JPH02247503A - Moire type mask aligning method using photothermoelastic effect - Google Patents

Moire type mask aligning method using photothermoelastic effect

Info

Publication number
JPH02247503A
JPH02247503A JP1068723A JP6872389A JPH02247503A JP H02247503 A JPH02247503 A JP H02247503A JP 1068723 A JP1068723 A JP 1068723A JP 6872389 A JP6872389 A JP 6872389A JP H02247503 A JPH02247503 A JP H02247503A
Authority
JP
Japan
Prior art keywords
wafer
diffraction grating
mask
intensity
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1068723A
Other languages
Japanese (ja)
Other versions
JPH0629693B2 (en
Inventor
Shuzo Hattori
服部 秀三
Kazuhiro Hane
一博 羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP1068723A priority Critical patent/JPH0629693B2/en
Publication of JPH02247503A publication Critical patent/JPH02247503A/en
Publication of JPH0629693B2 publication Critical patent/JPH0629693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To align an optical mask with high accuracy by detecting elastic wave vibration generated in a wafer according to photothermoelastic effect generated as diffraction gratings provided on the mask and wafer opposite each other are displaced relatively. CONSTITUTION:The 2nd diffraction grating 3 on the optical mask is irradiated with a laser light beam which is intensity-modulated with an acoustic frequency - an ultrasonic wave frequency and the beam is projected to the wafer 4a made of an elastic vibration material so that the projection image on the grating 3 is in the same direction at the same pitch with the 1st diffraction grating cut in the wafer 4a. Then the elastic wave vibration generated in the wafer 4a by the photothermoelastic effect of the irradiation with the intensity-modulated laser light beam through the grating 3 is detected and converted into an electric signal. Then this electric signal is detected synchronously as to the reference phase of the acoustic frequency - ultrasonic wave frequency. Then the relative position of the optical mask to the wafer 4a in the same direction is set according variation in the output intensity of the synchronous detection proportional to variation in the intensity of a moire image formed owing to the position shift between the projection image of the grating 3 and the grating 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リソグラフィ・プロセスにおけるパターン転
写技術を応用した例えば集積回路製作時の光学マスクと
半導体ウェハなと可弾性振動材料のウェハとの同一パタ
ーンの重ね合わせるによるマスク位置合わせ方法に関し
、特に、重ね合わせた同一パターンのずれによって生ず
るモアレの光・熱弾性効果を用いた検出により従来に比
して格段に精密なマスク位置合わせを達成し得るように
したものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention applies pattern transfer technology in a lithography process, for example, when manufacturing integrated circuits, the same optical mask and semiconductor wafer or wafer made of elastic vibrating material can be used. Regarding the method of mask positioning by overlapping patterns, in particular, it is possible to achieve much more precise mask positioning than conventional methods by detecting moiré caused by misalignment of overlapping identical patterns using photo-thermoelastic effects. This is how it was done.

(従来の技術) 一般に、集積回路の製作時における半導体ウェハに対す
る光学マスクの位置合わせには、通例、ウェハとマスク
との相対応する一隅に直交2軸方向に同一パターンの回
折格子をそれぞれ互いに対向させて設け、かかる回折格
子の重なりにより直交2軸方向の位置合わせを行ない、
さらには、同様の回折格子の対をウェハとマスクとの対
角隅にも設けて直交2軸相互の傾斜の修正を行なうよう
にしている。
(Prior Art) Generally, in order to align an optical mask with respect to a semiconductor wafer during the manufacture of integrated circuits, diffraction gratings with the same pattern are placed in two orthogonal axes at corresponding corners of the wafer and the mask, respectively, so as to face each other. and positioning is performed in two orthogonal axes directions by overlapping the diffraction gratings,
Furthermore, similar pairs of diffraction gratings are provided at diagonal corners of the wafer and mask to correct the mutual inclination of the two orthogonal axes.

しかして、集積回路をなすパターンの線幅が従来のよう
に比較的大きい場合には、上述のようなパターン転写に
よるマスクとウェハとの相対位置決めは、ウェハを取付
けたステージすなわち移動架台の送り精度や上述のよう
な回折格子などマーカの位置合わせに従来用いていた顕
微鏡の像分解精度の範囲で行なわれて来た。しかしなが
ら、近来の高集積化に伴い、集積回路をなすパターンの
線幅が従来に比して著しく細くなり、次世代の集積回路
には、サブミクロン・オーダの線幅が用いられる情勢に
ある。したがって、かかる線幅のパターンに対して行な
うマスクとウェハとの位置合わせには数十ナノメータ程
度の精度が必要となるので、上述したような従来の位置
合わせ方法は次世代集積回路の製作に使用し得ないこと
になる。
However, when the line width of the pattern forming an integrated circuit is relatively large as in the conventional case, the relative positioning of the mask and wafer by pattern transfer as described above depends on the feeding accuracy of the stage on which the wafer is mounted, that is, the moving frame. This has been done within the image resolution accuracy of microscopes conventionally used to align markers such as the above-mentioned diffraction gratings. However, with the recent trend toward higher integration, the line width of patterns forming integrated circuits has become significantly thinner than before, and next-generation integrated circuits are now likely to have line widths on the order of submicrons. Therefore, alignment of the mask and wafer for patterns with such line widths requires precision on the order of several tens of nanometers, so the conventional alignment methods described above are not suitable for use in the production of next-generation integrated circuits. It would be impossible.

(発明が解決しようとする課題) 光学マスク上の回折格子像を半導体ウェハ上の回折格子
に重ねて投影し、両者の位置ずれをなくすようにする上
述したマスク位置合わせを高精度化、高感度化する技術
としては、マスク照射用光源にレーザを用いるモアレ法
が堤案されている。
(Problems to be Solved by the Invention) The above-mentioned mask positioning in which the diffraction grating image on the optical mask is projected over the diffraction grating on the semiconductor wafer to eliminate positional deviation between the two is highly accurate and sensitive. As a technology to achieve this, a moiré method has been proposed that uses a laser as a light source for mask irradiation.

しかしながら、レーザ光は可干渉性が極めて良好である
ので、一対の回折格子を完全に平行に保つて重ね合わせ
、相互の一致を検出しようとすると、回折格子表面から
の反射光と照射光との干渉が避けられず、かかる不必要
な反射光と信号光との干渉により格子間隙の微小な変化
の影響を受けて相互の一致検出が妨げられ、回折格子の
横方向変位の測定が困難となり、その結果、高精度の位
置決めが行なえず、あるいは、かかる干渉妨害を避ける
ために複雑な位置検出方法を採らざるを得ない状態にあ
った。
However, since laser light has extremely good coherence, if you try to overlap a pair of diffraction gratings while keeping them perfectly parallel and detect mutual coincidence, the difference between the reflected light from the diffraction grating surface and the irradiated light Interference is unavoidable, and the interference between the unnecessary reflected light and the signal light interferes with mutual coincidence detection due to the influence of minute changes in the grating gap, making it difficult to measure the lateral displacement of the diffraction grating. As a result, highly accurate positioning cannot be performed, or a complicated position detection method must be used to avoid such interference.

一方、レーザ応用の計測技術として、半導体ウェハを始
め、誘電体材料や金属材料も含めた可弾性振動材料をレ
ーザ光により照射したときにそれらの材料に生ずる光熱
歪みおよびその光・熱弾性効果によって発生する弾性波
振動については、従来、高感度の分光法あるいは材料内
部の欠陥の非破壊検査法として注目され、種々の研究が
行なわれている。しかしながら、かかる光・熱弾性効果
により発生する弾性波振動を上述したような位置決め乃
至変性検出に応用することを目的とした研究は勿論のこ
と、かかる応用の可能性に言及したものも従来は全く報
告されていない。
On the other hand, as a measurement technology for laser applications, when semiconductor wafers, dielectric materials, metal materials, and other elastic vibrating materials are irradiated with laser light, the photothermal strain that occurs in these materials and the resulting photothermoelastic effects are used. The generated elastic wave vibrations have been attracting attention as a highly sensitive spectroscopic method or a non-destructive inspection method for defects inside materials, and various studies have been conducted. However, let alone research aimed at applying the elastic wave vibrations generated by such photo-thermoelastic effects to the above-mentioned positioning or degeneration detection, there has been no research that has mentioned the possibility of such applications. Not reported.

(課題を解決するための手段) しかして、光・熱弾性効果により可弾性振動材料に生ず
る弾性波振動を利用するいわゆる光音響法においては、
一般に、光の吸収量に比例した強度を有する音響周波数
乃至超音波周波数の弾性波振動が発生する。したがって
、かかる光音響法を上述したモアレ法による位置決め乃
至変位検出に適用すれば、検出出力信号が専ら光の吸収
のみによって得られ、不所望の反射光と信号光との干渉
の影響を完全に排除し得ることが期待される。本発明は
、かかる期待を実現するために、いわゆるレーザ回折モ
アレ変位測定に光音響法を適用し、従来に比して格段に
高精度の位置決め乃至変位検出を達成し得るようにした
ものである。
(Means for solving the problem) However, in the so-called photoacoustic method that utilizes elastic wave vibrations generated in elastic vibrating materials due to photo-thermoelastic effects,
Generally, elastic wave vibrations at acoustic or ultrasonic frequencies are generated with an intensity proportional to the amount of light absorbed. Therefore, if such a photoacoustic method is applied to positioning or displacement detection using the moiré method described above, the detection output signal can be obtained exclusively by light absorption, and the influence of interference between undesired reflected light and signal light can be completely eliminated. It is hoped that this can be eliminated. In order to realize these expectations, the present invention applies a photoacoustic method to so-called laser diffraction moiré displacement measurement, thereby making it possible to achieve positioning and displacement detection with much higher precision than in the past. .

本発明の目的は、前述した従来の課題を解決し、光学マ
スク上の回折格子を半導体ウェハ上の回折格子に重ねて
投影するレーザ光の回折格子相互の位置ずれに応じて変
化する照射強度を、その照射光の吸収量のみに比例した
強度で光・熱弾性効果により発生する弾性波振動の検出
によって高精度で検出し得るようにした光・熱弾性効果
を用いたモアレ式マスク位置合わせ方法を提供すること
にある。
An object of the present invention is to solve the above-mentioned conventional problems, and to reduce the irradiation intensity that changes depending on the mutual positional shift of the diffraction gratings of laser light that is projected by overlapping the diffraction grating on the optical mask with the diffraction grating on the semiconductor wafer. , a moire-type mask positioning method using photo-thermo-elastic effects that enables highly accurate detection by detecting elastic wave vibrations generated by photo-thermo-elastic effects with an intensity proportional only to the amount of absorption of the irradiated light. Our goal is to provide the following.

本発明の他の目的は、半導体ウェハ上の回折格子に重ね
て投影する光学マスク上の回折格子の投影像の位置ずれ
によって生ずるモアレ強度の変化を従来より格段に高精
度に検出し得るようにした光・熱弾性効果を用いたモア
レ式マスク位置合わせ方法を提供することにある。
Another object of the present invention is to detect a change in moiré intensity caused by a positional shift of a projected image of a diffraction grating on an optical mask, which is projected onto a diffraction grating on a semiconductor wafer, with much higher precision than in the past. An object of the present invention is to provide a moiré mask positioning method using photo-thermoelastic effects.

本発明のさらに他の目的は、上述した回折格子相互の位
置ずれに応じて変化するモアレ強度に比例して発生する
弾性波振動の強度変化を的確に高精度で検出し得るよう
にした光・熱弾性効果を用いたモアレ式マスク位置合わ
せ方法を提供することにある。
Still another object of the present invention is to provide an optical system capable of accurately and highly accurately detecting changes in the intensity of elastic wave vibrations that occur in proportion to the moiré intensity that changes depending on the mutual positional deviation of the diffraction gratings. An object of the present invention is to provide a moiré mask positioning method using thermoelastic effects.

本発明のさらにまた他の目的は、ウェハ上の回折格子に
的確に重ねてマスク上の回折格子を仏像乃至投影し得る
ようにした光・熱弾性効果を用いたモアレ式マスク位置
合わせ方法を提供することある。
Still another object of the present invention is to provide a moire-type mask positioning method using photo-thermoelastic effects, which allows the diffraction grating on the mask to be accurately overlapped with the diffraction grating on the wafer to project a Buddha statue or the like. I have something to do.

すなわち、本発明光・熱弾性効果を用いたモアレ式マス
ク位置合わせ方法は、音響周波数乃至超音波周波数で強
度変調したレーザ光ビームにより光学マスク上の第2の
回折格子を照射して可弾性振動材料のウェハ上に投影し
、前記第2の回折格子の投影像が前記ウェハ上に刻んだ
第1の回折格子と同一方向で同一のピッチとなるように
して結像させる過程と、 前記強度変調したレーザ光ビームの前記第2の回折格子
を介した照射の光・熱弾性効果により前記ウェハに生じ
た弾性振動を検出して電気信号に変換する過程と、 前記電気信号を前記音響周波数乃至超音波周波数の基準
位相に関して同期検波する過程と、前記第2の回折格子
の投影像と前記第1の回折格子との位置ずれによって生
ずるモアレ像の強度変化に比例する前記同期検波の出力
強度の変化に基づいて前記ウェハに対する前記光学マス
クの前記同一方向における相対位置を設定する過程と、
を没げたことを特徴とするものである。
In other words, the Moire mask positioning method using the photo-thermoelastic effect of the present invention irradiates the second diffraction grating on the optical mask with a laser beam whose intensity is modulated at an acoustic frequency or an ultrasonic frequency to generate elastic vibrations. a step of projecting the second diffraction grating onto a wafer of the material so that the projected image of the second diffraction grating is in the same direction and with the same pitch as the first diffraction grating carved on the wafer; and the intensity modulation. detecting elastic vibrations generated in the wafer due to the photo-thermoelastic effect of the irradiation of the laser beam through the second diffraction grating, and converting the elastic vibrations into electrical signals; A process of synchronous detection with respect to a reference phase of a sound wave frequency, and a change in the output intensity of the synchronous detection that is proportional to a change in intensity of a moiré image caused by a positional shift between the projected image of the second diffraction grating and the first diffraction grating. setting a relative position of the optical mask in the same direction with respect to the wafer based on;
It is characterized by the fact that it has disappeared.

(作 用) 本発明は、投影して重ね合わせた一対の回折格子の相対
位置検出に、光・熱弾性効果による弾性波振動を検出信
号として最先に採用したものであり、本発明によれば、
回折格子の相対位置ずれによって生ずるモアレ強度の変
化を、相対位置ずれに的確に対応する透過吸収光量のみ
に比例した強度の弾性波振動を仲介にして、従来この種
の相対位置ずれ検出を妨げていた反射光量の影響を全く
受けずに、高精度で検出し得るようになる。
(Function) The present invention is the first to employ elastic wave vibration due to photo-thermoelastic effects as a detection signal for detecting the relative position of a pair of projected and superimposed diffraction gratings. Ba,
Conventionally, this kind of relative positional deviation detection has been hindered by using elastic wave vibrations with an intensity proportional only to the amount of transmitted and absorbed light that accurately corresponds to the relative positional deviation to detect changes in moiré intensity caused by relative positional deviations of the diffraction gratings. This enables highly accurate detection without being affected by the amount of reflected light.

また、回折格子の相対位置ずれによって生ずるモアレの
強度は、横方向の変位に対し、格子のピッチを周期とし
て変化し、微小変位に対するモアレ強度の変化、すなわ
ち、微係数が最大となるのは回折格子間の相対位置が9
0°位相差を呈するときであり、本発明によれば、一対
の回折格子をそれぞれ2分し、一方の半部間と他方の半
部間とにおける回折格子の相対位置が互いに逆位相にな
るようにそれぞれの回折格子を構成し、もって、モアレ
強度の変化が最大となる90°位相差の相対位置を位置
決め点に設定して最高感度の相対位置検出を行ない得る
ようになる。
In addition, the intensity of moire caused by the relative positional shift of the diffraction grating changes with the pitch of the grating as a period with respect to lateral displacement, and the change in moire intensity with respect to minute displacement, that is, the maximum differential coefficient is caused by the diffraction The relative position between the grids is 9
According to the present invention, each of the pair of diffraction gratings is divided into two halves, and the relative positions of the diffraction gratings between one half and the other half have opposite phases. By configuring each diffraction grating in this way, the relative position with a 90° phase difference where the change in moiré intensity is maximum can be set as the positioning point, and relative position detection with the highest sensitivity can be performed.

さらに、本発明によれば、回折格子を重ね合わせて投影
する照射光の強度を音響周波数乃至超音波周波数で変調
し、光・熱弾性効果によりその変調周波数と同じ周波数
の弾性波振動を発生させ、もって、回折格子間の相対位
置ずれに対応したモアレ強度に比例した強度を呈する弾
性波振動を容易確実に検出し得るようになり、また、検
出した弾性波振動を同じ周波数の電気信号に変換すると
ともに、その電気信号を同じ周波数の基準位相に関して
同期検波し、もって、高感度、高SN比でモアレ強度に
対応した弾性波振動の強度変化を検出し得るようになる
Further, according to the present invention, the intensity of the irradiated light projected by overlapping the diffraction gratings is modulated at an acoustic frequency or an ultrasonic frequency, and elastic wave vibrations at the same frequency as the modulation frequency are generated by photo-thermoelastic effects. , it becomes possible to easily and reliably detect elastic wave vibrations exhibiting an intensity proportional to the moiré intensity corresponding to the relative positional deviation between the diffraction gratings, and also convert the detected elastic wave vibrations into electrical signals of the same frequency. At the same time, the electrical signal is synchronously detected with respect to a reference phase of the same frequency, thereby making it possible to detect a change in the intensity of elastic wave vibration corresponding to the moiré intensity with high sensitivity and a high S/N ratio.

なお、弾性波振動を検出して電気信号に変換する方法と
しては、つぎのようにするのが好適である。
Note that the following method is suitable for detecting elastic wave vibration and converting it into an electric signal.

a)ウェハの弾性振動が周囲の気体に圧力波を発生させ
るので、その圧力波をマイクロホンにより検出して電気
信号に変換する。また、マスク上の回折格子の投影像が
ウェハに刻んだ回折格子に吸収されて発生する熱が周囲
気体に拡散して生ずる周囲気体の熱膨張によって発生し
た圧力波もマイクロホンによって有効に検出し、電気信
号に変換することができる。
a) Since the elastic vibration of the wafer generates pressure waves in the surrounding gas, the pressure waves are detected by a microphone and converted into electrical signals. In addition, the microphone effectively detects pressure waves generated by thermal expansion of the surrounding gas when the heat generated when the projected image of the diffraction grating on the mask is absorbed by the diffraction grating cut into the wafer and diffuses into the surrounding gas. It can be converted into an electrical signal.

b)ウェハに生じた弾性波振動は、ウェハ自体あるいは
その支持体を伝搬するので、ウェハ自体あるいはその支
持体に圧電素子を接触させることによってその弾性波振
動を圧電効果による電気信号に変換する。
b) Since the elastic wave vibrations generated in the wafer propagate through the wafer itself or its support, by bringing a piezoelectric element into contact with the wafer itself or its support, the elastic wave vibrations are converted into electrical signals due to the piezoelectric effect.

C)弾性振動が生じている可弾性振動材料にプローブレ
ーザ光を当てて弾性振動に応じた反射光ビームの偏向を
検出すれば完全に非接触でその材料の弾性振動を検出す
ることができ、高感度のレーザ光ビーム振動測定を行な
えば、有効的確に弾性振動を検出することができる。す
なわち、弾性振動を起しているウェハに投射したプロー
ブレーザ光ビームの反射光は、そのビーム・スポットの
径が弾性振動の波長より小さい場合には、ウェハ表面の
弾性振動による傾斜の周期的変化に従ってその反射方向
が周期的に偏向される。したがって、反射点から適切に
離れた位置で反射光ビーム・スポットを検出すれば、測
定系の構成が比較的簡単であるにも拘らず、高感度で弾
性波振動を検出することができる。
C) If a probe laser beam is applied to an elastically vibrating material in which elastic vibrations are occurring and the deflection of the reflected light beam in response to the elastic vibrations is detected, the elastic vibrations of the material can be detected completely without contact. If highly sensitive laser beam vibration measurement is performed, elastic vibrations can be detected effectively and accurately. In other words, if the beam spot diameter of the reflected beam of the probe laser beam projected onto a wafer undergoing elastic vibration is smaller than the wavelength of the elastic vibration, periodic changes in inclination due to the elastic vibration of the wafer surface occur. Accordingly, the direction of reflection is periodically deflected. Therefore, if the reflected light beam spot is detected at a position appropriately away from the reflection point, elastic wave vibrations can be detected with high sensitivity despite the relatively simple configuration of the measurement system.

d)移動架台に取付けたウェハの近傍に参照光ビームを
得るための固定の反射点を求め得る場合には、プローブ
レーザ光ビームを、波面分割したうえで2分岐し、ウェ
ハと固定反射点とにそれぞれ集光すると、ウェハおよび
固定反射点からの各反射光ビーム相互間の干渉を検出す
れば、波面分割から干渉検出のための波面合成に到るま
での各反射ビーム相互間の光路長差を1/4波長に設定
し得る場合には、極めて高感度の弾性波振動振幅検出を
達成することができる。
d) If a fixed reflection point for obtaining a reference light beam can be found near the wafer mounted on a movable stand, the probe laser light beam is wavefront-split and split into two, and the wafer and fixed reflection point are separated. If the interference between each reflected light beam from the wafer and fixed reflection point is detected, the optical path length difference between each reflected beam from wavefront division to wavefront synthesis for interference detection can be detected. When can be set to 1/4 wavelength, extremely sensitive detection of elastic wave vibration amplitude can be achieved.

本発明モアレ式マスク位置合わせ方法においては、位置
合わせの対象となる可弾性振動材ウェハの状態に応じ、
上述した各検出方法のいずれか最も適切な方法を選んで
弾性波振動の検出を行なうことができる。
In the moire type mask alignment method of the present invention, depending on the state of the elastic vibrating material wafer to be aligned,
The elastic wave vibration can be detected by selecting the most appropriate method from among the detection methods described above.

また、マスク上の回折格子をウェハ上の回折格子に的確
に重ねて仏像乃至投影する方法としては、つぎのように
するのが好適である。
Further, as a method for accurately overlapping the diffraction grating on the mask with the diffraction grating on the wafer and projecting the Buddha statue, the following method is suitable.

a)光源からの平行伝線すなわち平行光ビームによりマ
スク上の回折格子を照射してウェハ上に仏像乃至投影し
たときにマスク上の格子の回折効果により投影像のパタ
ーンに劣化が生じないように、マスクをウェハに十分近
接していわゆるプロキシミティ転写を行なえば、マスク
・ウェハ間の間隙における反射光の影響を受けずに、本
発明方法によるマスク位置合わせを的確に達成すること
ができる。
a) When the diffraction grating on the mask is irradiated with parallel lines, that is, parallel light beams from the light source and the Buddha statue or image is projected onto the wafer, the pattern of the projected image will not be degraded due to the diffraction effect of the grating on the mask. If so-called proximity transfer is performed with the mask sufficiently close to the wafer, mask positioning can be accurately achieved by the method of the present invention without being affected by reflected light in the gap between the mask and the wafer.

b)マスクとウェハとの間に縮小光学系を介在させ、そ
の縮小光学系によりマスク上の回折格子を縮小してウェ
ハ上に投影する場合には、その縮小光学系を適切に設定
してマスク上の回折格子の投影像をウェハ上の回折格子
に的確に重ね合わせることができ、その結果、ウェハの
回折格子を刻んだ部分に光・熱弾性効果による弾性波振
動を的確に発生させることができる。
b) When a reduction optical system is interposed between the mask and the wafer, and when the reduction optical system reduces the diffraction grating on the mask and projects it onto the wafer, the reduction optical system must be set appropriately to remove the mask. The projected image of the upper diffraction grating can be accurately superimposed on the diffraction grating on the wafer, and as a result, elastic wave vibrations due to photo-thermoelastic effects can be accurately generated in the portion of the wafer where the diffraction grating is carved. can.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

まず、本発明方法により光・熱弾性効果を用いたマスク
位置合わせ装置の基本的構成の例を第1図(a)に示し
、本発明をなすに当って用いた実験装置の構成を第1図
(ハ)に示す、なお、図示の基本的構成は、弾性波振動
の検出に前述した検出方法C)を通用し、ウェハにプロ
ーブレーザ光を投射したときの反射光ビームの偏向を検
出するようにした場合の例を示したものである。
First, an example of the basic configuration of a mask positioning device using the photo-thermoelastic effect according to the method of the present invention is shown in FIG. 1(a), and FIG. The basic configuration shown in Figure (C) uses the detection method C) described above to detect elastic wave vibrations, and detects the deflection of the reflected light beam when the probe laser light is projected onto the wafer. This is an example of how to do this.

図示の基本的構成例においては、レーザ光源lから放射
した例えばビーム径1 mmの平行光ビームを、発振器
8からの音響周波数乃至超音波周波数fの発振出力によ
り回転駆動するチョッパ2により周期的に断続させて強
度変調した状態で、光学マスクをなす第2回折格子3を
介し、第1回折格子4を表面に刻んだ半導体ウェハなと
可弾性振動材のウェハ4aに投射する。なお、第1およ
び第2の回折格子4および3は例えば25μmとする同
一ピッチに形成してあり、例えばビーム径1mの平行光
ビームのプロキシミティ転写により第2回折格子3が第
1回折格子4上に図示のように重ねて投影され、したが
って、第1および第2の回折格子が、位相差O°で完全
に重なったときにウェハ4aに達する照射光量が最大と
なり、位相差180゜で格子が完全に互い違いになった
ときには照射光量がほぼ零となる。その結果、周波数f
で強度変調した平行光ビームの照射を受けて光・熱弾性
効果により照射光強度に比例した振幅でウェハ4aに発
生する周波数fの弾性波振動の振幅は、第1と第2との
回折格子4と3と、正確には、第1回折格子4と第2回
折格子3の投影像との横方向相対位置が上述した位相差
0°から180°まで変化するに従い、最大振幅から振
幅零まで、回折格子3゜4のピッチの周期で変化し、い
わゆるモアレを構成する。ウェハ4aに発生してかかる
モアレをなす弾性波振動の振幅変化の状態を検出すれば
、第1゜第2の回折格子4.3の重なり具合を調整して
いわゆるマスク位置合わせを行なうことができる。
In the illustrated basic configuration example, a parallel light beam with a beam diameter of 1 mm, for example, emitted from a laser light source l is periodically driven by a chopper 2 that is rotationally driven by an oscillation output of an acoustic frequency or an ultrasonic frequency f from an oscillator 8. In a state where the intensity is modulated intermittently, the light is projected onto a wafer 4a made of an elastic vibrating material, such as a semiconductor wafer, on which the first diffraction grating 4 is carved on the surface, through a second diffraction grating 3 forming an optical mask. Note that the first and second diffraction gratings 4 and 3 are formed at the same pitch of, for example, 25 μm, and the second diffraction grating 3 is formed on the first diffraction grating 4 by proximity transfer of a parallel light beam with a beam diameter of 1 m, for example. Therefore, when the first and second diffraction gratings completely overlap with each other with a phase difference of 0°, the amount of irradiation light reaching the wafer 4a is maximum, and the gratings with a phase difference of 180° are projected onto the wafer 4a. When the beams are completely alternated, the amount of irradiation light becomes almost zero. As a result, the frequency f
The amplitude of the elastic wave vibration of the frequency f that is generated on the wafer 4a by the photothermoelastic effect with the amplitude proportional to the intensity of the irradiated light when the wafer 4a is irradiated with the parallel light beam whose intensity is modulated by the first and second diffraction gratings. 4 and 3, or more precisely, as the horizontal relative position between the projected images of the first diffraction grating 4 and the second diffraction grating 3 changes from the above-mentioned phase difference of 0° to 180°, the amplitude changes from maximum amplitude to zero amplitude. , changes with the period of the pitch of the diffraction grating 3°4, forming a so-called moiré pattern. By detecting the state of the amplitude change of the elastic wave vibration generated on the wafer 4a and forming moiré, it is possible to perform so-called mask positioning by adjusting the degree of overlapping of the first and second diffraction gratings 4.3. .

図示の基本的構成例においては、かかる弾性波振動を検
出するために、前述したプローブ・レーザ光とする補助
レーザ光源5からのレーザ光ビームをウェハ4aの裏面
に投射し、その反射光ビームを例えばホトダイオードな
どからなるビームスポット位置検出器6に導いて光電変
換し、周波数fの変換出力電気信号をロックイン・アン
プ7に導く。そのロックイン・アンプ7においては、そ
の変換出力電気信号を発振器8からの周波数rの発振出
力を参照信号にして同期検波し、ウェハ4aの弾性波振
動による反射面の傾斜の変化によって偏向された反射光
ビームの検出器6による受光量の変化に対応した変換出
力電気信号の強度変化を検出する。
In the illustrated basic configuration example, in order to detect such elastic wave vibrations, a laser beam from the auxiliary laser light source 5, which serves as the probe laser beam described above, is projected onto the back surface of the wafer 4a, and the reflected light beam is The beam is guided to a beam spot position detector 6 made of, for example, a photodiode for photoelectric conversion, and the converted output electrical signal of frequency f is guided to a lock-in amplifier 7. In the lock-in amplifier 7, the converted output electric signal is synchronously detected by using the oscillation output of the frequency r from the oscillator 8 as a reference signal, and is deflected by the change in the slope of the reflecting surface due to the elastic wave vibration of the wafer 4a. A change in the intensity of the converted output electrical signal corresponding to a change in the amount of light received by the reflected light beam detector 6 is detected.

一方、図示の実験装置は、マスク上とウェハ上との回折
格子の相対位置ずれによって生ずるモアレに対応した強
度変化をなす弾性波振動を検出することにより、本発明
の動作原理をなすモアレ式光・熱弾性効果を確認するた
めのものであり、概略の構成は上述した基本的構成と同
じであるが、確認データを得やすいように変更を施しで
ある。
On the other hand, the illustrated experimental apparatus detects elastic wave vibrations that change in intensity corresponding to moiré caused by the relative positional deviation of the diffraction gratings on the mask and the wafer. - This is for confirming the thermoelastic effect, and the general configuration is the same as the basic configuration described above, but changes have been made to make it easier to obtain confirmation data.

すなわち、発振器8からの周波数1330KHzの発振
出力により強度変調した波長830nI11、出力20
mWの半導体レーザよりなるレーザ光源lからの平行光
ビームにより、透明なマスク基板3a上に形成した25
μmピッチの透過型回折格子3を照射し、マスク基板3
aに平行に近接配置した透明なウェハ4a上に形成した
25μmピッチの反射型回折格子4上に重ねて投影する
。なお、マスク基板3aは、直交2軸方向に移動可能の
いわゆるX−Yステージに取付け、位置制御器11を介
し、回折格子3.4の横方向に1μmステップで移動す
るようにマイクロコンピュータ10によりその位置を制
御する。また、前述したように回折格子3,4によるモ
アレ照射光の光・熱弾性効果によりウェハ4aに生ずる
弾性波振動を検出するために、出力1a+WのHe−N
eレーザよりなる補助レーザ光源5からのレーザ光ビー
ムをウェハ4aに取付けたミラー4bに投射し、ウェハ
4aの弾性振動に応じたミラー4bの振動により生ずる
反射光ビームの偏向状態をビームスポット位置検出器6
により検出し、その検出出力として得られる周波数13
30KIIzの電気信号をアンプ9を介してロックイン
・アンプ7に導く。そのロックイン・アンプ7において
は、発振器8からの周波数1330KIIzの基準位相
信号を参照して同期検波を行ない、ウェハ4aに生じた
弾性波振動の強度変化に対応した振幅変化を呈する検波
出力信号を取出してマイクロコンピュータ10に供給す
る。マイクロコンピュータlOにおいては、その検波出
力信号に応じてロックイン・アンプ7の動作状態を制御
するとともに、検波出力信号の振幅変化が後述するよう
にして表わすマスク3a上の回折格子3とウェハ4a上
の回折格子4との相対位置関係に対応した位置修正信号
を算出し、位置制御器11を介してマスク3aの位置を
修正し、回折格子3と4とが所定の相対位置関係となる
ように制御し、所望の高精度マスク位置合わせを達成す
る。
That is, the wavelength 830nI11 is intensity-modulated by the oscillation output of the frequency 1330KHz from the oscillator 8, and the output 20
25 is formed on a transparent mask substrate 3a by a parallel light beam from a laser light source 1 consisting of a mW semiconductor laser.
The transmission type diffraction grating 3 with a μm pitch is irradiated, and the mask substrate 3 is
The light beams are projected onto a reflection type diffraction grating 4 with a pitch of 25 μm formed on a transparent wafer 4a arranged close to and parallel to a. The mask substrate 3a is mounted on a so-called X-Y stage that is movable in two orthogonal axes directions, and controlled by a microcomputer 10 via a position controller 11 so as to move in 1 μm steps in the lateral direction of the diffraction grating 3.4. Control its position. In addition, as described above, in order to detect the elastic wave vibration generated on the wafer 4a due to the photo-thermoelastic effect of the moire irradiation light by the diffraction gratings 3 and 4, the He-N
A laser light beam from an auxiliary laser light source 5 consisting of an e-laser is projected onto a mirror 4b attached to a wafer 4a, and the beam spot position is detected by the deflection state of the reflected light beam caused by the vibration of the mirror 4b in response to the elastic vibration of the wafer 4a. vessel 6
The frequency 13 obtained as the detection output is detected by
An electrical signal of 30KIIz is guided to a lock-in amplifier 7 via an amplifier 9. The lock-in amplifier 7 performs synchronous detection with reference to the reference phase signal of frequency 1330KIIz from the oscillator 8, and generates a detection output signal exhibiting an amplitude change corresponding to the intensity change of the elastic wave vibration generated in the wafer 4a. It is taken out and supplied to the microcomputer 10. The microcomputer IO controls the operating state of the lock-in amplifier 7 according to the detection output signal, and also controls the diffraction grating 3 on the mask 3a and the wafer 4a, which are represented by amplitude changes of the detection output signal as will be described later. A position correction signal corresponding to the relative positional relationship with the diffraction grating 4 is calculated, and the position of the mask 3a is corrected via the position controller 11 so that the diffraction gratings 3 and 4 have a predetermined relative positional relationship. control and achieve the desired high-precision mask alignment.

ともに25μ藩ピツチとした反射型の第1回折格子4と
透過型の第2回折格子3との横方向相対変位の変化に対
するビームスポット位置検出器6の検出出力信号強度の
変化の測定結果の典型例を第2図(a)に示す。図示の
測定結果は、検出出力信号強度を任意の単位で縦軸にと
り、各回折格子3゜4間の相対変位をμm単位で横軸に
とり、約2μmステップでとった測定値を順次にプロッ
トしたものであり、回折格子3.4のピッチ25μmを
周期として周期的に変化する検出出力信号強度は、ウェ
ハ3aに生じた弾性波振動が、回折格子3,4罐の相対
位置ずれによってモアレ縞を呈するウェハ4aの吸収光
量の光・熱弾性効果によって発生したものであることを
示している。
Typical measurement results of changes in the detection output signal intensity of the beam spot position detector 6 with respect to changes in the lateral relative displacement of the reflective first diffraction grating 4 and the transmission type second diffraction grating 3, both of which have a pitch of 25 μm. An example is shown in FIG. 2(a). In the measurement results shown, the detected output signal intensity is plotted in arbitrary units on the vertical axis, and the relative displacement between each diffraction grating 3゜4 is plotted on the horizontal axis in μm units, and the measured values taken at approximately 2 μm steps are plotted sequentially. The detected output signal intensity, which changes periodically with a pitch of 25 μm of the diffraction grating 3.4, is caused by the elastic wave vibration generated in the wafer 3a causing Moiré fringes due to the relative positional deviation of the diffraction gratings 3 and 4. This shows that this is caused by the photo-thermoelastic effect of the amount of light absorbed by the wafer 4a.

なお、本発明モアレ式マスク位置合わせ方法の動作原理
が各回折格子3,4間の相対位置ずれによってモアレ縞
を呈する吸収光量の光・熱弾性効果による弾性振動の発
生にあることを確認するために、第2図(b)に示した
実験装置によって得た測定結果を第2図(b)に示す。
In addition, in order to confirm that the operating principle of the moire type mask alignment method of the present invention is the generation of elastic vibrations due to the photo-thermoelastic effect of the amount of absorbed light that exhibits moire fringes due to the relative positional deviation between the respective diffraction gratings 3 and 4. FIG. 2(b) shows the measurement results obtained using the experimental apparatus shown in FIG. 2(b).

図示の測定結果は、第2図(a)に示したと同様の測定
値を各回折格子3゜4間の間隔Zをパラメータとして3
段階に変化させた場合についてそれぞれ順次にプロット
したものである。しかして、透過型回折格子3を照射し
た平行光ビームは、格子3のラインの部分では反射され
、スペースの部分を透過した平行光は格子がなす回折作
用により格子3の背後で結像していわゆるセルフイメー
ジの現象を呈し、その格子像のコントラストは格子3か
らの間隔Zに応じて周期的に変化する。すなわち、格子
3のピッチpおよび照射光の波長λに対して間隔ZはZ
=np2/λの関係にあり、係数nが自然数となるとき
に、p2/λを周期として、格子像のコントラストが最
大となるが、その最大コントラストの位相は周期p”/
λ毎に反転し、その中間の間隔ではコントラスト最小と
なって格子像が消滅し、均等な照度を呈する。したがっ
て、各回折格子3,4の間隔Zをパラメータとして段階
的に変化させながら、各回折格子3,4の横方向相対位
置を変化させてモアレ縞を生じさせたときに得られる第
2図(a)に示した測定値が、格子3,4の間隔Zの変
化に応じて上述したようなセルフイメージの特性を示せ
ば、本発明モアレ式マスク位置合わせの動作原理が格子
透過光の光・熱弾性効果に基づく弾性振動の発生に存す
ることを確認し得たことになる。第2図(b)に示した
測定結果は、上述した係数nを3.3.5゜4と3段階
に変化させたときの第2図(a)と同様の測定結果を順
次に示したものであり、正に、−上述したセルフイメー
ジの特性を明確に示している。
The measurement results shown are the same as those shown in Figure 2(a), with the spacing Z between each diffraction grating 3°4 as a parameter.
The figures are plotted sequentially for each stage of change. Therefore, the parallel light beam that irradiates the transmission type diffraction grating 3 is reflected at the line portion of the grating 3, and the parallel light transmitted through the space portion forms an image behind the grating 3 due to the diffraction effect of the grating. A so-called self-image phenomenon occurs, and the contrast of the grating image changes periodically according to the distance Z from the grating 3. That is, with respect to the pitch p of the grating 3 and the wavelength λ of the irradiation light, the interval Z is Z
= np2/λ, and when the coefficient n is a natural number, the contrast of the grating image becomes maximum with the period p2/λ, but the phase of the maximum contrast is the period p”/λ.
It is reversed every λ, and at an intermediate interval, the contrast becomes minimum and the grating image disappears, presenting uniform illuminance. Therefore, Fig. 2 (Fig. If the measured values shown in a) show the above-mentioned self-image characteristics depending on the change in the spacing Z between the gratings 3 and 4, then the operating principle of the Moiré mask alignment according to the present invention can be explained by the fact that the light transmitted through the gratings This means that it has been confirmed that elastic vibrations occur due to thermoelastic effects. The measurement results shown in Figure 2(b) are the same as those in Figure 2(a) when the coefficient n mentioned above was changed in three steps to 3.3.5°4. - It clearly shows the above-mentioned characteristics of self-image.

なお、第1図示の構成においては、前述した検出方法C
)に従ってウェハにおける弾性波振動の発生を検出した
が、他の検出方法、例えば検出方法a)に従い、弾性振
動に応じて発生した周囲気体の圧力波をマイクロホンに
より検出した場合にも同様の測定結果が得られたこと勿
論である。
Note that in the configuration shown in the first figure, the above-mentioned detection method C
), the occurrence of elastic wave vibrations in the wafer was detected, but similar measurement results could be obtained using other detection methods, such as detection method a), in which pressure waves in the surrounding gas generated in response to elastic vibrations were detected using a microphone. Of course, this was obtained.

つぎに、回折格子3,4間の相対変位によるモアレ縞に
対応した弾性振動検出信号強度の変化に基づいてマスク
位置合わせを行なうに当っては、回折格子3,4間の間
隔Zを適切に設定して最大コントラストの特性が得られ
るようにするのは勿論であるが、第2図(a)に示した
特性曲線において所要のマスク位置が得られるのは、通
例、特性曲線の極大点もしくは極小点の近傍であり、相
対変位の変化に対する信号強度の変化、すなわち、微係
数が小さく、マスク位置合わせの精度乃至感度が低下す
る。これに対し、第2図(a)に示した特性曲線におい
て微係数が最大となる相対変位の点でマスク位置合ねせ
を行ない得るようにしてマスク基板上およびウェハ基板
上にそれぞれ設ける回折格子のパターンの例を第3図に
模式的に示す。
Next, when performing mask alignment based on the change in elastic vibration detection signal intensity corresponding to moiré fringes due to the relative displacement between the diffraction gratings 3 and 4, the interval Z between the diffraction gratings 3 and 4 must be adjusted appropriately. Of course, the settings should be made to obtain the maximum contrast characteristic, but in the characteristic curve shown in Figure 2 (a), the required mask position is usually obtained at the maximum point or This is near the minimum point, and the change in signal intensity with respect to change in relative displacement, that is, the differential coefficient, is small, and the accuracy or sensitivity of mask alignment is reduced. In contrast, diffraction gratings are provided on the mask substrate and the wafer substrate, respectively, so that mask alignment can be performed at the relative displacement point where the differential coefficient is maximum in the characteristic curve shown in FIG. 2(a). An example of the pattern is schematically shown in FIG.

図示の回折格子パターンにおいては、格子パターン12
aと12bとを一方の基板上に例えば左右に分けて設け
るとともに、格子パターン13aと13bとを他方の基
板上に同じく左右に分けて設け、しかも、格子パターン
12aと13aとを位相差0°で互いに対向させるとと
もに、格子パターン12bと13bとを位相差180°
で互い違いに対向させる。
In the illustrated diffraction grating pattern, the grating pattern 12
a and 12b are provided on one substrate, for example, separately on the left and right, and grating patterns 13a and 13b are similarly provided on the other substrate on the left and right, and the grating patterns 12a and 13a have a phase difference of 0°. The grating patterns 12b and 13b are made to face each other with a phase difference of 180°.
Alternately face each other.

かかる構成の回折格子12a、 12bおよび13a、
13bを第1図(a)に示した基本的構成におけるマス
ク用回折格子3およびウェハ用回折格子4とし、例えば
レーザ光源1からの平行光ビームを左右に切換えて、回
折格子3.4の左右両半部について第2図(a)、 (
b)につき前述したと同様の測定結果を時分割により同
時に求めると、その測定結果は、例えば第4図に示すよ
う・になる。すなわち、図示の測定結果において、実線
で示す特性曲線14は格子パターン12aと13aとの
間に生じたモアレ縞に対応したものであり、破線で示す
特性曲線15は格子パターン12bと13bとの間に生
ずるモアレ縞に対応したものであり、ともに回折格子の
ピッチに等しい周期の相対変位の変化に対して弾性振動
検出出力信号強度が変化しているが、互いに、相対変位
の半周期すなわち180°位相差を呈している。かかる
二様の特性曲線の交点が所望のマスク位置合わせ点とな
るようにしてマスク基板上およびウェハ基板上の回折格
子設定位置を決めれば、双方の特性曲線における最大微
係数の点を位置合わせに使用し得るので、従来に比して
格段に高感度、高精度のマスク位置合わせを達成するこ
とができる。
Diffraction gratings 12a, 12b and 13a having such configurations,
13b is the mask diffraction grating 3 and the wafer diffraction grating 4 in the basic configuration shown in FIG. Figure 2(a), (
If the same measurement results as described above for b) are obtained simultaneously by time division, the measurement results will be as shown in FIG. 4, for example. That is, in the measurement results shown, a characteristic curve 14 indicated by a solid line corresponds to moiré fringes occurring between grating patterns 12a and 13a, and a characteristic curve 15 indicated by a broken line corresponds to the moiré fringes generated between grating patterns 12b and 13b. In both cases, the elastic vibration detection output signal strength changes in response to a change in relative displacement with a period equal to the pitch of the diffraction grating, but in both cases, the strength of the elastic vibration detection output signal changes with respect to a change in relative displacement with a period equal to the pitch of the diffraction grating. It exhibits a phase difference. If the diffraction grating positions on the mask substrate and the wafer substrate are determined so that the intersection of these two characteristic curves becomes the desired mask alignment point, the point of the maximum differential coefficient on both characteristic curves can be aligned. Therefore, it is possible to achieve mask positioning with much higher sensitivity and precision than in the past.

また、ウェハに発生した弾性波振動の検出には、前述し
たように、第1図示の構成における検出方法C)に従っ
たプローブ・レーザ光ビームの使用のみならず、前述し
た各種の検出方法a)〜d)のうち、いずれか、被検体
の状態に最適のものを選んで同様の作用効果を得ること
ができ、それぞれの方法に従った弾性波検出手段の構成
は、以下の各図にそれぞれ模式的に示すようにするのが
好適である。
In addition, as described above, the detection of the elastic wave vibration generated in the wafer is performed not only by using the probe laser beam according to the detection method C) in the configuration shown in the first figure, but also by using the various detection methods a. ) to d), the most suitable one for the condition of the subject can be selected to obtain similar effects, and the configuration of the elastic wave detection means according to each method is shown in the figures below. It is preferable that each is shown schematically.

第5図には、前述の検出方法a)に従い、マイクロホン
を用いた弾性波振動検出手段の概略構成を示す。すなわ
ち、反射型の第1回折格子4を表面に刻んだウェハ4a
の裏面に近接し、あるいは、密接してマイクロホン16
を配置し、光・熱弾性効果によりウェハ4aに発生した
弾性振動に周囲気体が応動した音波をそのマイクロホン
16により検出して電気信号に変換する。
FIG. 5 shows a schematic configuration of an elastic wave vibration detection means using a microphone according to the detection method a) described above. That is, a wafer 4a with a reflective first diffraction grating 4 carved on its surface.
Microphone 16 is placed close to or in close contact with the back surface of
is arranged, and the microphone 16 detects the sound waves produced by the surrounding gas in response to the elastic vibrations generated in the wafer 4a due to photo-thermoelastic effects and converts them into electrical signals.

また、第6図には、前述の検出方法b)に従い、圧電素
子を用いた弾性波振動検出手段の概略構成を示す。すな
わち、反射型の第1回折格子4を表面に刻んだウェハ4
aの裏面に圧電素子17を密着させて配置し、光・熱弾
性効果によりウェハ4aに発生した弾性振動自体を直接
に電気信号に変換する。
Further, FIG. 6 shows a schematic configuration of an elastic wave vibration detection means using a piezoelectric element according to the above-mentioned detection method b). That is, a wafer 4 with a reflective first diffraction grating 4 carved on its surface.
A piezoelectric element 17 is placed in close contact with the back surface of the wafer 4a, and the elastic vibration itself generated in the wafer 4a due to photo-thermoelastic effects is directly converted into an electric signal.

なお、弾性波振動は、ウェハ4a自体のみならず、その
支持体にも伝搬するので、圧電素子17は、ウェハ4a
自体のみならず、その支持体に密着させても同様の作用
効果が得られる。
Note that since the elastic wave vibration propagates not only to the wafer 4a itself but also to its support, the piezoelectric element 17
Similar effects can be obtained not only by itself but also by bringing it into close contact with its support.

さらに、第7図には、前述の検出方法d)に従い、レー
ザ干渉計の作用効果を適用した弾性波振動検出手段の概
略構成を模式的に示す。すなわち、弾性波振動検出に適
用するレーザ干渉計としては、レーザ光源5からハーフ
ミラ−22を介して導いたレーザ光ビームを一旦分離し
た後にそれぞれの反射光を合成するよ伊に配設した回折
格子18を2光束レーザ干渉計の形態で使用しており、
回折格子18により互いに波面分離した2光束を、レン
ズ9により、第1回折格子4を表面に設けたウェハ4a
の裏面上の反射点と、基準とする固定の参照点20とに
それぞれ集光し、それぞれ同一光路を逆行するそれぞれ
の反射光束を回折格子18により互いに重ね合わせ、ハ
ーフミラ−22を介して光強度検出器21に導き、分離
合成した2光束の光路長差をレーザ光の波長に対して1
/4波長に設定したときに最大となる2光束の干渉成分
の強度を検出することにより、弾性波振動を高感度で検
出することができる。
Furthermore, FIG. 7 schematically shows a schematic configuration of an elastic wave vibration detection means to which the effects of a laser interferometer are applied in accordance with the above-mentioned detection method d). In other words, a laser interferometer applied to detecting elastic wave vibrations uses a diffraction grating arranged in such a way that the laser beam guided from the laser light source 5 via the half mirror 22 is separated and then the respective reflected beams are combined. 18 is used in the form of a two-beam laser interferometer,
A wafer 4a on which a first diffraction grating 4 is provided on the surface of the two light beams whose wave fronts have been separated by a diffraction grating 18 is transmitted through a lens 9.
The reflected light beams are focused on a reflection point on the back surface of the camera and a fixed reference point 20 as a standard, and the reflected light beams traveling backwards along the same optical path are superimposed on each other by a diffraction grating 18, and the light intensity is determined through a half mirror 22. The optical path length difference between the two separated and combined beams is set to 1 with respect to the wavelength of the laser beam.
By detecting the intensity of the interference component of the two light beams, which becomes maximum when the wavelength is set to /4, elastic wave vibration can be detected with high sensitivity.

(発明の効果) 以上の説明から明らかなように、本発明によれば、光学
マスクの半導体ウェハに対する位置合わせに際して、マ
スクとウェハとにそれぞれ設けて互いに対向させる回折
格子の相対変位に伴って生ずるモアレ縞の光・熱弾性効
果に基づいてウェハに発生する弾性波振動を効率よく的
確に検出することにより、従来に比し格段に高い精度を
もって光学マスクの位置合わせを達成し、次世代の超高
密度集積回路の製作に十分に対処することができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, when aligning an optical mask with respect to a semiconductor wafer, there is By efficiently and accurately detecting the elastic wave vibrations generated on the wafer based on the photo-thermoelastic effects of moiré fringes, we have achieved positioning of optical masks with much higher precision than before, making it possible to achieve next-generation super The fabrication of high-density integrated circuits can be adequately addressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)は本発明方法によるマスク位
置合わせ装置の基本的構成および実験用構成をそれぞれ
示すブロック線図、 第2図(a)および(b)は光・熱弾性効果にょるモア
レ信号の測定値および実験結果をそれぞれ示す特性曲線
図、 第3図はマスクとウェハとの回折格子パターンの例を示
す線図、 第4図はNilの回折格子によるモアレ信号波形の例を
示す特性曲線図、 第5図は弾性波振動検出手段の例を示すブロック線図、 第6図は弾性波振動検出手段の他の例を示すブロック線
図、 第7図は弾性波振動検出手段のさらに他の例を示すブロ
ック線図である。 1・・・レーザ光源    2・・・チョッパ3・・・
第2回折格子   3a・・・光学マスク基板4・・・
第1回折格子   4a・・・ウェハ基板5・・・補助
レーザ光源 6・・・ビームスポット位置検出器 7・・・口・ンクイン・アンフ。 8・・・発振器      9・・・アンプ10・・・
マイクロコンピュータ II・・・位置制御器 12a、12b、13a、13b ・−・回折格子パタ
ーン14、15・・・モアレ信号  16・・・マイク
ロホン17・・・圧電素子 1B・・・ビーム分離合成回折格子
FIGS. 1(a) and (b) are block diagrams showing the basic configuration and experimental configuration of a mask alignment apparatus according to the method of the present invention, respectively. FIGS. 2(a) and (b) are photo-thermoelastic effects. Figure 3 is a diagram showing an example of a diffraction grating pattern between a mask and a wafer. Figure 4 is an example of a moire signal waveform using a Nil diffraction grating. FIG. 5 is a block diagram showing an example of an elastic wave vibration detection means, FIG. 6 is a block diagram showing another example of an elastic wave vibration detection means, and FIG. 7 is an elastic wave vibration detection means. FIG. 7 is a block diagram showing still another example of means. 1... Laser light source 2... Chopper 3...
Second diffraction grating 3a... Optical mask substrate 4...
First diffraction grating 4a... Wafer substrate 5... Auxiliary laser light source 6... Beam spot position detector 7... Mouth/ink/amplifier. 8... Oscillator 9... Amplifier 10...
Microcomputer II...Position controllers 12a, 12b, 13a, 13b...Diffraction grating patterns 14, 15...Moiré signal 16...Microphone 17...Piezoelectric element 1B...Beam separation and synthesis diffraction grating

Claims (1)

【特許請求の範囲】 1、音響周波数乃至超音波周波数で強度変調したレーザ
光ビームにより光学マスク上の第2の回折格子を照射し
て可弾性振動材料のウエハ上に投影し、前記第2の回折
格子の投影像が前記ウェハ上に刻んだ第1の回折格子と
同一方向で同一のピッチとなるようにして結像させる過
程と、 前記強度変調したレーザ光ビームの前記第2の回折格子
を介した照射の光・熱弾性効果により前記ウェハに生じ
た弾性振動を検出して電気信号に変換する過程と、 前記電気信号を前記音響周波数乃至超音波周波数の基準
位相に関して同期検波する過程と、 前記第2の回折格子の投影像と前記第1の回折格子との
位置ずれによって生ずるモアレ像の強度変化に比例する
前記同期検波の出力強度の変化に基づいて前記ウェハに
対する前記光学マスクの前記同一方向における相対位置
を設定する過程と、 を設けたことを特徴とする光・熱弾性効果を用いたモア
レ式マスク位置合わせ方法。 2、前記第1の回折格子と前記第2の回折格子とがとも
に第1の部分および第2の部分からなり、前記第2の回
折格子における前記第1および前記第2の部分の前記投
影像と前記第1の回折格子における前記第1および前記
第2の部分とのそれぞれの相対位置が互いに逆位相とな
るようにするとともに、 前記強度変調したレーザ光ビームの前記第2の回折格子
における前記第1および前記第2の部分をそれぞれ介し
た照射の光・熱弾性効果により前記ウェハにそれぞれ生
じた弾性振動を互いに独立に検出してそれぞれ変換した
電気信号にそれぞれ対応する前記同期検波の出力強度が
互いに等しくなるように前記ウエハに対する前記光学マ
スクの前記同一方向における相対位置を設定することを
特徴とする特許請求の範囲第1項記載の光・熱弾性効果
を用いたモアレ式マスク位置合わせ方法。 3、前記ウェハに生じた弾性振動をマイクロホンもしく
は圧電素子により検出して電気信号に変換することを特
徴とする特許請求の範囲第1項または第2項記載の光・
熱弾性効果を用いたモアレ式マスク位置合わせ方法。 4、前記ウェハに生じた弾性振動を、前記ウェハにおけ
る前記第2の回折格子の投影像の近傍に投射した他のレ
ーザ光ビームの散乱反射光における前記音響周波数乃至
超音波周波数の成分の検出により検出することを特徴と
する特許請求の範囲第1項または第2項記載の光・熱弾
性効果を用いたモアレ式マスク位置合わせ方法。 5、前記ウェハに生じた弾性振動を、前記ウェハにおけ
る前記第2の回折格子の投影像の近傍および他の固定点
からのそれぞれの反射光の相互間における干渉成分の検
出により検出することを特徴とする特許請求の範囲第1
項または第2項記載の光・熱弾性効果を用いたモアレ式
マスク位置合わせ方法。 6、前記光学マスク上の前記第2の回折格子を平行光の
プロキシミティ投射により前記ウェハ上の前記第1の回
折格子に重ねて投影することを特徴とする特許請求の範
囲第1項または第2項記載の光・熱弾性効果を用いたモ
アレ式マスク位置合わせ方法。 7、前記光学マスク上の前記第2の回折格子を縮小投影
により前記ウェハ上の前記第1の回折格子に重ねて投影
することを特徴とする特許請求の範囲第1項または第2
項記載の光・熱弾性効果を用いたモアレ式マスク位置合
わせ方法。
[Claims] 1. A second diffraction grating on an optical mask is irradiated with a laser beam whose intensity is modulated at an acoustic frequency or an ultrasonic frequency, and the second diffraction grating is projected onto a wafer of elastic vibration material; forming a projected image of the diffraction grating in the same direction and with the same pitch as the first diffraction grating carved on the wafer; a step of detecting elastic vibrations generated in the wafer due to the photo-thermoelastic effect of irradiation through the wafer and converting it into an electric signal; a step of synchronously detecting the electric signal with respect to a reference phase of the acoustic frequency or ultrasonic frequency; The same optical mask is applied to the wafer based on a change in the output intensity of the synchronous detection that is proportional to a change in the intensity of a moiré image caused by a positional shift between the projected image of the second diffraction grating and the first diffraction grating. A moiré mask positioning method using a photo-thermoelastic effect, characterized by a process of setting a relative position in a direction, and a step of setting a relative position in a direction. 2. The first diffraction grating and the second diffraction grating each include a first portion and a second portion, and the projected image of the first and second portions on the second diffraction grating; and the first and second portions in the first diffraction grating so that their respective relative positions are in opposite phases to each other, and the intensity-modulated laser beam in the second diffraction grating is Output intensities of the synchronous detection corresponding to electrical signals obtained by independently detecting and converting elastic vibrations generated in the wafer due to photo-thermoelastic effects of irradiation through the first and second parts, respectively. The moire type mask positioning method using photo-thermoelastic effects according to claim 1, characterized in that the relative positions of the optical mask with respect to the wafer in the same direction are set so that the wafers are equal to each other. . 3. The optical system according to claim 1 or 2, wherein the elastic vibration generated in the wafer is detected by a microphone or a piezoelectric element and converted into an electrical signal.
Moiré mask alignment method using thermoelastic effect. 4. The elastic vibrations generated in the wafer are detected by detecting the acoustic frequency to ultrasonic frequency components in the scattered reflected light of another laser beam projected in the vicinity of the projected image of the second diffraction grating on the wafer. A moire type mask positioning method using photo-thermoelastic effects according to claim 1 or 2, characterized in that: 5. The elastic vibration generated in the wafer is detected by detecting interference components between respective reflected lights near the projected image of the second diffraction grating on the wafer and from other fixed points. Claim 1:
A moiré mask positioning method using photo-thermoelastic effects according to item 1 or 2. 6. The second diffraction grating on the optical mask is projected onto the first diffraction grating on the wafer by proximity projection of parallel light. A moiré mask positioning method using photo-thermoelastic effects as described in item 2. 7. The second diffraction grating on the optical mask is projected to overlap the first diffraction grating on the wafer by reduction projection.
Moiré mask positioning method using photo-thermoelastic effects as described in Section 1.
JP1068723A 1989-03-20 1989-03-20 Moire type mask alignment method using photo-thermoelastic effect Expired - Lifetime JPH0629693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068723A JPH0629693B2 (en) 1989-03-20 1989-03-20 Moire type mask alignment method using photo-thermoelastic effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068723A JPH0629693B2 (en) 1989-03-20 1989-03-20 Moire type mask alignment method using photo-thermoelastic effect

Publications (2)

Publication Number Publication Date
JPH02247503A true JPH02247503A (en) 1990-10-03
JPH0629693B2 JPH0629693B2 (en) 1994-04-20

Family

ID=13382003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068723A Expired - Lifetime JPH0629693B2 (en) 1989-03-20 1989-03-20 Moire type mask alignment method using photo-thermoelastic effect

Country Status (1)

Country Link
JP (1) JPH0629693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766298A2 (en) * 1995-09-27 1997-04-02 Shin-Etsu Handotai Co., Ltd. Method of and apparatus for determining residual damage to wafer edges

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766298A2 (en) * 1995-09-27 1997-04-02 Shin-Etsu Handotai Co., Ltd. Method of and apparatus for determining residual damage to wafer edges
EP0766298A3 (en) * 1995-09-27 1998-09-16 Shin-Etsu Handotai Co., Ltd. Method of and apparatus for determining residual damage to wafer edges

Also Published As

Publication number Publication date
JPH0629693B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
TWI657240B (en) Illumination source for an inspection apparatus, inspection apparatus and inspection method
JP3364382B2 (en) Sample surface position measuring device and measuring method
JPH0151801B2 (en)
JP2009094512A (en) Method and device for alignment, lithography device, measuring device and manufacturing method of device
JP4469604B2 (en) Optical interferometry
US5504596A (en) Exposure method and apparatus using holographic techniques
US4626103A (en) Focus tracking system
JP7326292B2 (en) Apparatus and method for determining the position of a target structure on a substrate
JPS61215905A (en) Position detecting device
KR100892017B1 (en) Injection-locked pulsed laser, interferometer, exposure apparatus, and device manufacturing method
JPH02247503A (en) Moire type mask aligning method using photothermoelastic effect
EP1644699B1 (en) Methods and apparatus for reducing error in interferometric imaging measurements
JP4469609B2 (en) Multipath interferometer
US20200241433A1 (en) Alignment Measurement System
JPH02272305A (en) Aligning device for exposing device
JPS632324B2 (en)
JPH07283110A (en) Scanning aligner
JP3095036B2 (en) Method and apparatus for measuring displacement using diffraction grating
JPH0323883B2 (en)
JPH0295203A (en) Aligning device
JPH10270347A (en) Method and device for detecting alignment offset
JP2002244072A (en) Laser beam machine
JPH09223657A (en) Image formation characteristic measuring device and aligner provided therewith
JP2689264B2 (en) Method and device for adjusting direction of laser light in diffraction grating fringe exposure apparatus
JPH054603B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term