JPH02247362A - Composite reinforced alloy and metallic fiber - Google Patents

Composite reinforced alloy and metallic fiber

Info

Publication number
JPH02247362A
JPH02247362A JP6896989A JP6896989A JPH02247362A JP H02247362 A JPH02247362 A JP H02247362A JP 6896989 A JP6896989 A JP 6896989A JP 6896989 A JP6896989 A JP 6896989A JP H02247362 A JPH02247362 A JP H02247362A
Authority
JP
Japan
Prior art keywords
metal
alloy
composite
brittlement
intergranular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6896989A
Other languages
Japanese (ja)
Inventor
Takao Takeuchi
孝夫 竹内
Kazumasa Togano
一正 戸叶
Tadashi Inoue
井上 廉
Hiroshi Maeda
弘 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP6896989A priority Critical patent/JPH02247362A/en
Publication of JPH02247362A publication Critical patent/JPH02247362A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the composite reinforced alloy compounded with fine metallic fibers of intergranular brittlement metal by melting and casting intergranular brittlement metal and mother phase metal having high ductility to crystallize out and subjecting the obtd. two-phase alloy to plastic working. CONSTITUTION:Intergranular brittlement metal and mother phase metal having high ductility are melted and cast to crystallize out single crystal intergranular brittlement metal into the mother phase. As the above intergranular brittlement metal, Cr, Mo, W or W admixed with Re, etc., are used. Furthermore, as the mother phase metal, Cu, Ag, Au, etc., are suitably used. Moreover, in the case of using Mo or W, it is melted preferably in the atmosphere of inert gas under >=1 atomic pressure. The two-phase alloy obtd. by the above crystallization by melting is subjected to hot or warm plastic working. In this way, the intergranular brittlement metallic phase is worked into about <=10mum fiber diameter to obtain the composite reinforced alloy compounded with fine metallic fibers. Furthermore, the mother phase metal of the composite alloy is etched away, by which the metallic fibers constituted of the intergranular brittlement metal such as Cr, Mo, W and Re-contg. W can be obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明は、Vla金属(Cr、Mo、W)等の粒界が脆
くて加工が難しい金属と延性に富む母相金属との2和合
金を塑性加工し、粒界脆性金属の微細繊維で複合強化し
てなる合金と、これより取り出すことが可能な粒界脆性
金属微細繊維に関するものである。さらに詳しくは、こ
の発明は、単結晶的な粒界脆性金属相を延性に富む母相
金属中に溶解鋳造晶出により均一に分散した2相合金を
冷間、温間、もしくは熱間加工することにより、粒界脆
性金属相を繊維径10μm以下に加工して強化した複合
合金と、この複合強化合金より母相合金を選択的にエツ
チング等により溶かして形成した粒界脆性金属の微細繊
維に関するものである。
Detailed Description of the Invention (Technical Field) The present invention deals with plastic processing of a binary alloy of a metal with brittle grain boundaries and difficult to process, such as Vla metal (Cr, Mo, W), and a matrix metal with high ductility. The present invention also relates to an alloy compositely reinforced with grain-boundary brittle metal fine fibers and grain-boundary brittle metal fine fibers that can be extracted from the alloy. More specifically, the present invention involves cold, warm, or hot working a two-phase alloy in which a single-crystal grain-boundary brittle metal phase is uniformly dispersed in a ductile parent metal by melting, casting, and crystallization. Accordingly, the present invention relates to a composite alloy strengthened by processing a grain boundary brittle metal phase to a fiber diameter of 10 μm or less, and a fine fiber of a grain boundary brittle metal formed by selectively melting a matrix alloy from this composite reinforced alloy by etching or the like. It is something.

(従来の技術とその課題) Cr、Mo、WのVia金属やその他の高融点金属、も
しくはその合金は化学的に安定で、高温耐食性に優れ、
しかも高強度なものとして注目されているが、これら金
属の多くのものは、結晶粒界が脆いという欠点があるた
め、その特徴を生かした材料として充分に使いきれてい
ないのが実状である。
(Prior art and its problems) Via metals such as Cr, Mo, and W and other high-melting point metals or their alloys are chemically stable and have excellent high-temperature corrosion resistance.
Moreover, although they are attracting attention for their high strength, many of these metals have the disadvantage of brittle grain boundaries, so in reality they cannot be used to the fullest as materials that take advantage of this feature.

このような粒界が脆い金属に関しては、多結晶とせずに
単結晶材料として使用することや、繊維状金属として他
の金属と複合化することなどが考えられてきている。
Regarding such metals with brittle grain boundaries, it has been considered to use them as single crystal materials instead of polycrystalline materials, or to combine them with other metals as fibrous metals.

しかしながら、単結晶材料についてはその製造と使用に
多くの制約があり、コスト的にも高いものとなる。また
現実的な展開が期待される複合材料についても、これら
の粒界脆性金属を繊維として製造する場合、通常は多結
晶インゴットを出発素材とする限り、粒界への微量不純
物元素の偏析のために加工途中で粒界で割れ易く、その
ため特に冷間で加工することは極めて困難である。一方
、Via金属のMo、Wでは、熱間、温間加工を行えば
、結晶粒界組織を壊することができ、線径が0、1cm
程度まで伸線が可能である。しかし、熱間、温間加工を
行う必要があるため製造コストが増加し、しかも熱間、
温間加工によって60,1簡より細い径の411雌を得
るのは極めて難しい、さらに、Crに関しては熱間、温
間加工することも難しく、細線を得るのが極めて困難で
ある。また、Cr。
However, single-crystal materials have many restrictions on their manufacture and use, and are also expensive. In addition, regarding composite materials that are expected to be used in practical applications, when these grain-boundary brittle metals are produced as fibers, as long as polycrystalline ingots are normally used as the starting material, there is a risk of segregation of trace impurity elements at the grain boundaries. It is easy to crack at grain boundaries during processing, and therefore it is extremely difficult to process, especially in cold processing. On the other hand, in Via metals such as Mo and W, the grain boundary structure can be broken by hot and warm processing, and the wire diameter can be reduced to 0.1 cm.
Wire drawing is possible to a certain extent. However, the manufacturing cost increases due to the need to perform hot and warm processing.
It is extremely difficult to obtain a 411 female wire with a diameter smaller than 60.1 by warm working.Furthermore, it is also difficult to perform hot working with Cr, making it extremely difficult to obtain a fine wire. Also, Cr.

Mo、Wに対し水素雰囲気中で帯溶融精製などにより高
純度化を行うとその加工性が幾らか改善されることが知
られているが、中間焼鈍なしに冷間加工でインゴットか
ら細線を直接得るのは極めて困難である。
It is known that the processability of Mo and W can be improved to some extent by purifying Mo and W by band-melting refining in a hydrogen atmosphere. It is extremely difficult to obtain.

他方、粒界脆性金属の細線を利用した複合強化材料に関
しては、線径が0.1−0.5 ayaのMoあるいは
W細線を真空中において鋳くるんで溶融銅と複合化する
技術がすでに知られているが、複合前にMo、W細線を
熱間加工して予め用意する必要があり、また、銅とMo
、W411線との界面における空隙を小さくするため高
圧凝固鋳造法等を採用する必要がある。しかも、複合化
の際に1100℃以上の高温になることからMo、W4
1線の再結晶化ならびに脆化は避けられず、このように
して得られた複合体そのものをさらに冷間加工すること
も困難である。それゆえ、長尺の複合合金細線や薄板を
得るのは龍しい、Crに関しては熱間加工によってもそ
れ自身の繊維を得るのが難しく、溶融銅で鋳くるんだ複
合合金は現在も存在していない。
On the other hand, regarding composite reinforcing materials using thin wires of grain-boundary brittle metal, there is already a known technology in which Mo or W thin wires with a wire diameter of 0.1-0.5 aya are cast in a vacuum and composited with molten copper. However, it is necessary to prepare the Mo and W fine wires by hot processing before combining them, and it is also necessary to prepare the Mo and W thin wires in advance.
In order to reduce the voids at the interface with the W411 wire, it is necessary to employ a high-pressure solidification casting method or the like. Moreover, since the temperature reaches 1100℃ or more during compounding, Mo, W4
One-line recrystallization and embrittlement are unavoidable, and it is also difficult to further cold-work the composite body obtained in this way. Therefore, it is difficult to obtain long composite alloy thin wires or thin plates.As for Cr, it is difficult to obtain its own fibers even through hot working, and composite alloys cast with molten copper do not even exist today. do not have.

なお、Cu−Cr複合合金に関しては、共晶組成で一方
向凝固してCrウィスカーが分散した接金銅合金が得ら
れることが報告されている。しかし、共晶組成が小さく
、Crウィスカーの体積率が僅か約1.6%のため、機
械的強度は母相の銅の強度とほとんど同じである。また
、一方向凝固を利用して長尺の細線や薄板を得るのは極
めて困難である。
Regarding the Cu-Cr composite alloy, it has been reported that a welded copper alloy with eutectic composition and unidirectional solidification in which Cr whiskers are dispersed can be obtained. However, since the eutectic composition is small and the volume fraction of Cr whiskers is only about 1.6%, the mechanical strength is almost the same as that of the copper matrix. Furthermore, it is extremely difficult to obtain long thin wires or thin plates using unidirectional solidification.

2相合金を冷間加工して第2相の繊維を分散した複合合
金としては、Cu−V、Cu−Nb。
Examples of composite alloys in which second phase fibers are dispersed by cold working a two-phase alloy include Cu-V and Cu-Nb.

Cu−Fe、Cu−(Fe、Cr)、Cu  Ag+A
g  Feが知られているが、いずれもその第2相がも
ともと良好な加工性を有しているものであり、Vla金
属のような、潜在的に優れた機械的強度を有するが、粒
界が脆い金属で繊維強化された複合合金を、2相合金を
冷間加工することにより作製した報告はない。
Cu-Fe, Cu-(Fe, Cr), Cu Ag+A
G-Fe is known, but all of them have good processability in their second phase, and like Vla metal, they have potentially excellent mechanical strength, but grain boundary There has been no report on fabricating a composite alloy fiber-reinforced with a brittle metal by cold working a two-phase alloy.

このように、Vla金属等の粒界脆性金属については、
その特性と、繊維複合化の加工法の発展が期待されなが
らも、依然として解決しなければならない多くの課題を
かかえている。
In this way, for grain boundary brittle metals such as Vla metal,
Although there are high expectations for the development of its properties and processing methods for fiber composites, there are still many issues that need to be resolved.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来は実現できなかった粒界脆性金属の微細繊維
と、これにより複合強化した合金を提供することを目的
としている。
The present invention has been made in view of the above circumstances, and aims to provide fine fibers of grain boundary brittle metal, which could not be achieved conventionally, and an alloy compositely strengthened by the fine fibers.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、Vla
金属(Cr、Mo、W)等の粒界脆性金属と延性に富む
母相金属との溶解鋳造晶出により形成した2相合金を塑
性加工して粒界脆性金属のat細繊維を複合化してなる
複合強化合金とその製造方法、および、その合金母相金
属から粒界脆性金属のFRMA繊維を取出してなる粒界
脆性金属の繊維とその製造方法をも提供する。
(Means for Solving the Problems) This invention solves the above problems by
A two-phase alloy formed by melting, casting, and crystallization of a grain-boundary brittle metal such as metal (Cr, Mo, W) and a ductile matrix metal is plastically worked to composite the at-fine fibers of the grain-boundary brittle metal. The present invention also provides a composite reinforced alloy and a method for manufacturing the same, as well as fibers of a grain-boundary brittle metal obtained by extracting FRMA fibers of a grain-boundary brittle metal from a matrix metal of the alloy, and a method for manufacturing the same.

粒界脆性金属としては、たとえば、Cr、Mo。Examples of grain boundary brittle metals include Cr and Mo.

Wが単独で用いられてもよいし、あるいは、これらの成
分が2種以上含まれたCr−Mo、Cr−W、 M o
−W、 Cr−M o−W等の合金であってもよい、こ
れに対応する母相金属にも特別の限定はないが、延性の
大きなきなCu、Agおよび/またはAuが好適なもの
として例示される。
W may be used alone, or Cr-Mo, Cr-W, Mo containing two or more of these components
It may be an alloy such as -W, Cr-Mo-W, etc. There is no particular limitation on the corresponding matrix metal, but Cu, Ag and/or Au, which have high ductility, are preferred. Illustrated as.

Cu、Agに添加されるCr、Mo、Wあるいはそれら
の合金は、優れた複合合金の機械強度を得るためにla
t%以上、また、良好な冷間加工生を保持する上から5
08t%以下の範囲とし、Auに添加されるMo、Wあ
るいはそれらの合金も同様の理由でfat%以上、50
at%以下の範囲に、さらに、Auに添加されるCr、
Cr−Mo。
Cr, Mo, W or their alloys added to Cu, Ag are la
t% or more, and also maintains good cold workability.
For the same reason, Mo, W, or their alloys added to Au should be in the range of 0.8 t% or less, and the content should be 50 t% or less for the same reason.
Cr added to Au in a range of at% or less,
Cr-Mo.

Cr−Wの量は、Crを第2相として晶出させるために
20at%以上、また、良好な冷間加工生を保持する上
から50at%以下の範囲とするのが好ましい。
The amount of Cr-W is preferably in the range of 20 at % or more in order to crystallize Cr as a second phase, and 50 at % or less in order to maintain good cold workability.

忍解鋳造晶出においては、粒界脆性金属が融点の高いM
o、Wの場合には、母相金属の沸点を上昇させるために
1気圧以上の不活性ガス雰囲気中で溶解を行ってもよい
In Shinkai casting crystallization, the grain boundary brittle metal has a high melting point.
In the case of O and W, dissolution may be performed in an inert gas atmosphere of 1 atm or more in order to raise the boiling point of the parent phase metal.

さらにまた、Cr、Mo、Wには繊維の冷間加工性を改
善するためにlat%以上のReを添加してもよい、た
だし、Cr−Re、Mo−Re。
Furthermore, lat% or more of Re may be added to Cr, Mo, and W in order to improve the cold workability of the fibers, however, Cr-Re and Mo-Re.

W −Reの金属間化合物を生成させないためには緋加
するRe量は37at%以下とするのが好ましい、なお
、Mo−Reは超電導特性の優れた合金線材であり、M
o−Re微細繊維が分散した複合合金線は超電導線材と
しても使用できる。
In order to prevent the formation of intermetallic compounds of W-Re, the amount of Re added is preferably 37 at% or less.Moreover, Mo-Re is an alloy wire with excellent superconducting properties, and M
A composite alloy wire in which o-Re fine fibers are dispersed can also be used as a superconducting wire.

次に実施例を示してさらに詳しくこの発明について説明
する。もちろん、この発明は以下の実施例によって限定
されるものではない。
Next, the present invention will be explained in more detail by showing examples. Of course, the invention is not limited to the following examples.

実施例1〜3 高純度Cr (99,99mass%)と電解不純Cr
(99,2+1aSS%)の2種類のCrを原材料とし
てCu−10at%Cr、Cu−20at%Cr合金を
各々0.5気圧Ar雰囲気中で非消耗電極型アーク溶解
法により溶解した。添付した図面の第1図(a>に示し
たように、Cu−20at%Cr合金においては結晶方
位が揃った単結晶的なCrのデンドライトが融液から成
長し、−mに、Cuマトリックス中に分散する。ついで
、これを溝ロールと線引きにより断面減少率(線径0.
6am)で99,8%まで冷間伸線すると、原料Crの
組成及び純度に依らず、第1図(b)に示したようにC
rデンドライトが加工変形し、厚さ0.2μm、幅4μ
m以下のリボン状繊維となる。
Examples 1 to 3 High purity Cr (99,99mass%) and electrolytic impurity Cr
Using two types of Cr (99,2+1aSS%) as raw materials, Cu-10at%Cr and Cu-20at%Cr alloys were each melted by a non-consumable electrode type arc melting method in an Ar atmosphere of 0.5 atm. As shown in Figure 1 (a) of the attached drawings, in the Cu-20at%Cr alloy, single-crystalline Cr dendrites with uniform crystal orientation grow from the melt, and -m, in the Cu matrix. Then, this is drawn with a groove roll to reduce the area reduction rate (wire diameter 0.
6 am) to 99.8%, regardless of the composition and purity of the raw Cr, as shown in Figure 1(b),
r dendrite is processed and deformed to a thickness of 0.2 μm and a width of 4 μm.
It becomes a ribbon-like fiber of less than m.

また、表1にはCu−Cr複合線の引張り降伏強度と電
気抵抗値を示した。Cu線に比べて引っ張り強度が大幅
に上昇している。
Further, Table 1 shows the tensile yield strength and electrical resistance value of the Cu-Cr composite wire. The tensile strength is significantly higher than that of Cu wire.

なお、得られた複合強化合金中に分散されたCrの繊維
は、母相金属のCuを第2塩化鉄でエツチングすること
により容易に抽出できた。
Note that the Cr fibers dispersed in the obtained composite reinforced alloy could be easily extracted by etching the parent metal Cu with ferric chloride.

実施例4 Cu−flat%MO合金を溶解することを試みた。C
uの沸点(2566℃、1気圧)がMoの融点(261
7℃、1気圧)より低いため、Cu −M o合金液相
を得るのは通常の減圧下での非消耗電極型アーク溶解法
ではできなかった0次にCuの沸点を上昇させるために
10気圧のAr雰囲中で同じく非消耗電極型アーク溶解
法により溶解を試みたが、水冷銅ハースへの熱の逃げが
著しく、試料を一様に溶解できなかった。そこで高圧下
でさらに高温溶解が可能な方法として10気圧のAr雰
囲気中で消耗電極型アーク溶解法により溶解を行い、第
2図(a)に示したように、球状Moが鋼中に一様に分
散した組織が得られた。これを実施例1と同じように冷
間加工すると第2図(b)に示したようにMoの繊維が
得られた。
Example 4 An attempt was made to melt a Cu-flat% MO alloy. C
The boiling point of u (2566°C, 1 atm) is the melting point of Mo (261
7°C, 1 atm), the Cu-Mo alloy liquid phase could not be obtained using the normal non-consumable electrode type arc melting method under reduced pressure. Melting was attempted using the same non-consumable electrode type arc melting method in an Ar atmosphere at atmospheric pressure, but the loss of heat to the water-cooled copper hearth was significant and the sample could not be melted uniformly. Therefore, as a method that allows melting at a higher temperature under high pressure, melting was performed using the consumable electrode type arc melting method in an Ar atmosphere of 10 atm, and as shown in Figure 2 (a), spherical Mo was uniformly distributed in the steel. A dispersed tissue was obtained. When this was cold worked in the same manner as in Example 1, Mo fibers were obtained as shown in FIG. 2(b).

実施例5 Cu−10at%(Cr−5at%Mo)、Au−10
at%(Mo−58t%Cr)合金を、10気圧のAr
雰囲気中で消耗電極型溶解法により溶解した。実施例1
と同様にCu、Au母相中にデンドライト状のCr−M
o、Mo−Cr合金粒子がそれぞれ一様に分散した組織
が得られた。これを溝ロールと線引きにより断面減少率
(線径が0.6m)で99.8%まで冷間伸線すると、
実施例1と同様にCr−Mo、Mo−Cr合金デンドラ
イトが加工変形し、厚さ0.2μm、幅4μm以下のリ
ボン状Cr−Mo、Mo−Cr繊維となった。
Example 5 Cu-10at% (Cr-5at%Mo), Au-10
at% (Mo-58t%Cr) alloy was heated with Ar at 10 atm.
It was dissolved by a consumable electrode type dissolution method in an atmosphere. Example 1
Similarly, there is dendrite-like Cr-M in the Cu and Au matrix.
A structure in which Mo-Cr alloy particles were uniformly dispersed was obtained. When this is cold drawn to a cross-section reduction rate of 99.8% (wire diameter is 0.6 m) using a grooved roll and wire drawing,
As in Example 1, the Cr-Mo and Mo-Cr alloy dendrites were processed and deformed to become ribbon-like Cr-Mo and Mo-Cr fibers with a thickness of 0.2 μm and a width of 4 μm or less.

実施例6 Cu−108t%(Mo−35at%Re)合金を、1
0気圧のAr雰囲気中で消耗電極型溶解法により溶解し
た。実施例2と同様に球状のMo−Re合金粒子が一様
に分散した組織が得られた。これを径が0,5噛の細線
に加工して超電導特性を測定し、12にの温度を得た。
Example 6 Cu-108t% (Mo-35at%Re) alloy was
It was melted by a consumable electrode type melting method in an Ar atmosphere at 0 atm. As in Example 2, a structure in which spherical Mo-Re alloy particles were uniformly dispersed was obtained. This was processed into a thin wire with a diameter of 0.5 degrees, and its superconducting properties were measured, and a temperature of 12 degrees was obtained.

(発明の効果) この発明により、次のような特長を有する繊維複合強化
合金が実現される。
(Effects of the Invention) According to the present invention, a fiber composite reinforced alloy having the following features is realized.

(1) 粒界脆性金属の本来有している優れた機械的強
度が複合材料の強度向上に反映され、きわめて機械的強
度の優れた複合材料となる。
(1) The inherently excellent mechanical strength of grain boundary brittle metals is reflected in the improved strength of the composite material, resulting in a composite material with extremely excellent mechanical strength.

<2)  Cr、Mo、Wは高融点金属で化学的に安定
な金属であることから、高温で耐食性に優れた高強度複
合合金が得られる。
<2) Since Cr, Mo, and W are metals with high melting points and are chemically stable, a high-strength composite alloy with excellent corrosion resistance at high temperatures can be obtained.

(3) お互いの固溶度が極めて小さな2相合金を出発
材料としていることから電気伝導度が小さい銅を母相金
属とした場合、強磁界の発生を可能とする高強度高電気
伝導度複合材料が製造できる。
(3) A high-strength, high-electrical-conductivity composite that can generate a strong magnetic field when the parent metal is copper, which has low electrical conductivity because the starting material is a two-phase alloy with extremely low solid solubility in each other. Materials can be manufactured.

(4) 2相合金の溶解鋳造によって粒界脆性金属粒子
を母相中に一様に分散させることができるので、その後
冷間加工して得られる黴、in+m維複合合金の機械的
強度、電気伝導度、耐食性等の物理化学的性質は極めて
一様である。
(4) By melting and casting a two-phase alloy, the grain boundary brittle metal particles can be uniformly dispersed in the matrix, so the mechanical strength and electrical properties of the mold, in+m fiber composite alloy obtained by subsequent cold working can be improved. Physical and chemical properties such as conductivity and corrosion resistance are extremely uniform.

(5) この発明の方法においては初めから複合化され
た合金を冷間加工するだけであるので、従来の様な別途
脆性金属を加工しその後複合化する工程が省略され、そ
の製造コストが著しく節減される。
(5) In the method of the present invention, since the composite alloy is simply cold-worked from the beginning, the conventional process of separately processing brittle metal and then composite is omitted, and the manufacturing cost is significantly reduced. Saved.

(6) 複合材として塑性加工できるので、細線や薄板
等の任意の形状の材料が容易に得られる。
(6) Since it can be plastically worked as a composite material, materials of arbitrary shapes such as thin wires and thin plates can be easily obtained.

(7) 複合合金の加工度を制御することによって分散
している繊維の間隔を容易に制御でき、その間隔をきわ
めて狭くすることによって複合剤から予測される値以上
のfi械的強度を実現できる。
(7) By controlling the degree of processing of the composite alloy, the spacing between the dispersed fibers can be easily controlled, and by making the spacing extremely narrow, it is possible to achieve fi mechanical strength that exceeds the value expected from the composite agent. .

(8) 母相を優先的にエツチングで溶かしたり、また
は、融点の差を利用して母相のみを溶かすことにより、
粒界脆性金属の繊維だけを取り出すことができる。この
方法は、粒界脆性金属の繊維の製造法としても注目され
る。従来製造が不可能だった粒界脆性金属繊維が得られ
るだけでなく、しかも冷間加工により容易に得られるこ
とからその製造コストも低い、これらの繊維は先端技術
素材としての活用が可能である6例えば高温耐食性金属
繊維布等のこれまでにない新しい応用が考えられるなど
、その経済的波及効果は大きい。
(8) By preferentially dissolving the matrix by etching, or by utilizing the difference in melting points to melt only the matrix,
Only fibers of grain boundary brittle metal can be extracted. This method is also attracting attention as a method for producing grain boundary brittle metal fibers. Not only can we obtain grain-boundary brittle metal fibers that were previously impossible to manufacture, but they can also be easily obtained through cold working, so the manufacturing cost is low. These fibers can be used as cutting-edge technology materials. 6.The economic ripple effect is large, for example, new applications such as high-temperature corrosion-resistant metal fiber cloth can be considered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)<b)は、Cu−20at%Cr合金の溶
解m織と、これを加工した後の組織を、それぞれ、研磨
断面を第2塩化鉄エツチング液で腐食した後の金属組織
として示した図面代用の走査電子顕微鏡写真である。 第2図(a)(b)は、Cu−11at%Mo合金の溶
解組織と、これを加工した後の組織を、それぞれ、研磨
断面を第2塩化鉄エツチング液で腐食した後の金属組織
として示した図面代用の走査電子顕微鏡写真である。
Figure 1 (a) < b) shows the melted microstructure of Cu-20at%Cr alloy and the structure after processing, respectively, and the metal structure after etching the polished cross section with iron chloride etching solution. This is a scanning electron micrograph shown as a drawing. Figures 2 (a) and (b) show the dissolved structure of the Cu-11at%Mo alloy and the structure after processing, respectively, and the metal structure after the polished cross section was etched with a ferric chloride etching solution. This is a scanning electron micrograph used as a substitute for the drawing shown.

Claims (12)

【特許請求の範囲】[Claims] (1)粒界脆性金属と延性に富む母相金属とを溶解鋳造
晶出させて形成した2相合金を塑性加工して微細金属繊
維を複合化してなることを特徴とする複合強化合金。
(1) A composite reinforced alloy characterized in that it is made by plastically working a two-phase alloy formed by melting, casting, and crystallizing a grain-boundary brittle metal and a ductile matrix metal to form a composite with fine metal fibers.
(2)2相合金を熱間または温間で塑性加工してなる請
求項(1)記載の複合強化合金。
(2) The composite reinforced alloy according to claim (1), which is obtained by hot or warm plastic working of a two-phase alloy.
(3)Cr、Moおよび/またはWを粒界脆性金属とす
る請求項(1)記載の複合強化合金。
(3) The composite reinforced alloy according to claim (1), wherein Cr, Mo and/or W are grain boundary brittle metals.
(4)Cr、Moおよび/またはWにReを添加してな
る請求項(3)記載の複合強化合金。
(4) The composite reinforced alloy according to claim (3), wherein Re is added to Cr, Mo and/or W.
(5)Cu、Agおよび/またはAuを母相金属とする
請求項(1)記載の複合強化合金。
(5) The composite reinforced alloy according to claim (1), wherein the matrix metal is Cu, Ag and/or Au.
(6)請求項(1)記載の複合化を特徴とする複合強化
合金の製造方法。
(6) A method for producing a composite reinforced alloy characterized by the composite according to claim (1).
(7)MoまたはWを粒界脆性金属とし、1気圧以上の
不活性ガス雰囲気で溶解する請求項(6)記載の複合強
化合金の製造方法。
(7) The method for producing a composite reinforced alloy according to claim (6), wherein Mo or W is a grain boundary brittle metal and is melted in an inert gas atmosphere of 1 atmosphere or more.
(8)粒界脆性金属と延性に富む母相金属とを溶解鋳造
晶出させて形成した2相合金を塑性加工して得られた請
求項(1)記載の繊維複合強化合金より母相金属を取除
いてなることを特徴とする粒界脆性金属繊維。
(8) A matrix metal obtained by plastic working a two-phase alloy formed by melting, casting and crystallizing a grain boundary brittle metal and a ductile matrix metal. A grain boundary brittle metal fiber characterized in that it is obtained by removing grain boundary brittle metal fibers.
(9)請求項(8)記載の母相金属の取除きを特徴とす
る粒界脆性金属繊維の製造方法。
(9) A method for producing grain boundary brittle metal fibers, characterized by removing the matrix metal according to claim (8).
(10)Cr、Moおよび/またはWを粒界脆性金属と
してなる請求項(8)記載の金属繊維。
(10) The metal fiber according to claim (8), comprising Cr, Mo and/or W as the grain boundary brittle metal.
(11)Cr、Moおよび/またはWにReを添加して
なる請求項(10)記載の金属繊維。
(11) The metal fiber according to claim (10), wherein Re is added to Cr, Mo and/or W.
(12)Cu、Agおよび/またはAuを母相金属とし
てなる請求項(8)記載の金属繊維。
(12) The metal fiber according to claim (8), comprising Cu, Ag and/or Au as a matrix metal.
JP6896989A 1989-03-20 1989-03-20 Composite reinforced alloy and metallic fiber Pending JPH02247362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6896989A JPH02247362A (en) 1989-03-20 1989-03-20 Composite reinforced alloy and metallic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6896989A JPH02247362A (en) 1989-03-20 1989-03-20 Composite reinforced alloy and metallic fiber

Publications (1)

Publication Number Publication Date
JPH02247362A true JPH02247362A (en) 1990-10-03

Family

ID=13389013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6896989A Pending JPH02247362A (en) 1989-03-20 1989-03-20 Composite reinforced alloy and metallic fiber

Country Status (1)

Country Link
JP (1) JPH02247362A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135819A (en) * 1973-05-04 1974-12-27
JPS5135603A (en) * 1974-09-20 1976-03-26 Hitachi Ltd SENIKYOKAFUKUGOZAIRYO NO SOSEIKAKOHO
JPS62267050A (en) * 1986-05-13 1987-11-19 Fujikura Ltd Production of in-situ rod for fiber dispersion type superconducting wire
JPS6353225A (en) * 1987-03-31 1988-03-07 Honda Motor Co Ltd Cylinder sleeve for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135819A (en) * 1973-05-04 1974-12-27
JPS5135603A (en) * 1974-09-20 1976-03-26 Hitachi Ltd SENIKYOKAFUKUGOZAIRYO NO SOSEIKAKOHO
JPS62267050A (en) * 1986-05-13 1987-11-19 Fujikura Ltd Production of in-situ rod for fiber dispersion type superconducting wire
JPS6353225A (en) * 1987-03-31 1988-03-07 Honda Motor Co Ltd Cylinder sleeve for engine

Similar Documents

Publication Publication Date Title
JP4948167B2 (en) Metal fiber manufacturing method
CN102978449A (en) Al-Fe-Sb-RE aluminum alloy, and preparation method and power cable thereof
CN103103387A (en) Al-Fe-C-RE aluminium alloy, preparation method thereof and power cable
WO2018045695A1 (en) Softening resistant copper alloy, preparation method, and application thereof
CN103103392A (en) Al-Fe-Ag-RE aluminium alloy, preparation method thereof and power cable
CN102978452A (en) Al-Fe-Sn-RE aluminum alloy, and preparation method and power cable thereof
CN103045913A (en) Al-Fe-Ir-RE aluminum alloy, preparation method thereof and power cable
CN102978450A (en) Al-Fe-Mo-RE aluminum alloy, and preparation method and power cable thereof
CN103103384A (en) Al-Fe-Os-RE aluminium alloy, preparation method thereof and power cable
CN113981292A (en) High-entropy alloy with excellent strong plasticity and preparation method thereof
CN103103396A (en) Al-Fe-Hf-RE aluminium alloy, preparation method thereof and power cable
CN102978454A (en) Al-Fe-Pd-RE aluminum alloy, and preparation method and power cable thereof
CN103103395A (en) Al-Fe-Au-RE aluminium alloy, preparation method thereof and power cable
CN102978457A (en) Al-Fe-Nb-RE aluminum alloy, and preparation method and power cable thereof
CN110004320B (en) High-strength high-conductivity Cu-Ag-Sc alloy and preparation method thereof
Morris et al. Influence of solidification conditions, thermomechanical processing, and alloying additions on the structure and properties of in situ composite Cu-Ag alloys
CN102978453A (en) Al-Fe-In-RE aluminum alloy, and preparation method and power cable thereof
CN113430406B (en) Precipitation strengthening CoCrNiAlNb multi-principal-element alloy and preparation method thereof
CN103103397A (en) Al-Fe-Cd-RE aluminium alloy, preparation method thereof and power cable
CN111607726B (en) Rare earth magnesium alloy and preparation method thereof
CN111394665A (en) TiCuZrPdFe amorphous alloy and preparation method thereof
JPH06287661A (en) Production of smelted material of refractory metal
JP3490853B2 (en) High-strength, high-conductivity, high-chromium-containing copper alloy material and method for producing the same
EP0589609B1 (en) Method of producing Cu - Ag alloy based conductive material
CN113061778B (en) In-situ amorphous particle reinforced copper alloy material