JPH02245622A - Polarization interference spectroscope - Google Patents

Polarization interference spectroscope

Info

Publication number
JPH02245622A
JPH02245622A JP6618589A JP6618589A JPH02245622A JP H02245622 A JPH02245622 A JP H02245622A JP 6618589 A JP6618589 A JP 6618589A JP 6618589 A JP6618589 A JP 6618589A JP H02245622 A JPH02245622 A JP H02245622A
Authority
JP
Japan
Prior art keywords
photodetector
light source
axis
points
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6618589A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasada
勝弘 笹田
Tadataka Koga
古賀 正太佳
Isao Nemoto
根本 勲
Shigeru Matsui
繁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6618589A priority Critical patent/JPH02245622A/en
Publication of JPH02245622A publication Critical patent/JPH02245622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure spectrums at multiple measuring points at a high speed simultaneously at all measuring points over all the wavelengths by arranging a Wollaston prism, two polarizers and a two-dimensional multichannel photodetector. CONSTITUTION:An interference fringe generated at a point of a light source 1 to be measured forms an image in the x-axis at a point A' of a two-dimensional multichannel photodetector 7. Likewise, interference fringes generated at points B and C of the light source 1 form images in the x-axis at points B' and C' of the photodetector 7. In other words, light of the light source 1 is converted into an interference fringe by a polarization interference optical system to be incident into the photodetector 7 with an imaging lens 6. On the other hand, one row of photoelectric elements in the y-axis of the photodetector 7 is made to correspond to each of sections in which the light source 1 is subdivided in the y-axis so that interference fringes in the respective sections are detected with corresponding one row of respective photoelectric elements in the x-axis of the photodetector 7. Thus, spectrums at points of the light source can be obtained corresponding to bits in the y-axis of the photodetector 7 by a reverse Fourier transform of interference fringe waveforms in the x-axis of the photodetector 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は偏光干渉分光装置に係り、特に多側定点のスペ
クトルを測定するのに好適な偏光干渉分光装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polarization interference spectrometer, and particularly to a polarization interference spectrometer suitable for measuring spectra at fixed points on multiple sides.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭59−105508号公報記載の
ように、ウオーラストンプリズムを挟んで2個の偏光子
を配置することによって空間的に得られる干渉波形を1
次元のマルチチャンネル光電検知器で観測する構成とな
っていた。
As described in Japanese Patent Application Laid-Open No. 59-105508, the conventional device combines interference waveforms spatially obtained by arranging two polarizers with a Wallaston prism in between.
It was configured to be observed using a dimensional multi-channel photoelectric detector.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、ある1点の測定領域でのスペクトルの
全波長域を同時に、かつ、高速に測定することを目的と
したものであった。
The purpose of the above-mentioned conventional technology is to simultaneously and rapidly measure the entire wavelength range of a spectrum in a measurement area at one point.

本発明の目的は、多点の測定点でのスペクトルを全測定
点、全波長域同時に、かつ、高速に測定することができ
る偏光干渉分光装置を提供することにある。
An object of the present invention is to provide a polarization interference spectrometer that can measure spectra at multiple measurement points simultaneously and at high speed in all wavelength ranges.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ウオーラストンプリズムと、このプリズム
を挟む2個の偏光子によって空間的、光学的に形成され
る干渉波形を2次元マルチチャンネル光電検出器を設け
、多点の測定点でのスペクトルを全測定点、全波長域同
時に高速に測定する構成として達成される。
The above purpose is to detect the interference waveform spatially and optically formed by a Wallaston prism and two polarizers sandwiching this prism, and to detect the spectrum at multiple measurement points by installing a two-dimensional multichannel photoelectric detector. This is achieved through a configuration that simultaneously measures all measurement points and all wavelength ranges at high speed.

〔作用〕[Effect]

本発明では、被測定光源のA点により生ずる干渉縞は、
2次元マルチチャンネル光電検知器のA′点にX軸方向
に結像する。同様に被測定光源のB、C点により生ずる
干渉縞は、2次元マルチチャンネル光電検知器のB’ 
、C’点にX軸方向に結像する。すなわち、被測定光源
の光は、偏光干渉光学系によって干渉縞(インターフェ
ログラム)に変換され、結像レンズによって2次元マル
チチャンネル光電検知器に入射するが、2次元マルチチ
ャンネル光電検知器のy軸方向の各光電素子(ビット)
の−列の並びが被測定光源をy軸方向に細分される区間
の個々に対応し、各々の区間の干渉縞は、2次元マルチ
チャンネル光電検知器のX軸方向の各光電素子の1列に
検出され、2次元マルチチャンネル光電検出器のX軸方
向の各干渉縞波形を逆フーリエ変換することにより2次
元マルチチャンネル光電検出器のy軸方向の各ビットに
対応した被測定光源の各点のスペクトルを得ることがで
きる。
In the present invention, the interference fringes caused by point A of the light source to be measured are
An image is formed in the X-axis direction at point A' of a two-dimensional multichannel photoelectric detector. Similarly, the interference fringes generated by points B and C of the light source to be measured are B' of the two-dimensional multichannel photoelectric detector.
, C' is imaged in the X-axis direction. That is, the light from the light source to be measured is converted into interference fringes (interferogram) by the polarization interference optical system, and is incident on the two-dimensional multichannel photoelectric detector by the imaging lens. Each photoelectric element (bit) in the axial direction
The arrangement of rows corresponds to each section in which the light source to be measured is subdivided in the y-axis direction, and the interference fringes in each section correspond to one row of each photoelectric element in the X-axis direction of the two-dimensional multichannel photodetector. By inverse Fourier transforming each interference fringe waveform in the X-axis direction of the two-dimensional multichannel photoelectric detector, each point of the light source to be measured corresponding to each bit in the y-axis direction of the two-dimensional multichannel photoelectric detector is detected. spectrum can be obtained.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図〜第5図を用いて詳細に
説明する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 5.

第1図は本発明の偏光干渉分光装置の基本的構成の一実
施例を示す上面図、第2図は第1図の側面図、第3図は
第1図の2次元マルチチャンネル光電検知器の受光面平
面図である。
Fig. 1 is a top view showing an example of the basic configuration of the polarization interference spectrometer of the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 is the two-dimensional multichannel photoelectric detector shown in Fig. 1. FIG. 3 is a plan view of the light receiving surface of FIG.

第1図、第2図において、1次元状に広がる被測定光源
1を出た光20はコリメータレンズ2によって平行平面
波21となり、第1の偏光子3を経てウオーラストンプ
リズム4に入射する。
In FIGS. 1 and 2, light 20 emitted from the light source 1 to be measured that spreads in a one-dimensional manner becomes a parallel plane wave 21 by the collimator lens 2, and enters the Wollaston prism 4 via the first polarizer 3.

ウオーラストンプリズム4は、通常結晶軸が互いに直交
する2個のくさび形に研磨した複屈折性のプリズムを貼
り合わせたものを用いる。
The Wallaston prism 4 is usually a combination of two wedge-shaped polished birefringent prisms whose crystal axes are orthogonal to each other and bonded together.

偏光子3の偏光面は、ウオーラストンプリズム4の2つ
の結晶軸の各々に対して45°の傾斜角を持つように配
置され、ウオーラストンプリズム4によって2分割され
る光束の光量を等しくする働きをする。
The polarization plane of the polarizer 3 is arranged so as to have an inclination angle of 45° with respect to each of the two crystal axes of the Wollaston prism 4, so that the light intensity of the luminous flux split into two by the Wollaston prism 4 is equalized. work to do.

ウオーラストンプリズム4は、複屈折作用によって入射
する光束を2分割し、2分割された光束は第2の偏光子
5を透過する。偏光子5の偏光角は、第1の偏光子3に
対して06または90”をなすように配置され、2分割
された光束22゜23の各々の偏光面に対しては45°
または一45°となるため、これらの光束を再結合、す
なわち、干渉させる働きをする。これにより干渉縞がウ
オーラストンプリズム4内に局在して形成され、結像レ
ンズ6は、この干渉縞を適当な倍率で2次元マルチチャ
ンネル光電検知器7の受光面上に結像させる。
The Wallaston prism 4 divides the incident light beam into two by birefringence, and the two divided light beams are transmitted through the second polarizer 5. The polarization angle of the polarizer 5 is arranged to form an angle of 06 or 90" with respect to the first polarizer 3, and is 45 degrees with respect to each polarization plane of the two divided light beams 22 and 23.
or -45°, so it functions to recombine these light beams, that is, cause them to interfere. As a result, interference fringes are formed locally within the Wallaston prism 4, and the imaging lens 6 forms an image of these interference fringes on the light receiving surface of the two-dimensional multichannel photodetector 7 at an appropriate magnification.

ここで、被測定光源1のA点上より生ずる干渉縞は、2
次元マルチチャンネル光電検知器7のA′点にX軸方向
に結像する。同様に被測定光源1のB、C点により生ず
る干渉縞は、光電検知器7のB’ 、C’点にX軸方向
に結像する。すなわち、被測定光源1の光は、偏光干渉
光学系によって干渉縞(インターフェログラム)に変換
され、結像レンズ6によって2次元マルチチャンネル光
電検知器7に入射するが、光電検知器7のy軸方向の各
光電素子(ビット)の−列の並びが被測定光源1をy軸
方向に細分される区間の個々に対応し、各々の区間の干
渉縞は、光電検知器7のX軸方向の光電素子の一列に検
出される。
Here, the interference fringes generated from point A of the light source 1 to be measured are 2
An image is formed at point A' of the dimensional multi-channel photoelectric detector 7 in the X-axis direction. Similarly, interference fringes generated by points B and C of the light source 1 to be measured are imaged at points B' and C' of the photoelectric detector 7 in the X-axis direction. That is, the light from the light source 1 to be measured is converted into interference fringes (interferogram) by the polarization interference optical system, and is incident on the two-dimensional multichannel photoelectric detector 7 by the imaging lens 6. The arrangement of -rows of each photoelectric element (bit) in the axial direction corresponds to each section in which the light source 1 to be measured is subdivided in the y-axis direction, and the interference fringes of each section are arranged in the X-axis direction of the photoelectric detector 7. is detected by a row of photoelectric elements.

第2図のように座標をとり、被測定光源1のA点のスペ
クトルをSa(λ)とする。このとき、2次元マルチチ
ャンネル光電検知器7のA′点のX軸方向に結像yる干
渉縞の波形工^ (X)は、ここに、λ1.λ2;光源
の油波域 ω ;光学系により定まる定数 である、これはA点のスペクトルS^(λ)をフーリエ
変換する式であるから、逆に干渉縞波形工^(X)を逆
フーリエ変換することによりA点のスペクトルS^(λ
)を得ることができる。すなわち、2次元マルチチャン
ネル光電検知器7のX軸方向の各干渉縞波形I(x)を
逆フーリエ変換することにより光電検知器7のy軸方向
の各ビットに対応した被測定光源1の各点のスペクトル
S(λ)を得ることができる。
The coordinates are taken as shown in FIG. 2, and the spectrum at point A of the light source 1 to be measured is defined as Sa(λ). At this time, the waveform of the interference fringe imaged in the X-axis direction at point A' of the two-dimensional multi-channel photoelectric detector 7 (X) is defined as λ1. λ2; Oil wave range of the light source ω; It is a constant determined by the optical system. Since this is a formula for Fourier transforming the spectrum S^(λ) at point A, conversely, the interference fringe waveform processing^(X) is transformed by inverse Fourier transform. By converting, the spectrum S^(λ
) can be obtained. That is, by inverse Fourier transforming each interference fringe waveform I(x) in the X-axis direction of the two-dimensional multi-channel photoelectric detector 7, each of the light sources 1 to be measured corresponding to each bit in the y-axis direction of the photoelectric detector 7 is A spectrum of points S(λ) can be obtained.

第4図は本発明の偏光干渉分光装置の一実施例を示す構
成図である。光源9の発散光はコリメータ10によって
平行光束となり、被測定物11を透過した後、偏光干渉
光学針8に入射する。ここで、2次元マルチチャンネル
光電検知器7のy軸方向の光電素子の並びの位置に対応
した被測定物11の各点の干渉縞波形が光電検知器7の
X軸方向に結像する。光電検知器7の各光電素子の信号
はA/D変換優12によってディジタル信号に変換され
る。演算装置113は光電検知器7のX軸方向の光電素
子の列単位に干渉縞のディジタル信号を逆フーリエ変換
してスペクトルを算出する。
FIG. 4 is a block diagram showing an embodiment of the polarization interference spectrometer of the present invention. The diverging light from the light source 9 is turned into a parallel light beam by the collimator 10, and after passing through the object to be measured 11, it enters the polarization interference optical needle 8. Here, the interference fringe waveform at each point on the object to be measured 11 corresponding to the position of the row of photoelectric elements in the y-axis direction of the two-dimensional multichannel photoelectric detector 7 is imaged in the X-axis direction of the photoelectric detector 7 . A signal from each photoelectric element of the photoelectric detector 7 is converted into a digital signal by an A/D converter 12. The arithmetic unit 113 performs inverse Fourier transform on the digital signal of the interference fringe for each row of photoelectric elements in the X-axis direction of the photoelectric detector 7 to calculate a spectrum.

第4図の装置構成により、被測定物11の一直線上に並
ぶ多点の透過、吸光度スペクトルを全点同時に、かつ、
全波長同時に高速に測定することができる。なお、第4
図では透過照明の場合を示したが、落射照明にしても同
様である。
With the device configuration shown in FIG. 4, the transmission and absorbance spectra of multiple points lined up on a straight line of the object to be measured 11 can be measured simultaneously at all points, and
All wavelengths can be measured simultaneously at high speed. In addition, the fourth
Although the figure shows the case of transmitted illumination, the same applies to epi-illumination.

第5図は本発明の他の実施例を示す第4図に相当する構
成図である。被測定光源1を複数本で構成された光ファ
イバ14で採光し、光フアイバ14端から出射する光は
、コリメータレンズ2でコリメートされ、偏光干渉光学
系8に入射する。
FIG. 5 is a block diagram corresponding to FIG. 4 showing another embodiment of the present invention. The light source 1 to be measured is illuminated by an optical fiber 14 composed of a plurality of pieces, and the light emitted from the end of the optical fiber 14 is collimated by a collimator lens 2 and enters a polarization interference optical system 8.

光ファイバ14の個々のファイバから出射する光は、光
電検知器7のy軸方向の各光電素子(ビット)の各1列
の並びに対応している。これにより、光ファイバ14で
採光する多側定点のスペクトルを全点同時に、かつ、全
波長同時に高速に測定することが可能になる。
The light emitted from each fiber of the optical fiber 14 corresponds to each row of photoelectric elements (bits) of the photoelectric detector 7 in the y-axis direction. This makes it possible to rapidly measure the spectra of multiple fixed points that collect light using the optical fiber 14 at all points simultaneously and at all wavelengths simultaneously.

(発明の効果〕 以上説明した本発明によれば、多点の測定点のスペクト
ルを全測定点、全波長同時に、かつ、高速に測定できる
という効果がある。
(Effects of the Invention) According to the present invention described above, there is an effect that spectra at multiple measurement points can be measured at all measurement points and all wavelengths simultaneously and at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の偏光干渉分光装置の基本的構成の一実
施例を示す上面図、第2図は第1図の側面図、第3図は
第1図の2次元マルチチャンネル光電検知器の受光面平
面図、第4図は本発明の偏光干渉分光装置の一実施例を
示す構成図、第5図は本発明の他の実施例を示す第4図
に相当する構成図である。 1・・・被測定光源、2・・・コリメータレンズ、3・
・・第1の偏光子、4・・・ウオーラストンプリズム、
5゛・・第2の偏光子、6・・・結像レンズ、7・・・
2次元マルチチャンネル光電検知器、8・・・偏光干渉
光学系、9・・・光源、1o・・・コリメータ、11・
・・被測定物、12・・・A/D変換器、13・・・演
算装置、14・・・光ファイバ。
Fig. 1 is a top view showing an example of the basic configuration of the polarization interference spectrometer of the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 is the two-dimensional multichannel photoelectric detector shown in Fig. 1. FIG. 4 is a block diagram showing one embodiment of the polarization interference spectrometer of the present invention, and FIG. 5 is a block diagram corresponding to FIG. 4 showing another embodiment of the present invention. 1... Light source to be measured, 2... Collimator lens, 3...
...first polarizer, 4...Wollaston prism,
5... Second polarizer, 6... Imaging lens, 7...
Two-dimensional multichannel photoelectric detector, 8... Polarization interference optical system, 9... Light source, 1o... Collimator, 11.
...Measurement object, 12... A/D converter, 13... Arithmetic device, 14... Optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1、被測定光源と、ウオーラストンプリズムと、該ウオ
ーラストンプリズムの結晶軸に対し45°の方向に偏光
面を持ち前記ウオーラストンプリズムを挟む位置に置か
れた2個の偏光子と、光学的に形成される干渉波形を検
出する光電検出器からなる偏光干渉計において、前記光
電検知器として2次元マルチチャンネル光電検知器を設
け、多点の測定点でのスペクトルを全測定点、全波長域
同時に高速に測定する構成としたことを特徴とする偏光
干渉分光装置。
1. A light source to be measured, a Wollaston prism, and two polarizers having a plane of polarization in a direction of 45° with respect to the crystal axis of the Wollaston prism and placed at positions sandwiching the Wollaston prism. , in a polarization interferometer consisting of a photoelectric detector that detects an optically formed interference waveform, a two-dimensional multi-channel photoelectric detector is provided as the photoelectric detector, and spectra at multiple measurement points are measured at all measurement points, A polarization interference spectrometer characterized by a configuration that allows high-speed measurement in all wavelength ranges simultaneously.
JP6618589A 1989-03-20 1989-03-20 Polarization interference spectroscope Pending JPH02245622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6618589A JPH02245622A (en) 1989-03-20 1989-03-20 Polarization interference spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6618589A JPH02245622A (en) 1989-03-20 1989-03-20 Polarization interference spectroscope

Publications (1)

Publication Number Publication Date
JPH02245622A true JPH02245622A (en) 1990-10-01

Family

ID=13308532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6618589A Pending JPH02245622A (en) 1989-03-20 1989-03-20 Polarization interference spectroscope

Country Status (1)

Country Link
JP (1) JPH02245622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686923B1 (en) * 2004-12-06 2007-02-27 김수길 Phase-shifting Method Using Waveplates in Shearography and System for Measuring Deformation Using The Same
JP2017150981A (en) * 2016-02-25 2017-08-31 パナソニックヘルスケアホールディングス株式会社 Spectroscope
JP2017156310A (en) * 2016-03-04 2017-09-07 パナソニックヘルスケアホールディングス株式会社 Fluorometry device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686923B1 (en) * 2004-12-06 2007-02-27 김수길 Phase-shifting Method Using Waveplates in Shearography and System for Measuring Deformation Using The Same
JP2017150981A (en) * 2016-02-25 2017-08-31 パナソニックヘルスケアホールディングス株式会社 Spectroscope
JP2017156310A (en) * 2016-03-04 2017-09-07 パナソニックヘルスケアホールディングス株式会社 Fluorometry device

Similar Documents

Publication Publication Date Title
US4867565A (en) Opto-electronic detection device for remotely detecting a physical magnitude
EP2682741B1 (en) Optical characteristics measuring apparatus, and optical characteristics measuring method
JP5264172B2 (en) Optical sensor using low coherence interferometry
KR920016823A (en) Optical instrumentation for determining surface properties
KR20080032680A (en) Optical system and method for measuring shape of three dimensions using the system
JP3426552B2 (en) Shape measuring device
CN110186390A (en) Compact transient state multi-wavelength phase shift interference device and its measurement method
US4583855A (en) Optical phase measuring apparatus
CN111208067A (en) Spectrum-polarization imaging measurement system
EP1785691A2 (en) Interferometry system
US20140347659A1 (en) Stationary Waveguide Spectrum Analyser
JPS62251627A (en) Polarization interferrometer
US7466426B2 (en) Phase shifting imaging module and method of imaging
WO2005111557A1 (en) Interferometer and fourier transform spectrometer
JPH02245622A (en) Polarization interference spectroscope
JP2533514B2 (en) Depth / thickness measuring device
WO2013005910A1 (en) Local slope scanning interference microscope using an acousto-optic device
KR102434350B1 (en) A polarized holographic microscope system and sample image acquisition method using the same
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP7283170B2 (en) METHOD FOR PREVENTING SPECIFIC NOISE IN SPECTRAL MEASUREMENT DEVICE USING FRANCON TYPE SAVART PLATE, SPECTROSCOPY MEASUREMENT DEVICE, AND SPECTROSCOPY MEASUREMENT METHOD
US6836333B1 (en) Fourier transform spectrometer using an optical block
JPH06347324A (en) Parallel multiple image fourier-transform spectroscopic imaging method
KR20100123519A (en) Optical system for measuring shape of three dimensions
JP7283190B2 (en) Spectroscopic measurement device and spectroscopic measurement method
JP2517929Y2 (en) Separate laser interferometer