WO2013005910A1 - Local slope scanning interference microscope using an acousto-optic device - Google Patents

Local slope scanning interference microscope using an acousto-optic device Download PDF

Info

Publication number
WO2013005910A1
WO2013005910A1 PCT/KR2012/002290 KR2012002290W WO2013005910A1 WO 2013005910 A1 WO2013005910 A1 WO 2013005910A1 KR 2012002290 W KR2012002290 W KR 2012002290W WO 2013005910 A1 WO2013005910 A1 WO 2013005910A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
frequency
dithering
signal
output
Prior art date
Application number
PCT/KR2012/002290
Other languages
French (fr)
Korean (ko)
Inventor
조규만
박영규
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2013005910A1 publication Critical patent/WO2013005910A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Definitions

  • the present invention relates to a scanning interference microscope, and more particularly, to a local gradient of a sample using a signal light swept according to a modulation frequency dithered within a frequency variable range based on a modulation center frequency.
  • the present invention relates to a scanning interference microscope using an acoustic optical device capable of accurately measuring the surface of a sample irrespective of a phase change caused by external noise such as temperature change, acoustic noise, and sample inclination.
  • the Acosto-Opic Modulator (hereinafter, referred to as 'AOM') is an element that periodically reflects ultrasonic waves in tellurium dioxide, crystal single crystal, and the like to periodically create a refractive structure in the crystal. This acts as a diffraction grating, and when laser light is incident, it has a characteristic of being diffracted and output according to a refraction ratio period.
  • 1 is a diagram illustrating the operation of a general acoustic-light modulator. As shown in FIG. 1, incident beams incident to the AOM are divided into zero-order beams without frequency modulation and first-order beams modulated by the variation frequency. The lights are separated and output at an angle.
  • FIG. 2 shows a heterodyne interferometer using a conventional AOM.
  • the heterodyne interferometer shown in FIG. 2 is proposed by K. Kokkonen, et al. Under the heading "Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations".
  • the heterodyne interferometer of FIG. 2 is a single-pass AOM interferometer using all the light emitted from the AOM, and three mirrors and PBSs are used to recombine two beams later, and a polarizer is used to interfere.
  • the angle of light emitted from the AOM is about several milliradians, it should be placed at a considerable distance to place the PBS in the center.
  • the conventional Single-Pass AOM heterodyne interferometer described above has to use a plurality of optical elements to combine the light beams passing through the AOM, so that the structure is complicated and the beam alignment is not easy.
  • the signal light is swept (sweep) according to the modulation frequency (f RF ) dithered within the frequency variable range ( ⁇ f) on the basis of the center modulation frequency (f RF0 ) It is an object of the present invention to provide a scanning interference microscope using an acoustic optical device that can accurately measure the surface of a sample by acquiring local gradient information of the sample.
  • the light source for providing light;
  • a polarization beam splitter (PBS) for transmitting or reflecting light beams provided from the light source according to a polarization state;
  • An AO device for dividing light rays provided from the PBS into first light rays and second light rays, and separating the first light rays and the second light rays at a predetermined angle and outputting the light rays;
  • An acoustooptic device driver for driving the acoustooptic device according to a modulation frequency f RF dithered within a frequency variable range ⁇ f based on a center modulation frequency f RF0 ;
  • a sample stage on which a sample to be measured is placed;
  • a first light beam disposed in a traveling path of the first light beam and the second light beam provided from the acoustooptical device, transmitting the first light beam and the second light beam in parallel to a sample stage,
  • the acoustooptic device includes an Acousto Optic Modulator (AOM), an Acousto Optic Deflector (AOD), and AOFS (Acousto Optic).
  • AOM Acousto Optic Modulator
  • AOD Acousto Optic Deflector
  • AOFS Acoustic Optic
  • Frequency Shifter (AOFS) is preferably characterized in that made of any one.
  • the photodetecting device detects a first interference signal for light rays that are output from the acoustooptical device and then reflected by the PBS and traveling along a first path. It is preferable that it is provided with the 1st photodetecting element which outputs.
  • the photodetecting device detects a first interference signal for light rays that are output from the acoustooptical device and then reflected by the PBS and traveling along a first path.
  • a differential amplifier for outputting a difference value between the first interference signal and the second interference signal from the output device and the second photodetector to the RF demodulator.
  • Optical Isolator optical isolator
  • the first light output from the acoustooptical device is first-order light modulated by a modulation frequency f RF , and a second light beam. Is preferably an unmodulated zero-order light.
  • the heterodyne interferometer further includes a frequency multiplier, wherein the frequency multiplier converts the modulation frequency provided from the acoustic optical device driver into a frequency twice as high as that of the RF. It is preferable to output to a demodulator.
  • the scanning interference microscope using the acousto-optic device according to the present invention can obtain the information on the local tilt of the sample by using the acoustooptic device which can change the modulation frequency, thereby not only accurately measuring the surface of the sample, Since the reference light is irradiated to the sample surface together with the signal light, only a local gradient change, that is, a phase change (step change), can be selectively performed regardless of the overall gradient change of the sample due to external noise or the condition of the tilted sample. The measurement is possible, which makes the measurement more stable.
  • the scanning interference microscope using the acousto-optic device according to the present invention uses a dual-path AOM, so that not only an optical system having a simple structure without an additional optical system can be configured, but also the noise and the uniqueness of the two interference light beams are used. Balanced Detection can be implemented to remove all DC components.
  • the scanning interference microscope using the acoustic optical device according to the present invention uses a signal light and a reference light having a pseudo-common-path, thereby making it possible to accurately measure insensitive to changes in the external environment.
  • 1 is a diagram illustrating the operation of a general acoustic-light modulator.
  • Figure 2 shows a heterodyne interferometer using a conventional AOM.
  • FIG. 3 is a block diagram schematically showing the configuration of a scanning interference microscope using an acoustic optical device according to the first embodiment of the present invention.
  • FIG. 4 is a view illustrating a second light beam and a first light beam swept provided in a sample stage in a scanning interference microscope using an acoustic optical device according to the present invention.
  • FIG. 5 is a view for explaining a method for measuring the local tilt of the sample with a scanning interference microscope using an acoustic optical device according to the present invention.
  • FIG. 6 is a diagram illustrating light rays incident to the acoustooptic device and light rays modulated and output by the acoustooptic device.
  • FIG. 7 is a block diagram illustrating input and output signals of the RF demodulator 380 and lock-in amplifier 386 according to the present invention.
  • FIG. 8 is a block diagram schematically showing the configuration of a scanning interference microscope using an acoustic optical device according to a second embodiment of the present invention.
  • the scanning interference microscope 30 includes a light source 300, a PBS 310, an acoustic optical device 320, an acoustic optical device driver 330, a sample stage 340, and a lens. 350, QWP 360, first photodetector 370, second photodetector 372, differential amplifier 374, RF demodulator 380, function generator 384, lock-in amplifier 386, and controller ( 390).
  • the diffraction angle of the first light beam modulated from the acoustooptical device is fine according to the modulation frequency f RF dithered by the acoustooptic device driver. It is characterized in that the local gradient information of the sample is obtained by using a phenomenon in which the signal beam is swept from the sample measuring point.
  • the light source 300 provides a beam of light composed of a single linear polarization wave, and includes a laser 302 and an optical isolator 304 that aligns and outputs the light output from the laser into P waves. Therefore, the light source 300 provides the PBS 410 with light beams aligned with P waves.
  • the polarization beam splitter (PBS) 310 transmits or reflects incident light according to a polarization state.
  • the polarization beam splitter (PBS) 310 transmits the P wave as it is and reflects the S wave perpendicular to the incident angle. Therefore, the PBS transmits the P wave provided from the light source 300 as it is and provides it to the acoustic optical device 320.
  • the acoustooptic device 320 vibrates at the dithered modulation frequency f RF provided from the acoustooptic device driver 330, and as a result, a part of the incident light beams has the original frequency f 0 without modulation. (Zero-order) light beams are output, and a part of the light beams incident is modulated by the modulation frequency f RF and output as first-order light beams.
  • the modulated primary light beams are diffracted and output, the zero order light beams having a frequency of f 0 and the primary light beams having a frequency of f 0 + f RF are separated from each other at a predetermined angle and output.
  • the modulated primary light is defined as first light
  • the unmodulated zero order light is defined as second light.
  • the acoustooptic device 320 finely varies the diffraction angle of the first light beam.
  • the modulation frequency f RF is a variable frequency finely dithered within the frequency variable range ⁇ f on the basis of the center modulation frequency f RF0 and is input from the acoustooptic device driver.
  • the modulation frequency is dithered within a frequency variable range around the center modulation frequency, the first light beams passing through the acoustooptical device are swept based on the sample measuring point.
  • the magnitude of the sweep of the first light from the measurement point of the sample is determined according to the frequency variable range of the modulation frequency, and the speed at which the first light is swept is determined according to the dithering speed of the modulation frequency.
  • the dithering speed means a speed at which the modulation frequency is repeated within a frequency variable range on the basis of the center modulation frequency.
  • the first light beam is swept by only a few nm, thereby obtaining a signal beam including a local slope of the sample.
  • the signal light thus obtained is demodulated into I and Q values by the RF demodulator, and only the signal having the same frequency as the dithering frequency is detected and output by the lock-in amplifier.
  • the acousto-optic device 320 is an acoustic-optic modulator (AOM) capable of sweeping the first light beam according to the modulation frequency and the variable frequency provided by the acoustooptic device driver 330, and the sound.
  • Optical-Optic Deflector (AOD), Acousto Optic Frequency Shitfter (AOFS) and the like can be used.
  • the light waves of the P-waves incident on the acoustooptic device become S-waves in a linearly polarized state rotated 90 ° from the P-wave by the characteristics of the acoustooptic device as they pass through the acoustooptic device.
  • the acoustooptic device driver 330 drives the acoustooptic device according to a modulation frequency f RF dithered within a frequency variable range ⁇ f based on a center modulation frequency f RF0 , and controls the signal light.
  • Information about the modulation frequency f RF is provided to the RF demodulator 380 for detection.
  • the modulation frequency is dithered according to the dithering signal provided from the function generator.
  • the frequency variable range ⁇ f is determined by the amplitude A of the dithering signal and the dithering speed is determined by the dithering frequency f dithering of the dithering signal.
  • the dithering speed means a speed at which the modulation frequency is repeatedly changed within a frequency variable range on the basis of the center modulation frequency f RF0 .
  • the function generator 384 generates a sinusoidal dithering signal having a desired dithering frequency (f dithering ) and an amplitude (A), and provides the sinusoidal dithering signal to an acoustooptic device driver, and dithering frequency (f dithering ). Information about this is provided to the Lock-In AMP (386).
  • the dithering frequency f dithering determines how fast the first diffracted light is to be reciprocated and diffracted or laterally moved, and the amplitude A of the dithering signal determines the frequency variable range.
  • the sample stage 340 is placed a sample to be measured.
  • the quarter-wave phase delay plate QWP (Quater-Wave Plate; 360) is aligned at 45 °, when the linearly polarized light of S wave is incident, it is converted into circularly polarized light and outputted. It converts into linearly polarized light of P wave and outputs it.
  • the QWP 360 is disposed in the paths of the first and second light beams provided from the acoustooptic device, and converts the linearly polarized light reflected from the acoustooptic device 320 into circular polarized light or outputs the sample stage. The circularly polarized light reflected from the light is converted into linearly polarized light and output.
  • FIG. 4 is a view illustrating a second light beam and a first light beam swept provided in a sample stage in a scanning interference microscope using an acoustic optical device according to the present invention.
  • the second light rays of the zeroth order light and the first light rays of the first order light incident in parallel are incident on the sample stage 340 with a difference of several micrometers ( ⁇ m).
  • the scanning microscope using the acousto-optic device according to the present invention has the same path of the signal light and the reference light, which can eliminate the factors for the noise, thereby enabling stable measurement.
  • the first light beam passing through the lens is diffracted by the modulation frequency provided from the acoustooptic device driver and then incident in parallel to the sample stage 340, having a ⁇ d of several nanometers (nm) and sweeping at the measurement point. sweep).
  • 5 is a view for explaining a method for measuring the local tilt of the sample with a scanning interference microscope using an acoustic optical device according to the present invention. Referring to FIG. 5, the first light that is swept has a phase difference ⁇ as shown in Equation 1 by a local slope of the sample.
  • ⁇ z is the path difference of the first light to be swept, It is expressed as Where A is determined by the slope of the sample and the range over which the modulation frequency is varied relative to the center modulation frequency, Is the frequency associated with the sweep of the variable frequency ⁇ f.
  • Equation 2 the local gradient tan ⁇ may be represented by Equation 2.
  • Equation 3 the local gradient is expressed by Equation 3 using Equations 1 and 2.
  • the measured local gradient enables the scanning microscope using the acoustic optical device according to the present invention to accurately analyze the sample surface.
  • the first and second light beams reflected from the sample stage 340 proceeds along the incident path that was first incident, and is remodulated by the acoustooptic device 320.
  • each of the light beams re-entered into the acousto-optic device 320 is output by being divided into non-modulated zero order light beams and primary light beams modulated by the modulation frequency. Accordingly, as the light beams once frequency-modulated are frequency-modulated again, the frequency difference between the two light beams output from the acoustooptical device, that is, the beat frequency, becomes twice the modulation frequency f RF of the acoustooptic device.
  • the light beams passing through the QWP 360 are converted to S waves by rotating 90 °.
  • FIG. 6 is a view illustrating light rays incident to the acoustooptic device and light rays modulated and output by the acoustooptical device, and FIG. 6A illustrates a single pass through the acoustooptical device.
  • Figure 6 shows the rays of light in the AOM
  • FIG. 6 (b) shows the rays of light in a double pass AOM that are reflected by the mirrors and then incident back into the acousto-optic device after passing through the acoustooptic device. .
  • the light beam a1 of the P-polarized light having the frequency f 0 is incident on the acoustic optical device 60, and divided into the light beam a2 incident on the acoustic optical device. That is, the 0th order light beam a3 has a frequency f 0 , and the 1st order light beam a2 is modulated to have a frequency f 0 + f RF .
  • the zeroth order light beam a3 output from the acousto-optic device is rotated 45 ° while passing through the QWP 62, is converted into circularly polarized light, and enters the mirror 66, and the primary light beam a2 output from the acoustooptical device. Is rotated 45 ° while passing through the QWP 62, converted into circularly polarized light, and is incident on the mirror 64.
  • the primary beams (b1), each mirror of the 0th-order beams (b2) and the frequency (f 0 + f RF) of the same frequency (f 0) of Fig. 6 (a) Reflected at 66 and 64, it passes through QWP 62 and reenters the acoustooptic device 60.
  • the zeroth order rays b2 reentered into the acousto-optic device are divided into the zeroth order rays b4 passing through the acousto-optic device as it is, and the primary rays of light modulated at the modulation frequency f RF of the acousto-optic device b6. A certain angle is output apart.
  • the zero order of the frequency (f 0) beams (b2) is output is divided into the 0th-order beams (b4) and the first frequency beams (b6) of (f 0 -f RF) of the frequency (f 0).
  • the primary light beam (b1) re-entered into the acoustic optical device is the primary light beam (b5) passing through the acoustic optical device as it is and the primary light beam (b3) modulated at the modulation frequency (f RF ) of the acoustic optical device
  • the output is divided by a certain angle from each other.
  • the primary beams (b3) of the frequency (f 0 + f RF) of the primary beams (b1) has a frequency (f 0 + f RF) of the 0th-order beams (b5) and the frequency (f 0 + 2f RF)
  • the output is divided.
  • the frequency zero-order beams (b4) of the primary beams (b3) and the frequency (f 0) of (f 0 + 2f RF) proceeds along the same first path to each other, the frequency (f 0 + f RF)
  • the zeroth order light beam b5 and the first order light beam b6 of the frequency f 0 -f RF also travel along the same second path, and the first path and the second path are spaced apart from each other by a predetermined angle.
  • Figure 6 (c) shows the light beams (sweep) is swept by the modulation frequency that is changed from the acoustic optical device driver.
  • light rays in the dual path shown in FIG. 6 (b) are almost similar to those of the light rays output from the acoustooptic device due to a variable modulation frequency (f RF ⁇ ⁇ f).
  • the frequency value fluctuates minutely.
  • the zeroth order light c2 has a frequency f 0
  • the primary order light c1 is modulated to have a frequency f 0 + f RF ⁇ ⁇ f.
  • the re-entered zeroth light beam (c2) is the zeroth light beam (c4) passing through the acoustic optical device as it is and the modulation frequency of the acoustic optical device ( f RF ⁇ ⁇ f) divided by the primary light beam (c6) modulated by a predetermined angle is output to each other.
  • the frequency (f 0) of the 0th-order beams (c2) is a frequency (f 0) of the 0th-order beams (c4) and the frequency (f 0 - (f RF ⁇ ⁇ f)) 1 primary beams (c6) as a divided output of do.
  • the primary light beam (c1) re-entered into the acoustic optical device is a primary light beam (c3) modulated at the modulation frequency (f RF ⁇ ⁇ f) of the acoustic optical device and the zeroth light beam (c5) passing through the acoustic optical device as it is The output is separated by a certain angle.
  • the primary frequency of (f 0 + f RF ⁇ ⁇ f ) beams (c1) is the frequency zero-order beams (c5) and the frequency (f 0 +2 (f RF ⁇ ⁇ f) of (f 0 + f RF ⁇ ⁇ f )
  • the output is divided into the primary rays of light c3).
  • the frequency (f 0 +2 (f RF ⁇ ⁇ f)) 1 primary beams (c3) and the frequency zero-order beams (c4) of (f 0) of the proceeds along the same first path to each other, the frequency (f 0
  • the zeroth order c5 of + f RF ⁇ ⁇ f and the first order c6 of frequency f 0 ⁇ (f RF ⁇ f) also travel along the same second path.
  • the two paths are spaced at a certain angle from each other.
  • the angle of the light beam swept by ⁇ f is minute, there is only a slight difference and only the light beams swept are changed to a level detectable by one photodetector. 6C is somewhat exaggerated for convenience of description.
  • All the light beams incident on the PBS 310 are S-polarized states, and the light incident along the first path 'a' is reflected by the PBS and proceeds to the first photodetector 370. Light incident along b ') is reflected by the PBS and proceeds to the second photodetector 372.
  • the first photodetector 370 has a first light beam b3 having a frequency f 0 +2 (f RF ⁇ ⁇ f) and a zero light beam b4 having a frequency f 0 , and the frequency 2 (
  • the interfering signal I 1 of f rf ⁇ ⁇ f is output to the demodulator 380.
  • the zeroth order light b5 of frequency f 0 + f RF ⁇ ⁇ f and the first light beam b6 of frequency f 0 ⁇ (f RF ⁇ ⁇ f) are incident and are incident.
  • the second interference signal I 2 of frequency 2 (f RF ⁇ ⁇ f) for the light beams is output to a differential amplifier 374.
  • the second photodetector 372 includes a D-Shaped mirror disposed obliquely on a path through which the rays reflected from the PBS travel and a photodetector disposed on a path through the rays reflected from the D-Shaped mirror. Can be.
  • the first interference signal and the second interference signal described above may be represented by equations (4) and (5).
  • Is is the DC component of the interference signal and I L corresponds to the noise component of the interference signal.
  • the differential amplifier 374 receives first and second interference signals from the first photodetector 370 and the second photodetector 372, respectively, and detects a difference value I 1 -I 2 of the input interference signals. And output to the demodulator 380.
  • the unmodulated zeroth order light output from the AOM and the first modulated first order light beam have a phase difference of 90 °. Accordingly, the phase difference between the first interference signal and the second interference signal described above is 180 ° due to the second modulation. ), And as a result, equation (5) can be rearranged into equation (6).
  • the output signals I 1 -I 2 of the differential amplifier 474 are represented by Equation 7 below. Accordingly, the differential amplifier according to the first embodiment of the present invention obtains twice the interference signal from which both the DC signal and the noise signal are removed as the same result of the balanced detection.
  • the modulation frequency f RF provided from the acoustooptic device driver is converted into a double frequency (2 f RF ) through a frequency doubler 382 and provided to the RF demodulator 380.
  • the RF demodulator 380 RF demodulates the interference signal provided from the photodetector using the double modulation frequency (2 f RF ) to detect the I signal and the Q signal for the signal light to the lock-in amplifier 386.
  • the lock-in amplifier 386 detects a signal having the same frequency as the dithering frequency among the I and Q signals input from the RF demodulator and outputs the dithering frequency provided from the function generator to the control unit 390.
  • FIG. 7 is a block diagram illustrating input and output signals of the RF demodulator 380 and lock-in amplifier 386 in accordance with the present invention.
  • the RF demodulator 380 receives and demodulates interference signals and modulation frequency information, and outputs the demodulated signals as I values and Q values.
  • the lock-in amplifier 386 has a dithering frequency among the signals output from the RF demodulator. Detects and outputs signals of the same frequency.
  • the I value and the Q value are as shown in Equations 8 and 9.
  • the I and Q values output from the lock-in amplifier 386 are provided to the controller 390 to detect phase and amplitude.
  • the control unit 390 may include an A / D converter 392 and a computer 394 for converting analog signals provided from the lock-in amplifier into digital signals, and the computer 394 may be provided from the A / D converter. Store the I and Q values of the digital signals and detect the phase and amplitude from them.
  • the scanning interference microscope using the acousto-optic device having the above-described configuration can accurately measure the surface of the sample by acquiring information on the local tilt of the sample by using the acoustooptic device capable of varying the modulation frequency. In addition, it is possible to measure the overall gradient change of the sample due to external noise, thereby making the measurement more stable.
  • the scanning interference microscope using the acousto-optic device according to the present invention can implement balanced detection capable of removing both noise and DC components using an optical system having a simple structure.
  • the scanning interference microscope using the acoustic optical device according to the present invention uses a signal light and a reference light having a pseudo-common-path, thereby making it possible to accurately measure insensitive to changes in the external environment.
  • the scanning interference microscope according to the second embodiment is almost similar to the structure of the scanning interference microscope of the first embodiment, but differs from the scanning interference microscope of the first embodiment in that balanced detection is not performed. Due to this difference, the scanning interference microscope according to the second embodiment does not implement balanced detection, but has a simpler structure.
  • the scanning interference microscope 70 includes a light source 700, a PBS 710, an acoustic optical device 720, an acoustic optical device driver 730, and a sample stage ( 740, lens 750, QWP 760, photodetector 770, RF demodulator 780, function generator 784, lock-in amplifier 786, and controller 790.
  • the photodetecting device 760 has a signal of frequency f 0 and a reference light of frequency f 0 + 2 (f RF0 ⁇ ⁇ f) incident from the PBS, and have a frequency of 2 (f RF0 ⁇ ⁇ f).
  • the interference signal is detected and converted into an electrical signal and output to the RF demodulator 780.
  • the RF demodulator 780 demodulates the interference signal provided from the photodetector using the double frequency (2 f RF ), detects the I signal and the Q signal for the signal light, and outputs the signal to the lock-in amplifier 386.
  • the lock-in amplifier detects a signal having the same frequency as the dithering frequency among the I and Q signals provided from the RF demodulator by using the dithering frequency which is a reference signal and outputs the signal to the controller 790.
  • Scanning interference microscope using the acoustic optical device according to the present invention is widely applicable to all fields for sample surface analysis.

Abstract

The present invention relates to a scanning interference microscope. The scanning interference microscope according to the present invention comprises: a light source; a polarized beam splitter (PBS); an acousto-optic (AO) device; an AO driving unit for driving the AO device according to a modulated frequency (fRF) for dithering within a frequency variable range (Δf) and on the basis of a center modulated frequency (fRF0); a photodetector for detecting an interference signal of a signal light and a reference light; an RF demodulator using a modulated frequency in order to demodulate and output the interference signal; a lock-in amp using a dithering frequency (fdithering) in order to demodulate and output a signal supplied from the RF demodulator; a function generator for generating a dithering signal having a preset amplitude (A) and the dithering frequency (fdithering) and supplying the generated dithering signal to the AO driving unit, and supplying the dithering frequency (fdithering) to the lock-in amp; and a controller using a signal outputted by the lock-in amp in order to detect information on a sample. The scanning interference microscope according to the present invention uses the AO device, which is capable of: varying the modulated frequency in order to obtain information on a local slope of the sample, in order to be able to accurately measure the surface of the sample; and measuring the amount of change in the overall slope of the sample caused by an external change (noise), so as to be capable of taking a more stable measurement.

Description

음향광학장치를 이용한 국부기울기 주사 간섭 현미경Local Slope Scanning Interference Microscopy Using Acousto-optic Devices
본 발명은 주사 간섭 현미경에 관한 것으로서, 더욱 구체적으로는 변조중심주파수를 기준으로 주파수 가변범위 내에서 디더링(dithering)되는 변조주파수에 따라 스윕(sweep)되는 신호빛을 이용하여 샘플의 국부 기울기에 대한 정보를 획득함으로써, 온도변화, 음향잡음 등의 외부 잡음 및 샘플의 기울기 등에 의한 위상변화에 상관없이 샘플의 표면을 정확히 측정할 수 있는 음향광학장치를 이용한 주사 간섭 현미경에 관한 것이다. The present invention relates to a scanning interference microscope, and more particularly, to a local gradient of a sample using a signal light swept according to a modulation frequency dithered within a frequency variable range based on a modulation center frequency. By acquiring information, the present invention relates to a scanning interference microscope using an acoustic optical device capable of accurately measuring the surface of a sample irrespective of a phase change caused by external noise such as temperature change, acoustic noise, and sample inclination.
음향-광 변조기(Acosto-Opic Modulator; 이하 'AOM'이라 한다)는 이산화텔루르나 수정 단결정 등에 초음파를 전반사시킴으로써, 그 결정내에 주기적으로 굴절 구조를 만드는 소자이다. 이것이 회절 격자의 역할을 하게 되어, 레이저광이 입사되면 굴절 비율 주기에 따라 회절하여 출력되는 특성을 갖는다. 도 1은 일반적인 음향-광 변조기의 동작을 설명하기 위하여 도시한 그림이다. 도 1에 도시된 바와 같이, AOM으로 입사된 빛살(Incident Beam)은 주파수의 변조없는 영차 빛살(Zero-Order Beam), 변주 주파수에 의해 변조된 1차 빛살(First-Order Beam)로 나뉘며, 이들 빛살들은 일정 각도로 분리되어 출력된다. The Acosto-Opic Modulator (hereinafter, referred to as 'AOM') is an element that periodically reflects ultrasonic waves in tellurium dioxide, crystal single crystal, and the like to periodically create a refractive structure in the crystal. This acts as a diffraction grating, and when laser light is incident, it has a characteristic of being diffracted and output according to a refraction ratio period. 1 is a diagram illustrating the operation of a general acoustic-light modulator. As shown in FIG. 1, incident beams incident to the AOM are divided into zero-order beams without frequency modulation and first-order beams modulated by the variation frequency. The lights are separated and output at an angle.
단일의 AOM을 사용하여 간섭계를 구성하는 경우, 이를 복조하기 위하여 고속이면서도 고가의 A/D 컨버터 및 복조기가 필요하다. 따라서, 일반적으로 2개의 AOM을 사용하여 비트 주파수(beat frequency)를 수 kHz로 사용한다. 이와 같이 2개의 AOM을 사용하는 경우 빔 정렬이 어려워질 뿐만 아니라 제작 비용이 증가하는 문제가 있다. When constructing an interferometer using a single AOM, a high speed and expensive A / D converter and demodulator are required to demodulate it. Therefore, in general, two AOMs are used to use a beat frequency of several kHz. As such, when two AOMs are used, beam alignment becomes difficult and manufacturing costs increase.
한편, 단일의 AOM을 사용하여 간섭계를 구성하는 경우, 빛을 나눈 뒤 다시 합치기 위하여 많은 광학 소자들이 필요하기 때문에 전체 시스템이 복잡해지고 빔정렬이 어려워지며, 그 결과 노이즈가 증가되는 문제점이 발생한다. On the other hand, in the case of configuring the interferometer using a single AOM, since many optical elements are required to combine light again after splitting, the entire system becomes complicated and beam alignment becomes difficult, resulting in increased noise.
또한, AOM의 고유 특징으로 AOM의 주파수를 변조할 경우, AOM에서 deflection된 빛의 위치 및 각도가 변하게 되는 문제점이 있다. 또한, AOM으로 입력되는 빛의 파장이 여러 파장이거나 파장이 변하게 되는 경우, deflection 각도가 파장에 따라 달라지므로 다파장 간섭계에서 응용이 어려워지는 문제점이 발생한다. In addition, there is a problem in that the position and angle of the deflected light in the AOM changes when modulating the frequency of the AOM as a unique feature of the AOM. In addition, when the wavelength of the light input to the AOM is a number of wavelengths or the wavelength is changed, there is a problem that the application of the multi-wavelength interferometer is difficult because the deflection angle varies depending on the wavelength.
도 2는 종래의 AOM을 이용한 헤테로다인 간섭계를 도시한 것이다. 도 2에 도시된 헤테로다인 간섭계는 K. Kokkonen, 등에 의해 "Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations"의 제목으로 제안된 것이다. 도 2의 헤테로다인 간섭계는 AOM에서 나온 빛을 모두 사용하는 Single-Pass AOM 간섭계로서, 추후 두 빛살을 다시 합치기 위하여 3개의 거울 및 PBS가 사용되었으며, 간섭을 시키기 위하여 Polarizer를 사용하고 있다. 또한, AOM에서 나온 빛살의 각도가 수 밀리라디안 정도이므로 중앙에 PBS를 놓기 위해서 상당한 거리를 이격시켜 배치하여야 된다. 전술한 종래의 Single-Pass AOM 헤테로다인 간섭계는 AOM을 통과한 빛살들을 합치기 위하여 다수 개의 광학 소자들을 사용하여야 되므로 그 구조가 복잡할 뿐만 아니라 빔정렬이 용이하지 않은 문제점이 발생한다. Figure 2 shows a heterodyne interferometer using a conventional AOM. The heterodyne interferometer shown in FIG. 2 is proposed by K. Kokkonen, et al. Under the heading "Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations". The heterodyne interferometer of FIG. 2 is a single-pass AOM interferometer using all the light emitted from the AOM, and three mirrors and PBSs are used to recombine two beams later, and a polarizer is used to interfere. In addition, since the angle of light emitted from the AOM is about several milliradians, it should be placed at a considerable distance to place the PBS in the center. The conventional Single-Pass AOM heterodyne interferometer described above has to use a plurality of optical elements to combine the light beams passing through the AOM, so that the structure is complicated and the beam alignment is not easy.
특히, 도 2의 헤테로다인 간섭계를 이용하여 주사현미경을 구성하여 샘플의 표면을 분석하는 경우, 온도 변화, 기울기 변화와 같은 외부 환경의 변화가 발생했을 경우, 이것이 노이즈에 대한 요소인지 실제 샘플의 표면 측정값인지 구분할 방법이 없어 정확한 측정이 어렵다는 문제점이 있다. In particular, in the case of analyzing the surface of the sample by configuring the scanning microscope using the heterodyne interferometer of FIG. 2, if a change in the external environment such as a temperature change or a slope change occurs, this is an element for noise or the surface of the actual sample. There is a problem that it is difficult to accurately measure because there is no way to distinguish the measured value.
전술한 문제점을 해결하기 위한 본 발명의 목적은, 중심 변조주파수(fRF0)를 기준으로 하여 주파수 가변 범위(Δf)내에서 디더링되는 변조주파수(fRF)에 따라 스윕(sweep)되는 신호빛을 이용하여 샘플의 국부 기울기 정보를 획득함으로써, 샘플의 표면을 정확하게 측정할 수 있는 음향광학장치를 이용한 주사 간섭 현미경을 제공하고자 하는 것이다.An object of the present invention for solving the above-described problems, the signal light is swept (sweep) according to the modulation frequency (f RF ) dithered within the frequency variable range (Δf) on the basis of the center modulation frequency (f RF0 ) It is an object of the present invention to provide a scanning interference microscope using an acoustic optical device that can accurately measure the surface of a sample by acquiring local gradient information of the sample.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경의 특징은, 빛살을 제공하는 광원; 상기 광원으로부터 제공되는 빛살을 편광 상태에 따라 투과시키거나 반사시키는 편광빔스플리터(PBS); 상기 PBS로부터 제공되는 빛살을 제1 빛살과 제2 빛살로 나누고, 제1 빛살과 제2 빛살을 일정 각도로 분리하여 출력하는 음향 광학 장치(AO Device); 중심변조주파수(fRF0)를 기준으로 하여 주파수 가변 범위(Δf)내에서 디더링(dithering)되는 변조 주파수(fRF)에 따라 상기 음향광학장치를 구동시키는 음향광학장치 구동부; 측정하고자 하는 샘플이 놓여지는 샘플 스테이지; 상기 음향광학장치로부터 제공되는 제1 빛살 및 제2 빛살의 진행 경로에 배치되고, 상기 제1 빛살 및 제2 빛살을 투과시켜 샘플 스테이지로 평행하게 제공하고, 상기 샘플 스테이지로부터 되반사되는 제1 빛살을 입사 경로를 따라 다시 진행하도록 하여 신호빛(Signal beam) 및 기준빛(Reference beam)을 제공하는 렌즈; 상기 음향광학장치와 렌즈 사이에 배치되고, 입사된 빛살들을 원형 편광으로 변환시켜 출력하는 사분파장 위상지연판(QWP); 상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 진행하는 신호빛과 기준빛의 간섭 신호를 검출하여 출력하는 광검출소자; 상기 음향광학장치 구동부로부터 변조주파수에 대한 정보를 제공받고, 상기 변조주파수를 이용하여 상기 광검출소자로부터 제공되는 간섭 신호를 복조하여 출력하는 RF 복조기; 상기 RF 복조기로부터 제공되는 신호를 디더링 주파수(fdithering)를 이용하여 복조하여 출력하는 록인앰프; 사전 설정된 진폭(A)과 디더링 주파수(fdithering)를 갖는 디더링 신호를 생성하고, 상기 디더링 신호를 상기 음향광학장치 구동부로 제공하고 상기 디더링 주파수(fdithering)를 상기 록인앰프로 제공하는 함수 생성기; 상기 록인앰프로부터 출력된 신호를 이용하여 샘플에 대한 정보를 검출하는 제어부; 를 구비하고, 상기 음향광학장치 구동부는 함수 생성기로부터 디더링 신호를 제공받고, 디더링되는 상기 변조 주파수(fRF)는 디더링 신호의 진폭(A)에 의해 주파수 가변 범위(Δf)가 결정되고 디더링 신호의 디더링 주파수(fdithering)에 의해 변조 주파수가 디더링되는 속도가 결정된다. Features of a scanning interference microscope using an acoustic optical device according to the present invention for achieving the above technical problem, the light source for providing light; A polarization beam splitter (PBS) for transmitting or reflecting light beams provided from the light source according to a polarization state; An AO device for dividing light rays provided from the PBS into first light rays and second light rays, and separating the first light rays and the second light rays at a predetermined angle and outputting the light rays; An acoustooptic device driver for driving the acoustooptic device according to a modulation frequency f RF dithered within a frequency variable range Δf based on a center modulation frequency f RF0 ; A sample stage on which a sample to be measured is placed; A first light beam disposed in a traveling path of the first light beam and the second light beam provided from the acoustooptical device, transmitting the first light beam and the second light beam in parallel to a sample stage, and reflecting back from the sample stage; A lens for propagating along the incident path again to provide a signal beam and a reference beam; A quadrature phase delay plate (QWP) disposed between the acoustooptic device and the lens to convert incident light rays into circularly polarized light; A photodetector for detecting and outputting an interference signal of a signal light and a reference light, which are reflected from the PBS after being output from the acoustooptic device; An RF demodulator receiving information on a modulation frequency from the acoustooptic device driver and demodulating and outputting an interference signal provided from the photodetecting device using the modulation frequency; A lock-in amplifier for demodulating and outputting a signal provided from the RF demodulator using a dithering frequency f dithering ; A function generator for generating a dithering signal having a predetermined amplitude (A) and a dithering frequency (f dithering ), providing the dithering signal to the acousto-optic device driver, and providing the dithering frequency (f dithering ) to the lock-in amplifier; A control unit for detecting information about a sample using a signal output from the lock-in amplifier; The acoustooptic device driver is provided with a dithering signal from a function generator, and the modulation frequency f RF to be dithered is determined by the amplitude A of the dithering signal. The dithering frequency f dithering determines the speed at which the modulation frequency is dithered.
전술한 특징을 갖는 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 상기 음향광학장치는 음향-광 변조기(Acousto Optic Modulator; AOM), 음향-광 편향기(Acousto Optic Deflector; AOD), AOFS(Acousto Optic Frequency Shifter; AOFS) 중 어느 하나로 이루어지는 것을 특징으로 하는 것이 바람직하다.In a scanning interference microscope using the acousto-optic device having the above-mentioned characteristics, the acoustooptic device includes an Acousto Optic Modulator (AOM), an Acousto Optic Deflector (AOD), and AOFS (Acousto Optic). Frequency Shifter (AOFS) is preferably characterized in that made of any one.
전술한 특징을 갖는 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 상기 광검출소자는 상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 제1 경로를 따라 진행하는 빛살들에 대한 제1 간섭 신호를 검출하여 출력하는 제1 광검출소자로 구비되는 것을 특징으로 하는 것이 바람직하다.In the scanning interference microscope using the acousto-optical device having the above-mentioned characteristics, the photodetecting device detects a first interference signal for light rays that are output from the acoustooptical device and then reflected by the PBS and traveling along a first path. It is preferable that it is provided with the 1st photodetecting element which outputs.
전술한 특징을 갖는 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 상기 광검출소자는 상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 제1 경로를 따라 진행하는 빛살들에 대한 제1 간섭신호를 검출하여 출력하는 제1 광검출소자; 및 상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 제2 경로를 따라 진행하는 빛살들에 대한 제2 간섭신호를 검출하여 출력하는 제2 광검출소자;로 구비되며, 상기 헤테로다인 간섭계는 제1 광검출소자 및 제2 광검출소자로부터 제1 간섭신호 및 제2 간섭신호의 차이값을 상기 RF 복조기로 출력하는 차동증폭기를 더 구비하는 것을 특징으로 하는 것이 바람직하다.In the scanning interference microscope using the acousto-optical device having the above-mentioned characteristics, the photodetecting device detects a first interference signal for light rays that are output from the acoustooptical device and then reflected by the PBS and traveling along a first path. A first photodetecting device for outputting; And a second photodetector for detecting and outputting a second interference signal for light beams reflected from the PBS and traveling along a second path after being output from the acoustooptic device, wherein the heterodyne interferometer includes a first optical sword Preferably, a differential amplifier for outputting a difference value between the first interference signal and the second interference signal from the output device and the second photodetector to the RF demodulator.
전술한 특징을 갖는 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 상기 광원은 레이저; 및 상기 레이저로부터 출력된 광을 P파로 정렬하여 출력하는 광 분리기(Optical Isolator);로 이루어지는 것을 특징으로 하는 것이 바람직하다.A scanning interference microscope using an acoustooptical device having the above characteristics, the light source comprising: a laser; And an optical isolator (Optical Isolator) for aligning and outputting the light output from the laser with P waves.
전술한 특징을 갖는 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 상기 음향광학장치로부터 출력되는 제1 빛살은 변조 주파수(fRF)에 의해 변조된 1차(First-order) 빛살이며, 제2 빛살은 변조되지 않은 영차(Zero-order) 빛살인 것을 특징으로 하는 것이 바람직하다.In a scanning interference microscope using an acousto-optical device having the above-mentioned characteristics, the first light output from the acoustooptical device is first-order light modulated by a modulation frequency f RF , and a second light beam. Is preferably an unmodulated zero-order light.
전술한 특징을 갖는 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 상기 헤테로다인 간섭계는 주파수 체배기를 더 구비하고, 상기 주파수 체배기는 음향광학장치 구동부로부터 제공되는 변조 주파수를 2배의 주파수로 변환하여 RF 복조기로 출력하는 것을 특징으로 하는 것이 바람직하다.In a scanning interference microscope using an acoustic optical device having the above-mentioned characteristics, the heterodyne interferometer further includes a frequency multiplier, wherein the frequency multiplier converts the modulation frequency provided from the acoustic optical device driver into a frequency twice as high as that of the RF. It is preferable to output to a demodulator.
본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경은 변조주파수를 변동시킬 수 있는 음향광학장치를 이용하여 샘플의 국부기울기에 대한 정보를 획득하도록 함으로써, 샘플의 표면을 정확하게 측정할 수 있을 뿐만 아니라, 참조빛이 신호빛과 함께 샘플면에 조사되므로, 외부의 변화(noise)로 인한 샘플의 전반적인 기울기 변화 혹은 틸트된 샘플의 조건에 상관없이 국부적인 기울기변화 즉, 위상변화(단차변화)만을 선택적으로 측정이 가능하여 보다 안정적인 측정이 가능해진다. The scanning interference microscope using the acousto-optic device according to the present invention can obtain the information on the local tilt of the sample by using the acoustooptic device which can change the modulation frequency, thereby not only accurately measuring the surface of the sample, Since the reference light is irradiated to the sample surface together with the signal light, only a local gradient change, that is, a phase change (step change), can be selectively performed regardless of the overall gradient change of the sample due to external noise or the condition of the tilted sample. The measurement is possible, which makes the measurement more stable.
또한, 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경은 이중경로 AOM을 이용하므로 추가적인 광학계가 없는 간단한 구조를 가지는 광학계를 구성할 수 있을 뿐 아니라, 두 개의 간섭빛살의 고유성질을 이용하여 노이즈와 DC 성분을 모두 제거할 수 있는 Balanced Detection을 구현할 수 있게 된다. 또한, 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경은 유사 동일 경로(Pseudo-common-path)를 갖는 신호빛 및 기준빛을 이용함으로써, 외부환경 변화에 둔감하여 정확한 측정이 가능하게 된다.In addition, the scanning interference microscope using the acousto-optic device according to the present invention uses a dual-path AOM, so that not only an optical system having a simple structure without an additional optical system can be configured, but also the noise and the uniqueness of the two interference light beams are used. Balanced Detection can be implemented to remove all DC components. In addition, the scanning interference microscope using the acoustic optical device according to the present invention uses a signal light and a reference light having a pseudo-common-path, thereby making it possible to accurately measure insensitive to changes in the external environment.
도 1은 일반적인 음향-광 변조기의 동작을 설명하기 위하여 도시한 그림이다.1 is a diagram illustrating the operation of a general acoustic-light modulator.
도 2는 종래의 AOM을 이용한 헤테로다인 간섭계를 도시한 것이다.Figure 2 shows a heterodyne interferometer using a conventional AOM.
도 3은 본 발명의 제1 실시예 실시예에 따른 음향광학장치를 이용한 주사 간섭 현미경의 구성을 개략적으로 도시한 블록도이다.3 is a block diagram schematically showing the configuration of a scanning interference microscope using an acoustic optical device according to the first embodiment of the present invention.
도 4는 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 샘플 스테이지에 제공되는 제2 빛살 및 스윕(sweep)되는 제1 빛살을 예시적으로 도시한 도면이다.FIG. 4 is a view illustrating a second light beam and a first light beam swept provided in a sample stage in a scanning interference microscope using an acoustic optical device according to the present invention.
도 5는 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경으로 샘플의 국부 기울기를 측정하는 방법을 설명하는 도면이다. 5 is a view for explaining a method for measuring the local tilt of the sample with a scanning interference microscope using an acoustic optical device according to the present invention.
도 6은 음향광학장치로 입사된 빛살들과 음향광학장치에 의해 변조되어 출력된 빛살들을 설명하기 위하여 도시한 그림이다.FIG. 6 is a diagram illustrating light rays incident to the acoustooptic device and light rays modulated and output by the acoustooptic device.
도 7은 본 발명에 따른 RF 복조기(380) 및 록인앰프(386)의 입력 및 출력 신호를 도시한 블록도이다.7 is a block diagram illustrating input and output signals of the RF demodulator 380 and lock-in amplifier 386 according to the present invention.
도 8은 본 발명의 제2 실시예에 따른 음향광학장치를 이용한 주사 간섭 현미경의 구성을 개략적으로 도시한 블록도이다.8 is a block diagram schematically showing the configuration of a scanning interference microscope using an acoustic optical device according to a second embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 음향광학장치를 이용한 주사 간섭 현미경의 구조 및 동작 원리에 대하여 구체적으로 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the structure and operating principle of a scanning interference microscope using an acoustic optical device according to a preferred embodiment of the present invention.
제1 실시예First embodiment
도 3은 본 발명의 제1 실시예 실시예에 따른 음향광학장치를 이용한 주사 간섭 현미경을 개략적으로 도시한 구성도이다. 도 3을 참조하면, 본 발명에 따른 주사 간섭 현미경(30)은 광원(300), PBS(310), 음향광학장치(320), 음향광학장치 구동부(330), 샘플 스테이지(340), 렌즈(350), QWP(360), 제1 광검출소자(370), 제2 광검출소자(372), 차동증폭기(374), RF 복조기(380), 함수 생성기(384), 록인앰프(386) 및 제어부(390)를 구비한다. 본 발명의 바람직한 실시예에 따른 음향광학장치를 이용한 주사 간섭 현미경은 음향광학장치 구동부에 의해 디더링(dithering)되는 변조주파수(fRF)에 따라 음향광학장치로부터 변조된 제1 빛살의 회절 각도가 미세하게 가변되고, 그 결과 신호빛(Signal beam)이 샘플 측정 지점으로부터 스윕(sweep)되는 현상을 이용하여, 샘플의 국부기울기 정보를 획득하는 것을 특징으로 한다. 3 is a block diagram schematically illustrating a scanning interference microscope using an acoustic optical device according to a first embodiment of the present invention. Referring to FIG. 3, the scanning interference microscope 30 according to the present invention includes a light source 300, a PBS 310, an acoustic optical device 320, an acoustic optical device driver 330, a sample stage 340, and a lens. 350, QWP 360, first photodetector 370, second photodetector 372, differential amplifier 374, RF demodulator 380, function generator 384, lock-in amplifier 386, and controller ( 390). In the scanning interference microscope using the acoustooptic device according to the preferred embodiment of the present invention, the diffraction angle of the first light beam modulated from the acoustooptical device is fine according to the modulation frequency f RF dithered by the acoustooptic device driver. It is characterized in that the local gradient information of the sample is obtained by using a phenomenon in which the signal beam is swept from the sample measuring point.
상기 광원(300)은 단일의 선형 편광파로 이루어지는 빛살을 제공하는 것으로서, 레이저(302) 및 상기 레이저로부터 출력된 광을 P파로 정렬하여 출력하는 광분리기(Optical Isolator)(304)로 이루어진다. 따라서, 상기 광원(300)은 P파로 정렬된 빛살을 PBS(410)로 제공한다. The light source 300 provides a beam of light composed of a single linear polarization wave, and includes a laser 302 and an optical isolator 304 that aligns and outputs the light output from the laser into P waves. Therefore, the light source 300 provides the PBS 410 with light beams aligned with P waves.
편광빔스플리터(PBS; 310)는 입사되는 빛살을 편광 상태에 따라 투과시키거나 반사시키는 소자로서, P파는 그대로 투과하고 S파는 입사각과 수직되게 반사시킨다. 따라서, PBS는 광원(300)으로부터 제공되는 P파를 그대로 투과시켜 음향광학장치(320)로 제공한다. The polarization beam splitter (PBS) 310 transmits or reflects incident light according to a polarization state. The polarization beam splitter (PBS) 310 transmits the P wave as it is and reflects the S wave perpendicular to the incident angle. Therefore, the PBS transmits the P wave provided from the light source 300 as it is and provides it to the acoustic optical device 320.
음향광학장치(320)는 음향광학장치 구동부(330)로부터 제공되는 디더링되는 변조 주파수(fRF)로 진동하게 되고, 그 결과 입사되는 빛살의 일부는 변조없이 원래 주파수(f0)를 그대로 갖는 영차(Zero-order) 빛살로 출력되고, 입사되는 빛살의 일부는 변조 주파수(fRF)에 의해 변조되어 1차(First-order) 빛살로 출력된다. 이때, 변조되는 1차 빛살은 회절되어 출력되므로, f0의 주파수를 갖는 영차 빛살과 f0+fRF의 주파수를 갖는 1차 빛살은 서로 일정 각도로 분리하여 출력된다. 여기서 변조된 1차 빛살을 제1 빛살이라고 하고, 변조되지 않은 0차 빛살을 제2 빛살이라고 정의한다. The acoustooptic device 320 vibrates at the dithered modulation frequency f RF provided from the acoustooptic device driver 330, and as a result, a part of the incident light beams has the original frequency f 0 without modulation. (Zero-order) light beams are output, and a part of the light beams incident is modulated by the modulation frequency f RF and output as first-order light beams. In this case, since the modulated primary light beams are diffracted and output, the zero order light beams having a frequency of f 0 and the primary light beams having a frequency of f 0 + f RF are separated from each other at a predetermined angle and output. Here, the modulated primary light is defined as first light, and the unmodulated zero order light is defined as second light.
상기 음향광학장치 구동부(330)에 의해 제공되는 변조 주파수(fRF)가 디더링됨에 따라, 상기 음향광학장치(320)는 제1 빛살의 회절 각도를 미세 변동시키게 된다. 상기 변조주파수(fRF)는 중심 변조주파수(fRF0)를 기준으로 하여 주파수 가변 범위(Δf)내에서 미세하게 디더링(dithering) 되는 가변 주파수로서, 음향광학장치 구동부로부터 입력된다. 본 발명에서는 변조주파수가 중심 변조 주파수를 중심으로 하여 주파수 가변 범위내에서 디더링됨에 따라, 음향광학장치를 통과한 제1 빛살이 샘플 측정지점을 기준으로 하여 스윕(sweep)된다. 제1 빛살이 샘플의 측정 지점으로부터 스윕(sweep)되는 크기는 변조 주파수의 주파수 가변범위에 따라 결정되며, 제1 빛살이 스윕되는 속도는 변조 주파수의 디더링 속도에 따라 결정된다. 여기서, 디더링 속도라 함은 변조 주파수가 중심 변조주파수를 기준으로 하여 주파수 가변범위내에서 반복되는 속도를 의미한다. As the modulation frequency f RF provided by the acoustooptic device driver 330 is dithered, the acoustooptic device 320 finely varies the diffraction angle of the first light beam. The modulation frequency f RF is a variable frequency finely dithered within the frequency variable range Δf on the basis of the center modulation frequency f RF0 and is input from the acoustooptic device driver. In the present invention, as the modulation frequency is dithered within a frequency variable range around the center modulation frequency, the first light beams passing through the acoustooptical device are swept based on the sample measuring point. The magnitude of the sweep of the first light from the measurement point of the sample is determined according to the frequency variable range of the modulation frequency, and the speed at which the first light is swept is determined according to the dithering speed of the modulation frequency. Here, the dithering speed means a speed at which the modulation frequency is repeated within a frequency variable range on the basis of the center modulation frequency.
제1 빛살이 수 nm 정도만을 스윕(sweep)되도록 하여 샘플의 국부기울기(local slope)를 포함하는 신호빛(Signal beam)을 획득할 수 있게 된다. 이렇게 획득된 신호빛은 RF 복조기에 의해 I값 및 Q값으로 복조되고, 록인앰프에 의해 디더링(dithering) 주파수와 같은 주파수의 신호만이 검출되어 출력된다. 여기서, 음향광학장치(320)는 음향광학장치 구동부(330)가 제공하는 변조 주파수 및 가변주파수에 따라 제1 빛살을 스윕(sweep)시킬 수 있는 음향-광 변조기(Acousto Optic Modulator; AOM), 음향-광 편향기(Acousto-Optic Deflector; AOD), AOFS(Acousto Optic Frequency Shitfter; AOFS) 등이 사용될 수 있다.The first light beam is swept by only a few nm, thereby obtaining a signal beam including a local slope of the sample. The signal light thus obtained is demodulated into I and Q values by the RF demodulator, and only the signal having the same frequency as the dithering frequency is detected and output by the lock-in amplifier. Here, the acousto-optic device 320 is an acoustic-optic modulator (AOM) capable of sweeping the first light beam according to the modulation frequency and the variable frequency provided by the acoustooptic device driver 330, and the sound. Optical-Optic Deflector (AOD), Acousto Optic Frequency Shitfter (AOFS) and the like can be used.
한편, 음향광학장치로 입사된 P파의 빛살들은 음향광학장치를 통과함에 따라 음향광학장치의 특성에 의해 P파로부터 90°회전된 선형 편광상태인 S파가 된다.On the other hand, the light waves of the P-waves incident on the acoustooptic device become S-waves in a linearly polarized state rotated 90 ° from the P-wave by the characteristics of the acoustooptic device as they pass through the acoustooptic device.
한편, 상기 음향광학장치 구동부(330)는 중심 변조주파수(fRF0)를 기준으로 하여 주파수 가변 범위(Δf)내에서 디더링되는 변조주파수(fRF)에 따라 음향광학장치를 구동시키고, 신호빛의 검출을 위하여 변조 주파수(fRF)에 대한 정보를 RF 복조기(380)로 제공한다. 상기 변조주파수는 함수 생성기로부터 제공되는 디더링 신호에 따라 디더링되는데, 디더링 신호의 진폭(A)에 의해 주파수 가변범위(Δf)가 결정되며 디더링 신호의 디더링 주파수(fdithering)에 의해 디더링 속도가 결정된다. 여기서, 디더링 속도는 변조 주파수가 중심 변조주파수(fRF0)를 기준으로 하여 주파수 가변범위내에서 반복적으로 변동되는 속도를 의미한다. Meanwhile, the acoustooptic device driver 330 drives the acoustooptic device according to a modulation frequency f RF dithered within a frequency variable range Δf based on a center modulation frequency f RF0 , and controls the signal light. Information about the modulation frequency f RF is provided to the RF demodulator 380 for detection. The modulation frequency is dithered according to the dithering signal provided from the function generator. The frequency variable range Δf is determined by the amplitude A of the dithering signal and the dithering speed is determined by the dithering frequency f dithering of the dithering signal. . Here, the dithering speed means a speed at which the modulation frequency is repeatedly changed within a frequency variable range on the basis of the center modulation frequency f RF0 .
상기 함수 생성기(function generator; 384)는 원하는 디더링 주파수(fdithering)와 진폭(A)를 갖는 사인파형태의 디더링 신호(Sinusoidal Dithering Signal)를 생성하여 음향광학장치 구동부로 제공하고 디더링 주파수(fdithering)에 대한 정보는 록인앰프(Lock-In AMP;386)로 제공한다. 디더링 주파수(fdithering)는 1차 회절된 빛을 얼마나 빠르게 왕복하여 회절시키거나 횡방향으로 움직이게 할 것인가를 결정하게 되며, 디더링 신호의 진폭(A)은 주파수 가변 범위를 결정하게 된다. The function generator 384 generates a sinusoidal dithering signal having a desired dithering frequency (f dithering ) and an amplitude (A), and provides the sinusoidal dithering signal to an acoustooptic device driver, and dithering frequency (f dithering ). Information about this is provided to the Lock-In AMP (386). The dithering frequency f dithering determines how fast the first diffracted light is to be reciprocated and diffracted or laterally moved, and the amplitude A of the dithering signal determines the frequency variable range.
상기 샘플스테이지(340)는 측정하고자 하는 샘플이 놓여진다.The sample stage 340 is placed a sample to be measured.
사분파장 위상지연판인 QWP(Quater-Wave Plate; 360)는 45°로 정렬되어 있기 때문에, S파의 선형 편광이 입사되면 원형 편광으로 변환시켜 출력하게 되며, 다시 상기 원형 편광된 빛이 입사되면 P파의 선형 편광으로 변환시켜 출력한다. 상기 QWP(360)는 상기 음향광학장치로부터 제공되는 제1 및 제2 빛살의 진행 경로에 배치되고, 상기 음향광학장치(320)로부터 반사된 선형 편광들을 원형 편광으로 변환시켜 출력하거나, 상기 샘플 스테이지로부터 반사된 원형 편광들을 선형 편광으로 변환시켜 출력한다.Since the quarter-wave phase delay plate QWP (Quater-Wave Plate; 360) is aligned at 45 °, when the linearly polarized light of S wave is incident, it is converted into circularly polarized light and outputted. It converts into linearly polarized light of P wave and outputs it. The QWP 360 is disposed in the paths of the first and second light beams provided from the acoustooptic device, and converts the linearly polarized light reflected from the acoustooptic device 320 into circular polarized light or outputs the sample stage. The circularly polarized light reflected from the light is converted into linearly polarized light and output.
한편, 상기 렌즈(350)는 상기 음향광학장치로부터 제공되는 제1 빛살 및 제2 빛살의 진행 경로에 배치되고, 상기 제1 빛살 및 제2 빛살을 투과시켜 샘플 스테이지로 평행하게 제공한다. 도 4는 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경에 있어서, 샘플 스테이지에 제공되는 제2 빛살 및 스윕(sweep)되는 제1 빛살을 예시적으로 도시한 도면이다. 도 4를 참조하면, 0차 빛살인 제2 빛살과 1차 빛살인 제1 빛살은 평행하게 입사하되, 수 마이크로(㎛)의 차이를 갖고 샘플 스테이지(340)로 입사하게 된다. 이렇게 평행하게 입사하는 제1 빛살 및 제2 빛살은 각각 신호빛(Signal beam) 및 기준빛(Reference beam)이 되므로, 수 마이크로의 차이만 있을 뿐 마치 공통 경로(Pseudo Common-path)로 진행하게 된다. 따라서, 본 발명에 따른 음향광학장치를 이용한 주사 현미경은 신호빛과 기준빛의 경로가 동일하여 노이즈에 대한 요인을 제거할 수 있어, 안정적인 측정이 가능하게 된다.On the other hand, the lens 350 is disposed in the path of the first and second light beams provided from the acoustooptic device, and transmits the first and second light beams in parallel to the sample stage. FIG. 4 is a view illustrating a second light beam and a first light beam swept provided in a sample stage in a scanning interference microscope using an acoustic optical device according to the present invention. Referring to FIG. 4, the second light rays of the zeroth order light and the first light rays of the first order light incident in parallel are incident on the sample stage 340 with a difference of several micrometers (μm). Since the first and second beams incident in parallel become signal beams and reference beams, respectively, there are only a few micro-differences, so that they proceed in a common common path. . Therefore, the scanning microscope using the acousto-optic device according to the present invention has the same path of the signal light and the reference light, which can eliminate the factors for the noise, thereby enabling stable measurement.
한편, 상기 렌즈를 통과한 제1 빛살은 음향광학장치 구동부로부터 제공되는 변조주파수에 의해 회절된 후 샘플 스테이지(340)로 평행하게 입사되면서 수 나노미터(nm)의 Δd를 갖고 측정 지점에서 스윕(sweep)하게 된다. 도 5는 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경으로 샘플의 국부 기울기를 측정하는 방법을 설명하는 도면이다. 도 5를 참조하면, 스윕(sweep)되는 제1 빛살은 샘플의 국부기울기에 의해 수학식 1과 같은 위상차(Δφ)를 갖게 된다.On the other hand, the first light beam passing through the lens is diffracted by the modulation frequency provided from the acoustooptic device driver and then incident in parallel to the sample stage 340, having a Δd of several nanometers (nm) and sweeping at the measurement point. sweep). 5 is a view for explaining a method for measuring the local tilt of the sample with a scanning interference microscope using an acoustic optical device according to the present invention. Referring to FIG. 5, the first light that is swept has a phase difference Δφ as shown in Equation 1 by a local slope of the sample.
수학식 1
Figure PCTKR2012002290-appb-M000001
Equation 1
Figure PCTKR2012002290-appb-M000001
여기서, Δz는 스윕되는 제1 빛살의 경로차(path deference) 이며,
Figure PCTKR2012002290-appb-I000001
로 표현된다. 여기서 A는 변조 주파수가 중심변조주파수를 기준으로 하여 가변되는 범위 및 샘플의 기울기에 의해 결정되며,
Figure PCTKR2012002290-appb-I000002
은 가변주파수(Δf)의 스윕(sweep)과 관련된 주파수이다.
Here, Δz is the path difference of the first light to be swept,
Figure PCTKR2012002290-appb-I000001
It is expressed as Where A is determined by the slope of the sample and the range over which the modulation frequency is varied relative to the center modulation frequency,
Figure PCTKR2012002290-appb-I000002
Is the frequency associated with the sweep of the variable frequency Δf.
또한, 도 5를 참조하면, 국부기울기(tanθ)는 수학식 2로 나타낼 수 있다.In addition, referring to FIG. 5, the local gradient tan θ may be represented by Equation 2.
수학식 2
Figure PCTKR2012002290-appb-M000002
Equation 2
Figure PCTKR2012002290-appb-M000002
따라서, 수학식 1과 수학식 2를 이용하여 국부기울기는 수학식 3으로 표현된다.Therefore, the local gradient is expressed by Equation 3 using Equations 1 and 2.
수학식 3
Figure PCTKR2012002290-appb-M000003
Equation 3
Figure PCTKR2012002290-appb-M000003
즉, 상기 수학식 3을 통해 스윕되는 제1 빛살에 대한 국부기울기를 측정할 수 있게 된다. 이렇게 측정된 국부기울기를 통해 본 발명에 따른 음향광학장치를 이용한 주사현미경은 샘플 표면의 정확한 분석이 가능해진다. That is, it is possible to measure the local slope of the first light swept through the equation (3). The measured local gradient enables the scanning microscope using the acoustic optical device according to the present invention to accurately analyze the sample surface.
한편, 샘플 스테이지(340))로부터 반사된 제1 및 제2 빛살은 처음 입사되었던 입사경로를 따라 진행하여, 상기 음향광학장치(320)에서 재변조된다. 이때, 상기 음향광학장치(320)로 재입사한 각각의 빛살들은 다시 변조되지 않은 영차 빛살과 변조 주파수에 의해 변조된 일차 빛살로 나뉘어 출력된다. 따라서, 이미 한번 주파수 변조된 빛살이 다시 주파수 변조됨에 따라, 음향광학장치로부터 출력되는 두 빛살의 주파수 차이값, 즉 beat frequency는 음향광학장치의 변조 주파수(fRF)의 2배가 된다. 또한, QWP(360)을 통과한 빛살은 90°회전하여 S파로 변환된다.On the other hand, the first and second light beams reflected from the sample stage 340 proceeds along the incident path that was first incident, and is remodulated by the acoustooptic device 320. At this time, each of the light beams re-entered into the acousto-optic device 320 is output by being divided into non-modulated zero order light beams and primary light beams modulated by the modulation frequency. Accordingly, as the light beams once frequency-modulated are frequency-modulated again, the frequency difference between the two light beams output from the acoustooptical device, that is, the beat frequency, becomes twice the modulation frequency f RF of the acoustooptic device. In addition, the light beams passing through the QWP 360 are converted to S waves by rotating 90 °.
도 6은 음향광학장치로 입사된 빛살들과 음향광학장치에 의해 변조되어 출력된 빛살들을 설명하기 위하여 도시한 그림으로서, 도 6의 (a)는 음향광학장치를 통과하는 단일 경로(Single Pass) AOM에서의 빛살들을 도시한 것이며, 도 6의 (b)는 음향광학장치를 통과한 후 거울들에 의해 반사되어 다시 음향광학장치로 입사되는 이중 경로(Double Pass) AOM에서의 빛살들을 도시한 것이다. 도 6의 (a)를 참조하면, 주파수(f0)를 갖는 P편광의 빛살(a1)이 음향광학장치(60)로 입사되고, 음향광학장치로 입사된 빛살(a2)로 나뉘어 출력된다. 즉, 0차 빛살(a3)은 주파수(f0)를 가지며, 1차 빛살(a2)은 변조되어 주파수(f0+fRF)를 가지게 된다. 음향광학장치로부터 출력된 0차 빛살(a3)은 QWP(62)를 통과하면서 45° 회전하여 원형편광으로 변환되어 거울(66)으로 입사하게 되며, 음향광학장치로부터 출력된 1차 빛살(a2)은 QWP(62)를 통과하면서 45°회전하여 원형편광으로 변환되어 거울(64)로 입사하게 된다.FIG. 6 is a view illustrating light rays incident to the acoustooptic device and light rays modulated and output by the acoustooptical device, and FIG. 6A illustrates a single pass through the acoustooptical device. Figure 6 shows the rays of light in the AOM, and FIG. 6 (b) shows the rays of light in a double pass AOM that are reflected by the mirrors and then incident back into the acousto-optic device after passing through the acoustooptic device. . Referring to FIG. 6A, the light beam a1 of the P-polarized light having the frequency f 0 is incident on the acoustic optical device 60, and divided into the light beam a2 incident on the acoustic optical device. That is, the 0th order light beam a3 has a frequency f 0 , and the 1st order light beam a2 is modulated to have a frequency f 0 + f RF . The zeroth order light beam a3 output from the acousto-optic device is rotated 45 ° while passing through the QWP 62, is converted into circularly polarized light, and enters the mirror 66, and the primary light beam a2 output from the acoustooptical device. Is rotated 45 ° while passing through the QWP 62, converted into circularly polarized light, and is incident on the mirror 64.
도 6의 (b)를 참조하면, 도 6의 (a)와 동일하게 주파수(f0)의 0차 빛살(b2) 및 주파수(f0+fRF)의 1차 빛살(b1)이 각각 거울(66 및 64)에서 반사되어 QWP(62)를 통과하여 음향광학장치(60)로 재입사하게 된다. 음향광학장치로 재입사된 0차 빛살(b2)은 음향광학장치를 그대로 통과하는 0차 빛살(b4)과 음향광학장치의 변조주파수(fRF)로 변조된 1차 빛살(b6)로 나뉘어 서로 일정각도 이격되어 출력된다. 즉, 주파수(f0)의 0차 빛살(b2)은 주파수(f0)의 0차 빛살(b4)과 주파수(f0-fRF)의 1차 빛살(b6)로 나뉘어 출력된다. 한편, 음향광학장치로 재입사된 1차 빛살(b1)은 음향광학장치를 그대로 통과하는 0차 빛살(b5)과 음향광학장치의 변조주파수(fRF)로 변조된 1차 빛살(b3)로 나뉘어 서로 일정 각도 이격되어 출력된다. 즉, 주파수(f0+fRF)의 1차 빛살(b1)은 주파수(f0+fRF)의 0차 빛살(b5)과 주파수(f0+2fRF)의 1차 빛살(b3)로 나뉘어 출력된다. 여기서, 주파수(f0+2fRF)의 1차 빛살(b3)과 주파수(f0)의 0차 빛살(b4)은 서로 동일한 제1 경로를 따라 진행하며, 주파수(f0+fRF)의 0차 빛살(b5)과 주파수(f0-fRF)의 1차 빛살(b6)도 서로 동일한 제2 경로를 따라 진행하게 되며, 제1 경로와 제2 경로는 서로 일정각도 이격된다. Referring to (b) of Figure 6, the primary beams (b1), each mirror of the 0th-order beams (b2) and the frequency (f 0 + f RF) of the same frequency (f 0) of Fig. 6 (a) Reflected at 66 and 64, it passes through QWP 62 and reenters the acoustooptic device 60. The zeroth order rays b2 reentered into the acousto-optic device are divided into the zeroth order rays b4 passing through the acousto-optic device as it is, and the primary rays of light modulated at the modulation frequency f RF of the acousto-optic device b6. A certain angle is output apart. That is, the zero order of the frequency (f 0) beams (b2) is output is divided into the 0th-order beams (b4) and the first frequency beams (b6) of (f 0 -f RF) of the frequency (f 0). On the other hand, the primary light beam (b1) re-entered into the acoustic optical device is the primary light beam (b5) passing through the acoustic optical device as it is and the primary light beam (b3) modulated at the modulation frequency (f RF ) of the acoustic optical device The output is divided by a certain angle from each other. That is, as the primary beams (b3) of the frequency (f 0 + f RF) of the primary beams (b1) has a frequency (f 0 + f RF) of the 0th-order beams (b5) and the frequency (f 0 + 2f RF) The output is divided. Here, the frequency zero-order beams (b4) of the primary beams (b3) and the frequency (f 0) of (f 0 + 2f RF) proceeds along the same first path to each other, the frequency (f 0 + f RF) The zeroth order light beam b5 and the first order light beam b6 of the frequency f 0 -f RF also travel along the same second path, and the first path and the second path are spaced apart from each other by a predetermined angle.
한편, 도 6의 (c)는 음향광학장치 구동부로부터 변동되는 변조주파수에 의해 스윕(sweep)되는 빛살들을 도시한 것이다. 도 6의 (c)를 참조하면, 도 6의 (b)에 도시된 이중 경로에서의 빛살들과 거의 유사하나, 변동되는 변조주파수(fRF±Δf)에 의해서 음향광학장치로부터 출력되는 빛살들의 주파수 값이 미세하게 흔들리게 된다. 음향광학장치로부터 0차 빛살(c2)은 주파수(f0)를 가지며, 1차 빛살(c1)은 변조되어 주파수(f0+fRF±Δf)를 가지게 된다. 전술한 빛살이 거울을 통해 되반사되어 다시 음향광학장치에 재입사되면, 재입사된 0차 빛살(c2)은 음향광학장치를 그대로 통과하는 0차 빛살(c4)과 음향광학장치의 변조주파수(fRF±Δf)로 변조된 1차 빛살(c6)로 나뉘어 서로 일정각도 이격되어 출력된다. 즉, 주파수(f0)의 0차 빛살(c2)은 주파수(f0)의 0차 빛살(c4)과 주파수(f0-(fRF±Δf))의 1차 빛살(c6)로 나뉘어 출력된다. 한편, 음향광학장치로 재입사된 1차 빛살(c1)은 음향광학장치를 그대로 통과하는 0차 빛살(c5)과 음향광학장치의 변조주파수(fRF±Δf)로 변조된 1차 빛살(c3)로 나뉘어 서로 일정 각도 이격되어 출력된다. 즉, 주파수(f0+fRF±Δf)의 1차 빛살(c1)은 주파수(f0+fRF±Δf)의 0차 빛살(c5)과 주파수(f0+2(fRF±Δf))의 1차 빛살(c3)로 나뉘어 출력된다. 여기서, 주파수(f0+2(fRF±Δf))의 1차 빛살(c3)과 주파수(f0)의 0차 빛살(c4)은 서로 동일한 제1 경로를 따라 진행하며, 주파수(f0+fRF±Δf)의 0차 빛살(c5)과 주파수(f0-(fRF±Δf))의 1차 빛살(c6)도 서로 동일한 제2 경로를 따라 진행하게 되며, 제1 경로와 제2 경로는 서로 일정각도 이격된다. 또한, 여기서, Δf에 의해 스윕되는 빛살의 각도는 미세하기 때문에, 약간의 차이만 있을 뿐 스윕되는 빛살들을 하나의 광검출소자에서 검출가능한 수준으로 변동될 뿐이다. 도 6의 (c)는 설명의 편의를 위해 다소 과장되게 표현되었다.On the other hand, Figure 6 (c) shows the light beams (sweep) is swept by the modulation frequency that is changed from the acoustic optical device driver. Referring to (c) of FIG. 6, light rays in the dual path shown in FIG. 6 (b) are almost similar to those of the light rays output from the acoustooptic device due to a variable modulation frequency (f RF ± Δf). The frequency value fluctuates minutely. From the acoustooptic device, the zeroth order light c2 has a frequency f 0 , and the primary order light c1 is modulated to have a frequency f 0 + f RF ± Δf. When the above-mentioned light beam is reflected back through the mirror and re-entered into the acoustic optical device again, the re-entered zeroth light beam (c2) is the zeroth light beam (c4) passing through the acoustic optical device as it is and the modulation frequency of the acoustic optical device ( f RF ± Δf) divided by the primary light beam (c6) modulated by a predetermined angle is output to each other. In other words, the frequency (f 0) of the 0th-order beams (c2) is a frequency (f 0) of the 0th-order beams (c4) and the frequency (f 0 - (f RF ± Δf)) 1 primary beams (c6) as a divided output of do. On the other hand, the primary light beam (c1) re-entered into the acoustic optical device is a primary light beam (c3) modulated at the modulation frequency (f RF ± Δf) of the acoustic optical device and the zeroth light beam (c5) passing through the acoustic optical device as it is The output is separated by a certain angle. That is, the primary frequency of (f 0 + f RF ± Δf ) beams (c1) is the frequency zero-order beams (c5) and the frequency (f 0 +2 (f RF ± Δf) of (f 0 + f RF ± Δf ) The output is divided into the primary rays of light c3). Here, the frequency (f 0 +2 (f RF ± Δf)) 1 primary beams (c3) and the frequency zero-order beams (c4) of (f 0) of the proceeds along the same first path to each other, the frequency (f 0 The zeroth order c5 of + f RF ± Δf and the first order c6 of frequency f 0 − (f RF ± f) also travel along the same second path. The two paths are spaced at a certain angle from each other. In addition, since the angle of the light beam swept by Δf is minute, there is only a slight difference and only the light beams swept are changed to a level detectable by one photodetector. 6C is somewhat exaggerated for convenience of description.
PBS(310)로 입사된 빛살들은 모두 S 편광상태로서, 제1 경로('a')를따라 입사된 빛은 PBS에 의해 반사되어 제1 광검출소자(370)로 진행하며, 제2 경로('b')를 따라 입사한 빛은 PBS에 의해 반사되어 제2 광검출소자(372)로 진행한다.All the light beams incident on the PBS 310 are S-polarized states, and the light incident along the first path 'a' is reflected by the PBS and proceeds to the first photodetector 370. Light incident along b ') is reflected by the PBS and proceeds to the second photodetector 372.
제1 광검출소자(370)는 주파수 f0+2(fRF±Δf)의 1차 빛살(b3)과 주파수 f0의 0차 빛살(b4)이 입사되고, 입사된 빛살들에 대한 주파수 2(fRF±Δf)의 간섭신호(I1)를 복조기(380)로 출력한다. 한편, 제2 광 검출소자(372)는 주파수 f0+fRF±Δf의 0차 빛살(b5)과 주파수 f0-(fRF±Δf)의 1차 빛살(b6)이 입사되고, 입사된 빛살들에 대한 주파수 2(fRF±Δf)의 제2 간섭신호(I2)를 차동증폭기(Differntial Amplifier; 374)로 출력한다. 여기서, 제2 광검출소자(372)는 PBS로부터 반사된 빛살들이 진행하는 경로상에 비스듬히 배치된 D-Shaped 거울 및 상기 D-Shaped 거울로부터 반사된 빛살들이 진행하는 경로 상에 배치된 광검출기로 구성될 수 있다.The first photodetector 370 has a first light beam b3 having a frequency f 0 +2 (f RF ± Δf) and a zero light beam b4 having a frequency f 0 , and the frequency 2 ( The interfering signal I 1 of f rf ± Δf is output to the demodulator 380. On the other hand, in the second photodetecting device 372, the zeroth order light b5 of frequency f 0 + f RF ± Δf and the first light beam b6 of frequency f 0 − (f RF ± Δf) are incident and are incident. The second interference signal I 2 of frequency 2 (f RF ± Δf) for the light beams is output to a differential amplifier 374. Here, the second photodetector 372 includes a D-Shaped mirror disposed obliquely on a path through which the rays reflected from the PBS travel and a photodetector disposed on a path through the rays reflected from the D-Shaped mirror. Can be.
전술한 제1 간섭 신호 및 제2 간섭 신호는 수학식 4 및 5로 표현될 수 있다.The first interference signal and the second interference signal described above may be represented by equations (4) and (5).
수학식 4
Figure PCTKR2012002290-appb-M000004
Equation 4
Figure PCTKR2012002290-appb-M000004
수학식 5
Figure PCTKR2012002290-appb-M000005
Equation 5
Figure PCTKR2012002290-appb-M000005
여기서, Is는 간섭신호의 DC성분이며 IL은 간섭신호의 노이즈 성분에 해당한다. Here, Is is the DC component of the interference signal and I L corresponds to the noise component of the interference signal.
차동증폭기(374)는 제1 광검출소자(370) 및 제2 광검출소자(372)로부터 각각 제1 및 제2 간섭신호들이 입력되고, 입력된 간섭신호들의 차이값(I 1-I 2)을 검출하여 복조기(380)로 출력한다. 한편, 일반적으로 AOM으로부터 출력된 변조되지 않은 0차 빛살과 1번 변조된 1차 빛살은 90°의 위상차를 갖게 된다. 따라서, 전술한 제1 간섭 신호와 제2 간섭 신호의 위상차는 2번 변조에 의하여 180°의 위상차(
Figure PCTKR2012002290-appb-I000003
)를 갖게 되고, 그 결과, 수학식 5는 수학식 6으로 다시 정리할 수 있게 된다.
The differential amplifier 374 receives first and second interference signals from the first photodetector 370 and the second photodetector 372, respectively, and detects a difference value I 1 -I 2 of the input interference signals. And output to the demodulator 380. On the other hand, in general, the unmodulated zeroth order light output from the AOM and the first modulated first order light beam have a phase difference of 90 °. Accordingly, the phase difference between the first interference signal and the second interference signal described above is 180 ° due to the second modulation.
Figure PCTKR2012002290-appb-I000003
), And as a result, equation (5) can be rearranged into equation (6).
수학식 6
Figure PCTKR2012002290-appb-M000006
Equation 6
Figure PCTKR2012002290-appb-M000006
전술한 수학적 근거에 의해, 차동 증폭기(474)의 출력신호(I1-I2)는 수학식 7와 같이 나타나게 된다. 따라서, 본 발명의 제1 실시예에 따른 차동 증폭기는 Balanced Detection한 것과 동일한 결과로서 DC 신호 및 노이즈 신호가 모두 제거된 2배의 간섭신호를 얻게 된다. Based on the above-described mathematical basis, the output signals I 1 -I 2 of the differential amplifier 474 are represented by Equation 7 below. Accordingly, the differential amplifier according to the first embodiment of the present invention obtains twice the interference signal from which both the DC signal and the noise signal are removed as the same result of the balanced detection.
수학식 7
Figure PCTKR2012002290-appb-M000007
Equation 7
Figure PCTKR2012002290-appb-M000007
음향광학장치 구동부로부터 제공된 변조 주파수(fRF)는 체배기(Frequency Doubler; 382)를 통해 2배의 주파수(2f RF )로 변환되어 RF 복조기(380)로 제공된다. RF 복조기(380)는 상기 2배의 변조 주파수(2f RF )를 이용하여 상기 광검출소자로부터 제공되는 간섭 신호를 RF 복조하여 신호빛에 대한 I 신호 및 Q 신호를 검출하여 록인앰프(386)로 출력한다. The modulation frequency f RF provided from the acoustooptic device driver is converted into a double frequency (2 f RF ) through a frequency doubler 382 and provided to the RF demodulator 380. The RF demodulator 380 RF demodulates the interference signal provided from the photodetector using the double modulation frequency (2 f RF ) to detect the I signal and the Q signal for the signal light to the lock-in amplifier 386. Output
록인 앰프(386)는 함수 생성기로부터 제공된 디더링 주파수를 참조 신호로 하여, RF 복조기로부터 입력된 I 신호 및 Q 신호 중 디더링 주파수와 동일한 주파수의 신호를 검출하여 제어부(390)로 출력한다. The lock-in amplifier 386 detects a signal having the same frequency as the dithering frequency among the I and Q signals input from the RF demodulator and outputs the dithering frequency provided from the function generator to the control unit 390.
도 7은 본 발명에 따른 RF 복조기(380) 및 록인 앰프(386)의 입력 및 출력 신호를 도시한 블록도이다. 도 7에 도시된 바와 같이, RF 복조기(380)는 간섭 신호 및 변조 주파수 정보를 입력받아 복조하여 I 값 및 Q 값으로 출력하며, 록인 앰프(386)는 RF 복조기로부터 출력된 신호 중 디더링 주파수와 동일한 주파수의 신호를 검출하여 출력한다. 여기서, 상기 I 값 및 Q 값은 수학식 8 및 9와 같다.7 is a block diagram illustrating input and output signals of the RF demodulator 380 and lock-in amplifier 386 in accordance with the present invention. As shown in FIG. 7, the RF demodulator 380 receives and demodulates interference signals and modulation frequency information, and outputs the demodulated signals as I values and Q values. The lock-in amplifier 386 has a dithering frequency among the signals output from the RF demodulator. Detects and outputs signals of the same frequency. Here, the I value and the Q value are as shown in Equations 8 and 9.
수학식 8
Figure PCTKR2012002290-appb-M000008
Equation 8
Figure PCTKR2012002290-appb-M000008
수학식 9
Figure PCTKR2012002290-appb-M000009
Equation 9
Figure PCTKR2012002290-appb-M000009
전술한 I 값 및 Q 값을 이용하여 수학식 10 및 11에 따라 진폭 및 위상을 검출할 수 있다. Using the above-described I and Q values, amplitude and phase can be detected according to equations (10) and (11).
수학식 10
Figure PCTKR2012002290-appb-M000010
Equation 10
Figure PCTKR2012002290-appb-M000010
수학식 11
Figure PCTKR2012002290-appb-M000011
Equation 11
Figure PCTKR2012002290-appb-M000011
록인 앰프(386)로부터 출력된 I 값 및 Q 값은 제어부(390)로 제공되어, 위상과 진폭을 검출하게 된다. 상기 제어부(390)는 록인앰프로부터 제공되는 아날로그 신호들을 디지털 신호로 변환하는 A/D 컨버터(392) 및 컴퓨터(394)로 구성될 수 있으며, 상기 컴퓨터(394)는 A/D 컨버터로부터 제공되는 디지털 신호의 I값 및 Q값을 저장하고 이들로부터 위상과 진폭을 검출한다. The I and Q values output from the lock-in amplifier 386 are provided to the controller 390 to detect phase and amplitude. The control unit 390 may include an A / D converter 392 and a computer 394 for converting analog signals provided from the lock-in amplifier into digital signals, and the computer 394 may be provided from the A / D converter. Store the I and Q values of the digital signals and detect the phase and amplitude from them.
전술한 구성을 갖는 음향광학장치를 이용한 주사 간섭 현미경은 변조주파수를 변동시킬 수 있는 음향광학장치를 이용하여 샘플의 국부기울기에 대한 정보를 획득하도록 함으로써, 샘플의 표면을 정확하게 측정할 수 있을 뿐만 아니라, 외부의 변화(noise)로 인한 샘플의 전반적인 기울기 변화도 측정이 가능하여 보다 안정적인 측정이 가능해진다. 또한, 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경은 간단한 구조를 가지는 광학계를 이용하여 노이즈와 DC 성분을 모두 제거할 수 있는 Balanced Detection을 구현할 수 있게 된다. 또한, 본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경은 유사 동일 경로(Pseudo-common-path)를 갖는 신호빛 및 기준빛을 이용함으로써, 외부환경 변화에 둔감하여 정확한 측정이 가능하게 된다.The scanning interference microscope using the acousto-optic device having the above-described configuration can accurately measure the surface of the sample by acquiring information on the local tilt of the sample by using the acoustooptic device capable of varying the modulation frequency. In addition, it is possible to measure the overall gradient change of the sample due to external noise, thereby making the measurement more stable. In addition, the scanning interference microscope using the acousto-optic device according to the present invention can implement balanced detection capable of removing both noise and DC components using an optical system having a simple structure. In addition, the scanning interference microscope using the acoustic optical device according to the present invention uses a signal light and a reference light having a pseudo-common-path, thereby making it possible to accurately measure insensitive to changes in the external environment.
제2 실시예 Second embodiment
이하, 본 발명의 제2 실시예에 따른 음향광학장치를 이용한 주사 간섭 현미경의 구조 및 동작을 구체적으로 설명한다. 제2 실시예에 따른 주사 간섭 현미경은 제1 실시예의 주사 간섭 현미경의 구조과 거의 유사하나, Balanced Detection을 하지 않는다는 점에서 제1 실시예의 주사 간섭 현미경과 차이가 있다. 이러한 차이점으로 인하여 제2 실시예에 따른 주사 간섭 현미경은 Balanced Detection은 구현하지 못하나, 구조가 좀 더 간단하다는 특징을 갖는다. Hereinafter, the structure and operation of the scanning interference microscope using the acoustic optical device according to the second embodiment of the present invention will be described in detail. The scanning interference microscope according to the second embodiment is almost similar to the structure of the scanning interference microscope of the first embodiment, but differs from the scanning interference microscope of the first embodiment in that balanced detection is not performed. Due to this difference, the scanning interference microscope according to the second embodiment does not implement balanced detection, but has a simpler structure.
도 8은 본 발명의 제2 실시예에 따른 바이오칩 리드아웃센서를 도시한 구조도이다. 도 8을 참조하면, 본 발명의 제2 실시예에 따른 주사 간섭 현미경(70)은 광원(700), PBS(710), 음향광학장치(720), 음향광학장치 구동부(730), 샘플스테이지(740), 렌즈(750), QWP(760), 광검출기(770), RF복조기(780), 함수 생성기(784), 록인앰프(786) 및 제어부(790)를 구비한다. 8 is a structural diagram illustrating a biochip readout sensor according to a second exemplary embodiment of the present invention. Referring to FIG. 8, the scanning interference microscope 70 according to the second embodiment of the present invention includes a light source 700, a PBS 710, an acoustic optical device 720, an acoustic optical device driver 730, and a sample stage ( 740, lens 750, QWP 760, photodetector 770, RF demodulator 780, function generator 784, lock-in amplifier 786, and controller 790.
상기 광원(700), PBS(710), 음향광학장치(720), 음향광학장치 구동부(730), 샘플스테이지(740), 렌즈(750), RF 복조기(780), 함수 생성기(784), 록인앰프(786) 및 제어부(790)는 제1 실시예의 그것들과 동일하므로, 중복되는 설명은 생략한다. The light source 700, the PBS 710, the acoustic optical device 720, the acoustic optical device driver 730, the sample stage 740, the lens 750, the RF demodulator 780, the function generator 784, lock-in Since the amplifier 786 and the control unit 790 are the same as those in the first embodiment, overlapping description is omitted.
본 실시예에 따른 주사 간섭 현미경(70)는 샘플스테이지에서 반사된 신호빛과 기준빛이 음향광학장치(720)를 다시 통과하여 PBS(710)로 진행되는 빛살들 중 동일 경로로 진행되는 빛살들만을 검출하는 것을 특징으로 한다. 따라서, 광검출 소자(760)는 상기 PBS로부터 주파수 f0의 신호빛과 주파수 f0+2(fRF0±Δf)의 기준빛이 입사되고, 이들에 대한 2(fRF0±Δf)의 주파수를 갖는 간섭 신호를 검출하고 이를 전기 신호로 변환하여 RF 복조기(780)로 출력한다. In the scanning interference microscope 70 according to the present embodiment, only the light beams traveling in the same path among the light beams reflected from the sample stage and the reference light are passed through the acoustic optical device 720 to the PBS 710. It is characterized by detecting. Accordingly, the photodetecting device 760 has a signal of frequency f 0 and a reference light of frequency f 0 + 2 (f RF0 ± Δf) incident from the PBS, and have a frequency of 2 (f RF0 ± Δf). The interference signal is detected and converted into an electrical signal and output to the RF demodulator 780.
음향광학장치 구동부로부터 제공된 변조 주파수(fRF)는 체배기(Frequency Doubler;782)를 통해 2배의 주파수(2f RF )로 변환되어 RF 복조기(780)로 제공된다. RF복조기(780)는 상기 2배의 주파수(2f RF )를 이용하여 상기 광검출소자로부터 제공되는 간섭 신호를 복조하여 신호빛에 대한 I 신호 및 Q 신호를 검출하여 록인앰프(386)로 출력한다. 록인앰프는 참조신호인 디더링 주파수를 이용하여 RF 복조기로부터 제공된 I 신호 및 Q 신호 중 디더링 주파수와 동일한 주파수의 신호를 검출하여 제어부(790)로 출력한다. The acoustooptic device modulation frequency (f RF) provided by the drive unit multiplier; is converted via (Frequency Doubler 782) at a frequency (2 f RF) of twice is provided to the RF demodulator (780). The RF demodulator 780 demodulates the interference signal provided from the photodetector using the double frequency (2 f RF ), detects the I signal and the Q signal for the signal light, and outputs the signal to the lock-in amplifier 386. . The lock-in amplifier detects a signal having the same frequency as the dithering frequency among the I and Q signals provided from the RF demodulator by using the dithering frequency which is a reference signal and outputs the signal to the controller 790.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 그리고, 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. Although the present invention has been described above with reference to preferred embodiments thereof, this is merely an example and is not intended to limit the present invention, and those skilled in the art do not depart from the essential characteristics of the present invention. It will be appreciated that various modifications and applications which are not illustrated above in the scope are possible. And differences relating to such modifications and applications should be construed as being included in the scope of the invention as defined in the appended claims.
본 발명에 따른 음향광학장치를 이용한 주사 간섭 현미경은 샘플 표면 분석을 위한 모든 분야에 널리 적용 가능하다.Scanning interference microscope using the acoustic optical device according to the present invention is widely applicable to all fields for sample surface analysis.

Claims (8)

  1. 빛살을 제공하는 광원;A light source for providing light;
    상기 광원으로부터 제공되는 빛살을 편광 상태에 따라 투과시키거나 반사시키는 편광빔스플리터(PBS);A polarization beam splitter (PBS) for transmitting or reflecting light beams provided from the light source according to a polarization state;
    상기 PBS로부터 제공되는 빛살을 제1 빛살과 제2 빛살로 나누고, 제1 빛살과 제2 빛살을 일정 각도로 분리하여 출력하는 음향 광학 장치(AO Device);An AO device for dividing light rays provided from the PBS into first light rays and second light rays, and separating the first light rays and the second light rays at a predetermined angle and outputting the light rays;
    중심변조주파수(fRF0)를 기준으로 하여 주파수 가변 범위(Δf)내에서 디더링(dithering)되는 변조 주파수(fRF)에 따라 상기 음향광학장치를 구동시키는 음향광학장치 구동부; An acoustooptic device driver for driving the acoustooptic device according to a modulation frequency f RF dithered within a frequency variable range Δf based on a center modulation frequency f RF0 ;
    측정하고자 하는 샘플이 놓여지는 샘플 스테이지;A sample stage on which a sample to be measured is placed;
    상기 음향광학장치로부터 제공되는 제1 빛살 및 제2 빛살의 진행 경로에 배치되고, 상기 제1 빛살 및 제2 빛살을 투과시켜 샘플 스테이지로 평행하게 제공하고, 상기 샘플 스테이지로부터 되반사되는 제1 빛살을 입사 경로를 따라 다시 진행하도록 하여 신호빛(Signal beam) 및 기준빛(Reference beam)을 제공하는 렌즈;A first light beam disposed in a traveling path of the first light beam and the second light beam provided from the acoustooptical device, transmitting the first light beam and the second light beam in parallel to a sample stage, and reflecting back from the sample stage; A lens for propagating along the incident path again to provide a signal beam and a reference beam;
    상기 음향광학장치와 렌즈 사이에 배치되고, 입사된 빛살들을 원형 편광으로 변환시켜 출력하는 사분파장 위상지연판(QWP);A quadrature phase delay plate (QWP) disposed between the acoustooptic device and the lens to convert incident light rays into circularly polarized light;
    상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 진행하는 신호빛과 기준빛의 간섭 신호를 검출하여 출력하는 광검출소자;A photodetector for detecting and outputting an interference signal of a signal light and a reference light, which are reflected from the PBS after being output from the acoustooptic device;
    상기 음향광학장치 구동부로부터 변조주파수에 대한 정보를 제공받고, 상기 변조주파수를 이용하여 상기 광검출소자로부터 제공되는 간섭 신호를 복조하여 출력하는 RF 복조기;An RF demodulator receiving information on a modulation frequency from the acoustooptic device driver and demodulating and outputting an interference signal provided from the photodetecting device using the modulation frequency;
    상기 RF 복조기로부터 제공되는 신호로부터 디더링 주파수(fdithering)와 같은 주파수의 신호를 검출하여 출력하는 록인앰프; Lock-in amplifier for detecting and outputting a signal of the same frequency and the dither frequency (f dithering) from the signal provided from the RF demodulator;
    사전 설정된 진폭(A)과 디더링 주파수(fdithering)를 갖는 디더링 신호를 생성하고, 상기 디더링 신호를 상기 음향광학장치 구동부로 제공하고 상기 디더링 주파수(fdithering)를 상기 록인앰프로 제공하는 함수 생성기;A function generator for generating a dithering signal having a predetermined amplitude (A) and a dithering frequency (f dithering ), providing the dithering signal to the acousto-optic device driver, and providing the dithering frequency (f dithering ) to the lock-in amplifier;
    상기 록인앰프로부터 출력된 신호를 이용하여 샘플에 대한 정보를 검출하는 제어부;A control unit for detecting information about a sample using a signal output from the lock-in amplifier;
    를 구비하고, 상기 음향광학장치 구동부는 함수 생성기로부터 디더링 신호를 제공받고, 스윕되는 상기 변조 주파수(fRF)는 디더링 신호의 진폭(A)에 따라 주파수 가변 범위가 결정되고 디더링 신호의 디더링 주파수(fdithering)에 따라 디더링 속도가 결정되는 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.The acoustooptic device driver is provided with a dithering signal from a function generator, and the modulation frequency f RF swept is determined in a frequency variable range according to the amplitude A of the dithering signal, and the dithering frequency of the dithering signal ( Scanning interference microscope using an acousto-optical device, characterized in that the dithering speed is determined according to f dithering ).
  2. 제 1항에 있어서, 상기 음향광학장치는, 음향-광 변조기(Acousto Optic Modulator; AOM), 음향-광 편향기(Acousto Optic Deflector; AOD), AOFS(Acousto Optic Frequency Shifter; AOFS) 중 어느 하나로 이루어지는 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.The method of claim 1, wherein the acoustooptic device comprises one of an acoustic-optic modulator (AOM), an acoustic-optic deflector (AOD), and an acoustico optic frequency shifter (AOFS). Scanning interference microscope using an acoustic optical device, characterized in that.
  3. 제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 광검출소자는 상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 제1 경로를 따라 진행하는 빛살들에 대한 제1 간섭 신호를 검출하여 출력하는 제1 광검출소자로 구비되는 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.The light detecting device of claim 1, wherein the photodetecting device detects and outputs a first interference signal for light rays that are output from the acoustooptical device and then reflected from a PBS and traveling along a first path. Scanning interference microscope using the acoustic optical device, characterized in that provided as a first light detecting element.
  4. 제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 광검출소자는, The photodetecting device of claim 1, wherein the photodetecting device comprises:
    상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 제1 경로를 따라 진행하는 빛살들에 대한 제1 간섭신호를 검출하여 출력하는 제1 광검출소자; 및A first photodetecting device for detecting and outputting a first interference signal for light beams reflected from the PBS and traveling along a first path after being output from the acoustooptic device; And
    상기 음향광학장치로부터 출력된 후 PBS에서 반사되어 제2 경로를 따라 진행하는 빛살들에 대한 제2 간섭신호를 검출하여 출력하는 제2 광검출소자;A second photodetecting device for detecting and outputting a second interference signal for light beams reflected from the PBS and traveling along a second path after being output from the acoustooptic device;
    를 구비하며, Equipped with
    상기 헤테로다인 간섭계는 제1 광검출소자 및 제2 광검출소자로부터 제1 간섭신호 및 제2 간섭신호의 차이값을 상기 RF 복조기로 출력하는 차동증폭기를 더 구비하는 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.The heterodyne interferometer further includes a differential amplifier for outputting a difference value between the first and second interference signals from the first and second photodetectors to the RF demodulator. Interference microscope.
  5. 제 1항에 있어서, 상기 광원은The method of claim 1, wherein the light source
    레이저; 및laser; And
    상기 레이저로부터 출력된 광을 P파로 정렬하여 출력하는 광 분리기(Optical Isolator);An optical isolator for aligning and outputting the light output from the laser with P waves;
    로 이루어지는 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.Scanning interference microscope using an acoustic optical device, characterized in that consisting of.
  6. 제 1항에 있어서, 상기 음향광학장치로부터 출력되는 제1 빛살은 변조 주파수(fRF)에 의해 변조된 1차(First-order) 빛살이며, 제2 빛살은 변조되지 않은 영차(Zero-order) 빛살인 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.The method of claim 1, wherein the first light output from the acoustooptical device is first-order light modulated by a modulation frequency f RF , and the second light is unmodulated zero-order. Scanning interference microscope using an acoustic optical device, characterized in that the light.
  7. 제 1항에 있어서, 상기 헤테로다인 간섭계는 주파수 체배기를 더 구비하고, The method of claim 1, wherein the heterodyne interferometer further comprises a frequency multiplier,
    상기 주파수 체배기는 음향광학장치 구동부로부터 제공되는 변조 주파수를 2배의 주파수로 변환하여 RF 복조기로 출력하는 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.The frequency multiplier is a scanning interference microscope using an acoustic optical device, characterized in that for converting the modulation frequency provided from the acoustooptic device driver to a frequency of 2 times to output to the RF demodulator.
  8. 제 1항에 있어서, 상기 제어부가 검출하는 샘플의 정보는 샘플의 국부기울기(local slope)에 대한 정보를 포함하는 것을 특징으로 하는 음향광학장치를 이용한 주사 간섭 현미경.The scanning interference microscope of claim 1, wherein the information of the sample detected by the controller comprises information about a local slope of the sample.
PCT/KR2012/002290 2011-07-05 2012-03-28 Local slope scanning interference microscope using an acousto-optic device WO2013005910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0066227 2011-07-05
KR1020110066227A KR101246867B1 (en) 2011-07-05 2011-07-05 Scanning local-slope interferometric microscope using AO Device

Publications (1)

Publication Number Publication Date
WO2013005910A1 true WO2013005910A1 (en) 2013-01-10

Family

ID=47437233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002290 WO2013005910A1 (en) 2011-07-05 2012-03-28 Local slope scanning interference microscope using an acousto-optic device

Country Status (2)

Country Link
KR (1) KR101246867B1 (en)
WO (1) WO2013005910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206646A1 (en) * 2018-04-26 2019-10-31 Carl Zeiss Microscopy Gmbh Optics arrangement for flexible multi-color illumination for a light microscope and method to this end

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714163B1 (en) 2015-06-26 2017-03-08 현대자동차주식회사 Bending light device for vehicle
KR102308219B1 (en) * 2020-06-01 2021-10-05 한국기계연구원 Optical shutter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107480A (en) * 1991-10-18 1993-04-30 Olympus Optical Co Ltd Scanning optical microscope
JP2003177329A (en) * 2001-10-03 2003-06-27 Olympus Optical Co Ltd Scanning laser microscope
JP2004537747A (en) * 2001-07-30 2004-12-16 ライカ ミクロジュステムス ハイデルベルク ゲーエムベーハー Optical device and scanning microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107480A (en) * 1991-10-18 1993-04-30 Olympus Optical Co Ltd Scanning optical microscope
JP2004537747A (en) * 2001-07-30 2004-12-16 ライカ ミクロジュステムス ハイデルベルク ゲーエムベーハー Optical device and scanning microscope
JP2003177329A (en) * 2001-10-03 2003-06-27 Olympus Optical Co Ltd Scanning laser microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206646A1 (en) * 2018-04-26 2019-10-31 Carl Zeiss Microscopy Gmbh Optics arrangement for flexible multi-color illumination for a light microscope and method to this end
US11796782B2 (en) 2018-04-26 2023-10-24 Carl Zeiss Microscopy Gmbh Optics arrangement for flexible multi-color illumination for a light microscope and method to this end

Also Published As

Publication number Publication date
KR20130004970A (en) 2013-01-15
KR101246867B1 (en) 2013-03-25

Similar Documents

Publication Publication Date Title
US7349590B2 (en) Polarization modulation interrogation of grating-coupled waveguide sensors
US7333214B2 (en) Detector for interferometric distance measurement
US6710876B1 (en) Metrology system using optical phase
US5619326A (en) Method of sample valuation based on the measurement of photothermal displacement
US3728030A (en) Polarization interferometer
US5784161A (en) Heterodyne interferometer arrangement with tunable lasers, a heterodyne interferometer, a comparison interferometer and a reference interferometer
US7038788B2 (en) Angle-of-rotation measuring device and angle-of-rotation measuring method
EP0831295B1 (en) Optical differential profile measurement apparatus and process
US8325347B2 (en) Integrated optical sensor
KR100866038B1 (en) Scanning micrometer using heterodyne interferometer
JPS61210910A (en) Device for remotely sensing effect of peripheral environmenton pair of sensor
US20240061352A1 (en) Exposure light beam phase measurement method in laser interference photolithography, and photolithography system
US20210270736A1 (en) Diffractive biosensor
WO2013005910A1 (en) Local slope scanning interference microscope using an acousto-optic device
KR101298990B1 (en) Heterodyne interferometer using AOM
GB2134248A (en) Closed loop fibre-optic gyroscope
US5351124A (en) Birefringent component axis alignment detector
KR101229417B1 (en) Biochip readout sensor using acousto-optic modulator
GB2108652A (en) Fibre-optic interferometer gyroscope
JP2807965B2 (en) Small angle cross beam orthogonal two-frequency light source for heterodyne interferometer
CN110220583B (en) Improvements in or relating to speckle mitigation
KR101198013B1 (en) Multi-wavelength heterodyne interferometer using AOTF
CN1851437A (en) Elementary matrix based optical signal/network analyzer
CN109187368A (en) A kind of liquid crystal polarized characteristic real-time detecting system and method based on multi-channel measurement
JPH06194189A (en) Optical encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807079

Country of ref document: EP

Kind code of ref document: A1