increasing type. This prevents the transition from glow discharge to arc discharge, so that all of the input energy can be used for glow discharge.

〔発明の効果〕〔Effect of the invention〕

以とのようにこの発明によれば、対向配置された第1の
主を極と第2の主電極との間に第2の補助電極を設は九
ので、補助放電による電子のバフ1′@数が増大する。
As described above, according to the present invention, since the second auxiliary electrode is provided between the first main electrode and the second main electrode which are arranged opposite to each other, the buffing of electrons by auxiliary discharge 1' @The number increases.

これによりアーク放電に移行することなく安定し几グロ
ー放電が得られ、レーザガスの長寿命化およびレーザ@
嶽効率の向上が図れるという優れた効果がある。
This allows stable glow discharge to be obtained without transitioning to arc discharge, extending the lifespan of the laser gas and laser @
This has the excellent effect of improving mounting efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1囚はこの発明の一実施例による放電励起型短パルス
レーザ装置の電極部分を示す側面断面図、第2図は同正
面断面図、第8図は従来の装置を示す断面(8)である
。 図において、(8)はilO主!極、(9)は第2の主
電極、αQは誘電体、CLI)は第1の補助!極、(1
1は金属ベース、(1)は第2の補助電極である。 なお、図中、同一符号は同一、又は相当部分を示す。
Figure 1 is a side cross-sectional view showing the electrode portion of a discharge-excited short pulse laser device according to an embodiment of the present invention, Figure 2 is a front cross-sectional view of the same, and Figure 8 is a cross-sectional view (8) showing a conventional device. be. In the figure, (8) is ilO main! pole, (9) is the second main electrode, αQ is the dielectric, CLI) is the first auxiliary! pole, (1
1 is a metal base, and (1) is a second auxiliary electrode. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  金属ベース上に設けられた第1の主電極と、複数の開
孔部を有し、上記第1の主電極と対向配置された第2の
主電極と、この第2の主電極の背面に密着して設けられ
た誘電体と、この誘電体に密着して設けられ、上記第2
の主電極と対向する第1の補助電極と、表面が誘電体に
覆れ、一方が上記第2の主電極および上記誘電体に接し
、他方が上記金属ベースに固着された第2の補助電極と
を備えて成る放電励起型短パルスレーザ装置。
a first main electrode provided on a metal base; a second main electrode having a plurality of openings and disposed opposite to the first main electrode; and a back surface of the second main electrode. a dielectric body provided in close contact with the dielectric body; and a second dielectric body provided in close contact with the dielectric body;
a first auxiliary electrode facing the main electrode, and a second auxiliary electrode whose surface is covered with a dielectric, one of which is in contact with the second main electrode and the dielectric, and the other is fixed to the metal base. A discharge-excited short pulse laser device comprising:
JP6953389A 1989-03-22 1989-03-22 Discharge excitation type short pulse laser device Pending JPH02248092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6953389A JPH02248092A (en) 1989-03-22 1989-03-22 Discharge excitation type short pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6953389A JPH02248092A (en) 1989-03-22 1989-03-22 Discharge excitation type short pulse laser device

Publications (1)

Publication Number Publication Date
JPH02248092A true JPH02248092A (en) 1990-10-03

Family

ID=13405460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6953389A Pending JPH02248092A (en) 1989-03-22 1989-03-22 Discharge excitation type short pulse laser device

Country Status (1)

Country Link
JP (1) JPH02248092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146678A (en) * 1990-10-09 1992-05-20 Nec Corp Laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146678A (en) * 1990-10-09 1992-05-20 Nec Corp Laser device

Similar Documents

Publication Publication Date Title
US4691322A (en) Gas laser device
US4730334A (en) Ultraviolet metal ion laser
US3886479A (en) Electrode systems for gas discharge devices particularly gas lasers
JP2001168432A (en) Gas laser emitting uv-rays
JPH02248092A (en) Discharge excitation type short pulse laser device
US4937838A (en) Gas laser arrangement
JP3154584B2 (en) Discharge excitation gas laser device
US4035683A (en) High voltage electric switch with trigger electrodes integral with main discharge electrodes
JP2614231B2 (en) Gas laser device
CA1040735A (en) Generation of corona for laser excitation
US4930137A (en) Inorganic triple point screen
JPS6190481A (en) Pulse laser oscillator
JPH0344429B2 (en)
JPS6321882A (en) Excimer laser
JP2581377B2 (en) Excimer laser device
JPS6190483A (en) Pulse laser oscillator
JPH0757891A (en) Ion source
JPS62181482A (en) Excimer laser equipment
JPS63228778A (en) Gas laser device
JPH06295693A (en) Ion source device
JP2745990B2 (en) Laterally pumped laser oscillator
JP2718605B2 (en) Discharge excitation type gas laser device
JPH05335672A (en) Excimer laser device
JPS60169177A (en) Discharge type gas laser oscillator
RU2008739C1 (en) Ion source