JPH02245276A - Ultrasonic vibrator - Google Patents

Ultrasonic vibrator

Info

Publication number
JPH02245276A
JPH02245276A JP6687889A JP6687889A JPH02245276A JP H02245276 A JPH02245276 A JP H02245276A JP 6687889 A JP6687889 A JP 6687889A JP 6687889 A JP6687889 A JP 6687889A JP H02245276 A JPH02245276 A JP H02245276A
Authority
JP
Japan
Prior art keywords
vibrator
resonance frequency
resonator
piezoelectric element
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6687889A
Other languages
Japanese (ja)
Inventor
Yoshitaka Onishi
良孝 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6687889A priority Critical patent/JPH02245276A/en
Publication of JPH02245276A publication Critical patent/JPH02245276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PURPOSE:To maintain the optimum resonated state by providing a mechanism for controlling the constrained state of a resonator close to a vibrator to control the resonance frequency of the vibrator. CONSTITUTION:A discoid supporting member 7 is fixed at the node of vibration, one side of a ring-shaped laminated piezoelectric element 9 is fixed to the number 7, and the other side is brought into contact with a flange 8 for controlling the resonance frequency provided to the resonator 2b. When a voltage is impressed on the element 9, a strain displacement is generated in the thickness direction of the ring. The load produced at the contact face between the element 9 and the flange 8 is changed by the magnitude of the generated strain. Contrarily, when a voltage is impressed to generate a contraction strain in the element 9, the constraining force of the flange 7 is weakened, and a mechanical resonance frequency is decreased. Consequently, the vibrator is driven at a specified resonance frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超音波加工機や超音波モータなどの超音波
応用aII器の超音波源となす超音波振動子に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic vibrator used as an ultrasonic source in an ultrasonic application AII device such as an ultrasonic processing machine or an ultrasonic motor.

〔従来の技術〕[Conventional technology]

第3図は例えば[超音波工学J (1975,工業調査
会)の第3章(P、61)に示された従来の超音波振動
子を示す斜視図、第4図は同断面図で(la) 、 (
lb)は超音波振動子の加振源となる円板形状の圧電素
子。
Fig. 3 is a perspective view showing a conventional ultrasonic transducer shown in Chapter 3 (P, 61) of [Ultrasonic Engineering J (1975, Kogyo Kenkyukai), for example, and Fig. 4 is a sectional view of the same ( la), (
lb) is a disk-shaped piezoelectric element that serves as an excitation source for the ultrasonic vibrator.

(2a) 、 (2b)は円筒状の金属ブロックからな
る共振体。
(2a) and (2b) are resonators made of cylindrical metal blocks.

(3)は圧電素子(la) 、 (lb)と共振体(2
a) 、 (2b)を結合するボルト、 (4m) 、
 (4b)は圧電素子(la) 、 (1k)に電力を
供給するための電極板である。第5図は圧電素子(1m
) 、 (lb)を示す説明図である。
(3) is a piezoelectric element (la), (lb) and a resonator (2
a) Bolt connecting (2b), (4m),
(4b) is an electrode plate for supplying power to the piezoelectric elements (la) and (1k). Figure 5 shows a piezoelectric element (1m
), (lb).

この超音波振動子は一般にボルト締めランジュバン振動
子と呼ばれるもので、第4図の断面構成図に示すように
加振源となる圧電素子(1m) 、 (Ib)を挾んで
2個の円筒状の共振体(2a) 、 (2b)がボルト
(311cよって強固に結合されている。この超音波振
動子は円筒の軸方向の振動を発生する縦振動子で、加振
源となる円板形状の圧電素子(la) 、 (Ib)は
第5図の図中の矢印(P)で示すように素子の厚み方向
に分極されている。この圧電素子(la) 、 (lb
)の厚み方向に適当な交流電圧を印加すると同図中の矢
印(A)、(A’)で示した厚み方向の振動歪みを発生
する゛。第4図の断面構成図に示すように円筒状の金属
ブロックからなる共振体(2a) 、 (2b)はボル
ト(3)によって電気的に接続されているので、2個の
圧電素子(1m) 、 (lb)は2発生する歪みが同
方向となるように互いに分極方向を逆にし2画素子の間
に電極板(4a)を挾んで重ね合わせ、電気的に並列駆
動するように配置されている。第3図中の記号(L)で
示す振動子の長さは、所定の共振周波数において縦振動
の波長の4となるように設計されるため2円筒形状の超
音波振動子の両端面が振動の腹となり、中央部分が振動
の節となる。円筒形状の超音波振動子は中央部分の振動
の節部分を用いて第6図に示すような方法で支持するこ
とができる。第6図は超音波振動子および固定部を示す
断面図で、同図において(5)は振動の節部分に設けら
れた支持用のフランジ、(6)は振動子の固定部材であ
る。固定部材(6)によって支持用7ランジ(5)の周
縁部を固定支持することで円筒形状の超音波振動子に支
持される。
This ultrasonic transducer is generally called a bolted Langevin transducer, and as shown in the cross-sectional diagram in Figure 4, it is made up of two cylindrical pieces sandwiching a piezoelectric element (1 m) and (Ib) that serve as the vibration source. The resonators (2a) and (2b) are firmly connected by bolts (311c).This ultrasonic vibrator is a vertical vibrator that generates vibrations in the axial direction of a cylinder, and has a disk shape that serves as an excitation source. The piezoelectric elements (la) and (Ib) are polarized in the thickness direction of the element as shown by the arrow (P) in FIG.
) When an appropriate AC voltage is applied in the thickness direction, vibrational distortion in the thickness direction as shown by arrows (A) and (A') in the same figure is generated. As shown in the cross-sectional diagram in Fig. 4, the resonators (2a) and (2b) made of cylindrical metal blocks are electrically connected by bolts (3), so two piezoelectric elements (1 m) , (lb) are arranged so that the polarization directions are opposite to each other so that the two generated distortions are in the same direction, and the electrode plates (4a) are sandwiched between the two pixel elements and overlapped, and are electrically driven in parallel. There is. The length of the transducer indicated by the symbol (L) in Figure 3 is designed to be 4 wavelengths of longitudinal vibration at a predetermined resonance frequency, so both end faces of the cylindrical ultrasonic transducer vibrate. The center becomes the node of vibration. A cylindrical ultrasonic vibrator can be supported using the vibration nodes in the center as shown in FIG. FIG. 6 is a sectional view showing an ultrasonic vibrator and a fixing part, in which (5) is a support flange provided at a vibration node, and (6) is a fixing member of the vibrator. By fixedly supporting the peripheral edge of the seven supporting flange (5) by the fixing member (6), it is supported by the cylindrical ultrasonic transducer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の超音波振動子は以上のように構成されているので
、振動子の形状寸法によって共振周波数が固定されてい
た。そのため、超音波振動子を所定の共振周波で駆動す
るためには、極めて厳密な形状寸法の加工が必要であり
、また、超音波振動子の負荷変動や温度変化がある場合
には最適な共振状態を維持できないなどの課題があった
Since the conventional ultrasonic transducer is configured as described above, the resonance frequency is fixed depending on the shape and dimensions of the transducer. Therefore, in order to drive an ultrasonic transducer at a predetermined resonant frequency, extremely precise shape and dimensions processing is required. There were issues such as not being able to maintain the condition.

この発明は上記のような課題を解消するためになされた
もので1機械的な共振周波数が電気的に制御可能な超音
波振動子を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object thereof is to obtain an ultrasonic transducer whose mechanical resonance frequency can be electrically controlled.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の超音波振動子は、加振源と共振体からなる共
振系を有し、共振系に生じる振動の節部近傍で支持され
るもので、支持部近傍の共振体の拘束状態を電気的に制
御する機構を設け、超音波振動子の共振周波数を制御す
るようにしたものである。
The ultrasonic vibrator of the present invention has a resonant system consisting of an excitation source and a resonator, and is supported near the nodes of vibration generated in the resonant system, and the restraint state of the resonator near the support is electrically controlled. A mechanism is provided to control the resonant frequency of the ultrasonic transducer.

〔作 用〕[For production]

この発明における超音波振動子は振動子の支持部近傍に
設けられた共振体の拘束状態を電気的に制御する機構に
より、該部分の拘束状態が変化するために、超音波振動
子の共振系が変化して振動子の機械的な共振周波数が変
化する。
The ultrasonic transducer according to the present invention uses a mechanism that electrically controls the constraint state of the resonator provided near the support part of the transducer, so that the constraint state of the part changes. changes, and the mechanical resonance frequency of the vibrator changes.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例の円筒形状の超音波振動子の断
面図を示すもので、(7)は超音波振動子を振動の節部
分近傍で支持する円板形状の支持部材、(8)は共振体
(2b)に設けられた共振周波数制御用フランジ、(9
)は支持部材(7)と共振周波数制御用フランジ(8)
の間に設けられたリング形状の積層圧電素子である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a cross-sectional view of a cylindrical ultrasonic vibrator according to an embodiment of the present invention, in which (7) is a disk-shaped support member that supports the ultrasonic vibrator near the vibration nodes; ) is a resonant frequency control flange provided on the resonator (2b), (9
) is the support member (7) and the resonance frequency control flange (8)
This is a ring-shaped laminated piezoelectric element provided between the two.

次に第1図の実施例の動作について説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

第1図の実施例の円筒形状の超音波振動子は、前述の従
来例と同様に円筒の軸方向の振動を発生する縦振動子で
ある。記号(L)で表わされた振動体長さは所定の共振
周波数における縦振動の波長の随に設定されているため
、振動子の中央部は振動の節となるが2円板状の支持部
材(7)は該振動の節部分に取り付けられている。リン
グ形状の積層圧電素子(9)の片面は超音波振動子の支
持部材(7)に固定されておロ、他方の面は共振体(2
b)に設けられた共振周波数制御用フランジ(8)に接
触している。
The cylindrical ultrasonic transducer of the embodiment shown in FIG. 1 is a longitudinal transducer that generates vibration in the axial direction of the cylinder, similar to the conventional example described above. Since the length of the vibrating body represented by the symbol (L) is set at the wavelength of longitudinal vibration at a predetermined resonance frequency, the central part of the vibrator becomes a node of vibration, but there are two disk-shaped support members. (7) is attached to the vibration node. One side of the ring-shaped laminated piezoelectric element (9) is fixed to the support member (7) of the ultrasonic transducer, and the other side is fixed to the resonator (2).
b) is in contact with the resonance frequency control flange (8) provided in FIG.

積層圧電素子(9)は、適当な電圧を印加すると、第1
図中の矢印(B)で示したようにリングの厚み方向の歪
み変位を発生するように構成されているため2発生歪み
の大きさによって積層圧電素子(9)と共振周波数制御
用フランジ(8)との接触面に生じる荷重が変化する。
When a suitable voltage is applied to the laminated piezoelectric element (9), the first
As shown by the arrow (B) in the figure, since the ring is configured to generate strain displacement in the thickness direction, the laminated piezoelectric element (9) and the resonant frequency control flange (8) depend on the magnitude of the generated strain. ) will change the load generated on the contact surface.

この結果、共振周波数制御用フランジ(8)の拘束状態
が変化して超音波振動子の機械的な共振周波数が変化す
る。即ち、1層圧電素子(9)に伸び歪みが発生するよ
うに電圧を印加すると、共振周波数制御用フランジ(8
)の動きを抑制する拘束力が増加するため2円筒形状の
振動子の中央部分において振動の節になる部分の幅が長
くなり2等価的に超音波振動子の軸方向長さが短かくな
って機械的な共振周波数が高くなる。逆にvi層層圧電
子子9)に縮み歪みが発生するように電圧を印加すると
共振周波数制御用フランジ(7)の拘束力が弱まり超音
波振動子の等価的な長さは実寸法(L)に近づくために
機械的な共振周波数は低下する。
As a result, the restraint state of the resonance frequency control flange (8) changes, and the mechanical resonance frequency of the ultrasonic transducer changes. That is, when a voltage is applied to the one-layer piezoelectric element (9) so as to cause an elongation strain, the resonant frequency control flange (8)
) increases, which increases the width of the vibration nodes in the center of the cylindrical transducer, and equivalently shortens the axial length of the ultrasonic transducer. This increases the mechanical resonance frequency. Conversely, if a voltage is applied to the VI layer piezoelectric element 9) to cause shrinkage strain, the restraining force of the resonant frequency control flange (7) becomes weaker, and the equivalent length of the ultrasonic transducer becomes smaller than the actual dimension (L ), the mechanical resonance frequency decreases.

前述の超音波振動子の等価的な長さと共振周波数の関係
は両端面が自由な一様断面の棒のM振動の1次固有振動
周波数が周知のように次式で表わされることから容易に
類推できる。
The relationship between the equivalent length and the resonant frequency of the ultrasonic transducer mentioned above can be easily determined from the fact that the first natural vibration frequency of the M vibration of a rod with a uniform cross section with both end faces free is expressed by the following equation, as is well known. I can make an analogy.

ただし、上式において4は棒の長さ、Eは棒の材料の縦
弾性係数、ρは棒の材料の密度である。
However, in the above formula, 4 is the length of the rod, E is the longitudinal elastic modulus of the material of the rod, and ρ is the density of the material of the rod.

さて、上記実施例において超音波振動子は円筒形状の縦
振動子であつtコが、この発明は特に振動子の形状を上
記実施例の形状に限定するものではなく、第2図の他の
実施例の斜視図に示すようなものでもよい。
Now, in the above embodiment, the ultrasonic transducer is a cylindrical vertical transducer, but the present invention does not particularly limit the shape of the transducer to the shape of the above embodiment, and other than that shown in FIG. It may be as shown in the perspective view of the embodiment.

第2図において2頭は片端を固定部材(6)に固定され
た板状共振体、01)は板状共振体制の加振源となる圧
電素子で、圧電素子(+1)は板状共振体(1,01に
接着されている。圧電素子0υは同図の矢印(P)で示
すように厚み方向に一様分極された薄板素子で。
In Figure 2, the two heads are plate-shaped resonators whose one end is fixed to the fixing member (6), 01) is a piezoelectric element that becomes the excitation source of the plate-shaped resonance regime, and the piezoelectric element (+1) is a plate-shaped resonator. (The piezoelectric element 0υ is a thin plate element that is uniformly polarized in the thickness direction, as shown by the arrow (P) in the same figure.

該圧電素子0υの厚み方向に適当な交流電圧を印加する
と、該圧電素子ODの横効果歪みにより板状共振体a〔
に屈曲振動が発生し、板状共振体a〔の開放された先端
部は第2図中の矢印(C)のように振動する。板状共振
体Qlの固定部近傍には板状共振体制を両側から挟持す
るように積層圧電素子(9m)。
When an appropriate AC voltage is applied in the thickness direction of the piezoelectric element 0υ, the plate-shaped resonator a [
Bending vibration occurs, and the open end of the plate-shaped resonator a vibrates as shown by the arrow (C) in FIG. A laminated piezoelectric element (9 m) is placed near the fixed part of the plate-shaped resonator Ql so as to sandwich the plate-shaped resonance structure from both sides.

(9b)が配置されている。積層圧電素子は第2図の矢
印(B)で示した方向の歪み変位を発生するように構成
されており、積層圧電素子(9m) 、 (9b)への
印加電圧を変化させると上記一実施例の場合と同様に、
板状共振体α1の固定部近傍の拘束状態が変化して超音
波!!動子の共振周波数が変化する。
(9b) is placed. The laminated piezoelectric element is configured to generate strain displacement in the direction shown by the arrow (B) in Fig. 2, and by changing the voltage applied to the laminated piezoelectric element (9m) and (9b), the above-mentioned effect can be achieved. As in the example case,
The restraint state near the fixed part of the plate-shaped resonator α1 changes and an ultrasonic wave is generated! ! The resonant frequency of the mover changes.

また、上記実施例では超音波振動子の加振源に圧電素子
を用いた場合について説明したが、この発明;よ特に振
動子の加振源の種類を原低するものではなく、電歪素子
や磁歪素子等の電気入力機械出力素子であってもよい。
Furthermore, in the above embodiment, the case where a piezoelectric element is used as the excitation source of an ultrasonic vibrator has been described, but in this invention, the type of excitation source of the vibrator is not particularly limited, and an electrostrictive element is used. It may also be an electrical input/mechanical output element such as a magnetostrictive element or a magnetostrictive element.

さらに、上記実施例では超音波振動子の支持部分近傍の
拘束状態を制御するために81M圧電素子を用いた場合
について説明したが、拘束状態を電気的に制御する機構
は電磁力を利用した機構であってもよい。
Furthermore, in the above embodiment, an 81M piezoelectric element was used to control the restraint state near the support part of the ultrasonic transducer, but the mechanism for electrically controlling the restraint state is a mechanism using electromagnetic force. It may be.

〔発明の効果〕 以上のようにこの発明によれば超音波振動子の機械的な
共振周波数を電気的に制御できるように構成したので、
負荷変動や温度変化によらず所定の共振周波数で超音波
振動子を駆動することができ、また超音波振動子の形状
寸法の厳密な加工も不要となる効果がある。
[Effects of the Invention] As described above, according to the present invention, the mechanical resonance frequency of the ultrasonic transducer is configured to be electrically controllable.
The ultrasonic transducer can be driven at a predetermined resonance frequency regardless of load fluctuations or temperature changes, and there is also an advantage that strict machining of the shape and dimensions of the ultrasonic transducer is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による超音波振動子を示す
断面図、第2図はこの発明の他の実施例を示す斜視図、
第3図は従来の超音波振動子の一例を示す斜視図、第4
図は第3図の従来例の断回構成図、第5図は超音波振動
子の加振源となる圧電素子を示す説明図、第6図は従来
の超音波振動子の固定支持方法を示す断面構成図である
。 (1m) 、 (lb) 、01)ば加振源となる電気
入力機械出力素子である圧電素子、 (2a) 、 (
2b)劃〔は共振体、(6)は固定部材、(9)は積層
圧電素子で、共振体との拘束状態を電気的に制姉する機
構を構成する。 なお2図中、同一符号は同一または相当部分を示す。 ス 第1図 第 図 第 ス 第 図 図 第 図
FIG. 1 is a sectional view showing an ultrasonic transducer according to an embodiment of the present invention, and FIG. 2 is a perspective view showing another embodiment of the invention.
Figure 3 is a perspective view showing an example of a conventional ultrasonic transducer;
The figure shows the disconnection configuration of the conventional example shown in Fig. 3, Fig. 5 is an explanatory diagram showing the piezoelectric element that is the excitation source of the ultrasonic transducer, and Fig. 6 shows the conventional method of fixing and supporting the ultrasonic transducer. FIG. (1m), (lb), 01) is a piezoelectric element that is an electrical input mechanical output element that serves as an excitation source; (2a), (
2b) The resonator is a resonator, (6) is a fixing member, and (9) is a laminated piezoelectric element, which constitutes a mechanism that electrically controls the restraint state with the resonator. Note that in the two figures, the same reference numerals indicate the same or corresponding parts. Figure 1 Figure 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 加振源となる電気入力機械出力素子と、この電気入力機
械出力素子に結合される共振体で構成される共振系を有
し、共振駆動時に上記共振系に生じる振動の節部近傍で
固定部材に支持される超音波振動子において、振動子の
支持部近傍の共振体の拘束状態を電気的に制御する機構
を設け、超音波振動子の共振周波数を制御するようにし
たことを特徴とする超音波振動子。
It has a resonant system consisting of an electrical input mechanical output element serving as an excitation source and a resonator coupled to the electrical input mechanical output element, and a fixed member In the ultrasonic vibrator supported by the ultrasonic vibrator, a mechanism is provided to electrically control the constraint state of the resonator near the support portion of the vibrator, thereby controlling the resonant frequency of the ultrasonic vibrator. Ultrasonic transducer.
JP6687889A 1989-03-18 1989-03-18 Ultrasonic vibrator Pending JPH02245276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6687889A JPH02245276A (en) 1989-03-18 1989-03-18 Ultrasonic vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6687889A JPH02245276A (en) 1989-03-18 1989-03-18 Ultrasonic vibrator

Publications (1)

Publication Number Publication Date
JPH02245276A true JPH02245276A (en) 1990-10-01

Family

ID=13328575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6687889A Pending JPH02245276A (en) 1989-03-18 1989-03-18 Ultrasonic vibrator

Country Status (1)

Country Link
JP (1) JPH02245276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044509A1 (en) * 2003-11-06 2005-05-19 Kazumasa Ohnishi Vibration table
JP2010089007A (en) * 2008-10-08 2010-04-22 Sonotec Co Ltd Ultrasonic machining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044509A1 (en) * 2003-11-06 2005-05-19 Kazumasa Ohnishi Vibration table
JP2010089007A (en) * 2008-10-08 2010-04-22 Sonotec Co Ltd Ultrasonic machining apparatus

Similar Documents

Publication Publication Date Title
US5225731A (en) Solid body piezoelectric bender transducer
US5140215A (en) Vibrator and ultrasonic motor employing the same
JP4704537B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
Tomikawa et al. Some constructions and characteristics of rod-type piezoelectric ultrasonic motors using longitudinal and torsional vibrations
KR19990014005A (en) Ultrasonic devices
JP2916178B2 (en) Sieving equipment
JPH02245276A (en) Ultrasonic vibrator
US6298012B1 (en) Doubly resonant push-pull flextensional
Gallego-Juárez et al. Development of industrial models of high-power stepped-plate sonic and ultrasonic transducers for use in fluids
JPH09215349A (en) Vibrating actuator and adjustment thereof
US5840241A (en) Method of aligning fibrous components of composite materials using standing planar compression waves
JP3122882B2 (en) Ultrasonic motor
JP5733966B2 (en) Vibration type driving device
JPH06141564A (en) Wave circulation actuator
JPH03111130A (en) Wire electric discharge machine
JPH03265477A (en) Ultrasonic wave oscillator, oscillating method, driver and driving method employing the same
JP4041725B2 (en) Ultrasonic vibration radiator
JP3122881B2 (en) Ultrasonic motor
JP2874174B2 (en) Ultrasonic transducer and ultrasonic motor
JPH09135585A (en) Vibrating actuator
JP2001352769A (en) Method for manufacturing piezoelectric actuator and piezoelectric actuator
JPH0393483A (en) Ultrasonic motor
JPH0284080A (en) Oscillator and ultrasonic motor
JP4408721B2 (en) Drive device
JPH02228269A (en) Ultrasonic vibrator and ultrasonic motor using the same