JPH02244707A - Projection exposure face illuminance distribution measuring method, and exposure face illuminance distribution compensating method, and projection exposer - Google Patents
Projection exposure face illuminance distribution measuring method, and exposure face illuminance distribution compensating method, and projection exposerInfo
- Publication number
- JPH02244707A JPH02244707A JP1065628A JP6562889A JPH02244707A JP H02244707 A JPH02244707 A JP H02244707A JP 1065628 A JP1065628 A JP 1065628A JP 6562889 A JP6562889 A JP 6562889A JP H02244707 A JPH02244707 A JP H02244707A
- Authority
- JP
- Japan
- Prior art keywords
- illuminance distribution
- light
- projection exposure
- reticle
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 160
- 238000000034 method Methods 0.000 title claims description 29
- 230000003287 optical effect Effects 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 210000001747 pupil Anatomy 0.000 claims abstract description 8
- 238000012937 correction Methods 0.000 claims description 30
- 238000005259 measurement Methods 0.000 claims description 26
- 238000005286 illumination Methods 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000009499 grossing Methods 0.000 claims description 4
- 238000004381 surface treatment Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims 2
- 230000008961 swelling Effects 0.000 abstract 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 239000005338 frosted glass Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、投影露光の被露光面における照度分布測定法
、照度分布補正法及び投影露光装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring illuminance distribution on an exposed surface in projection exposure, a method for correcting illuminance distribution, and a projection exposure apparatus.
縮小投影露光等の投影露光技術は1例えば半導体製造の
フォトリソグラフィー工程等に利用されている。この種
の投影露光を行なう場合には、フィールド内の寸法精度
や膜減りの一様性向上の要求があり、この要求に直接関
係するウェハ面上の露光光照度分布の最適化(平坦化)
を図る必要がある。そのため、I投影露光装置には露光
光束の照度分布がある程度平坦化するような光学的要素
(例えばコンデンサレンズ等)が組み込まれている。Projection exposure techniques such as reduction projection exposure are used, for example, in photolithography processes for semiconductor manufacturing. When performing this type of projection exposure, there is a need to improve dimensional accuracy within the field and uniformity of film loss, and optimization of the exposure light illuminance distribution on the wafer surface (flattening) is directly related to this requirement.
It is necessary to aim for Therefore, the I projection exposure apparatus incorporates an optical element (for example, a condenser lens) that flattens the illuminance distribution of the exposure light beam to some extent.
また、被露光領域における照度分布を測定する場合に、
従来はレジスト塗布されたウェハや原図パターンとなる
レティクルを装置から外して測定するのが一般的である
。このうちウェハを外す理由は、縮小投影レンズのワー
キングデイスタンス(縮小レンズ最下端面とウェハ間の
距りが小さいことにより、またレティクルを外す理由は
、多数あるレティクルの中から標準的なものを決めるこ
とが困難なためとされていた。In addition, when measuring the illuminance distribution in the exposed area,
Conventionally, it has been common to remove the resist-coated wafer or the reticle, which serves as the original pattern, from the apparatus before making measurements. The reason for removing the wafer is due to the working distance of the reduction projection lens (the distance between the lowest end surface of the reduction lens and the wafer is small), and the reason for removing the reticle is to select a standard reticle from among the many available. This was thought to be because it was difficult to decide.
ここで、第4図ないし第5図に基づき従来の縮/J%投
影露光及び照度測定の具体例を説明する。Here, a specific example of conventional reduction/J% projection exposure and illuminance measurement will be explained based on FIGS. 4 and 5.
第4図おいて、1は集光鏡、2は光源となる水銀ランプ
、3はインテグレータ、4はコンデンサレンズ、5は原
画パターンとなるレティクル、6は縮小レンズ、7は縮
小レンズの入射瞳、8はウェハ、9はウェハチャック、
10はXステージ、11はYステージ、12はXステー
ジである。In Fig. 4, 1 is a condenser mirror, 2 is a mercury lamp as a light source, 3 is an integrator, 4 is a condenser lens, 5 is a reticle that is the original pattern, 6 is a reduction lens, 7 is the entrance pupil of the reduction lens, 8 is a wafer, 9 is a wafer chuck,
10 is an X stage, 11 is a Y stage, and 12 is an X stage.
ウェハ8はウェハチャック9で保持され、ウェハチャッ
ク9は、xyzステージ12,11.10上に真空吸着
により保持されている。13はXステージ移動用のモー
タ、14はYステージ移動用のモータ、15はXステー
ジ移動用のモータである。The wafer 8 is held by a wafer chuck 9, and the wafer chuck 9 is held on the xyz stages 12, 11, and 10 by vacuum suction. 13 is a motor for moving the X stage, 14 is a motor for moving the Y stage, and 15 is a motor for moving the X stage.
水銀ランプ2の光は、集光鏡1により集められ、インテ
グレータ3を通ってコンデンサレンズ4によりレティク
ル5面上に均一に照明される。そして、レティクル5を
通過した光は、縮小レンズ6の入射[7上へと導かれる
。縮小レンズ6は、レティクル5に対する面を物面とし
、レジスタを塗布したウェハ8面を像面とする。従って
、レティクル5に描かれたパターンはウェハ8面上に転
写される。The light from the mercury lamp 2 is collected by a condenser mirror 1, passes through an integrator 3, and is uniformly illuminated onto the surface of a reticle 5 by a condenser lens 4. Then, the light that has passed through the reticle 5 is guided onto the incidence [7] of the reduction lens 6. The reduction lens 6 uses the surface facing the reticle 5 as an object surface, and the surface of the wafer 8 coated with a resistor as an image surface. Therefore, the pattern drawn on the reticle 5 is transferred onto the wafer 8 surface.
2ステージ10上には、ウェハ8面相当位置での照度分
布を測定するための受光器16が、ウェハチャック9の
隣に位置するよう装備されている。A light receiver 16 is installed on the second stage 10 so as to be located next to the wafer chuck 9 for measuring the illuminance distribution at a position corresponding to the eight surfaces of the wafer.
次に、受光器16を用いての照度分布H1ff定につい
て説明する。Next, the determination of the illuminance distribution H1ff using the light receiver 16 will be explained.
被露光面相当′位置での照度分布測定を行なう場合には
、第5図に示すようにレティクル5を外し。When measuring the illuminance distribution at a position corresponding to the exposed surface, remove the reticle 5 as shown in FIG.
また受光器16が光照射域にくるようにステージをXY
力方向制御し、かつ受光器16面がウェハ8面と同一高
さとなるようステージをZ方向に位置制御して、光照度
分布の測定を行なっていた。Also, move the stage in the XY direction so that the light receiver 16 is in the light irradiation area.
The light illuminance distribution was measured by controlling the force direction and controlling the position of the stage in the Z direction so that the surface of the light receiver 16 was at the same height as the surface of the wafer 8.
なお、受光器16面上は、光吸収感度をよくするため、
その上面が黒色表面処理されている。In addition, on the surface of the light receiver 16, in order to improve the light absorption sensitivity,
Its top surface is black-treated.
また以上のような照度分布の測定は、従来は、コンデン
サレンズ等で被露光面の照度分布が概ね平坦化されたか
否か確認する意味で行なわれるにすぎず、この照度分布
測定データを基にして更に積極的に照度分布を補正する
ような配慮はなされていなかった。なお、投影露光装置
の従来技術は、例えば特開昭59−43324号公報に
開示されたものがある。Furthermore, the measurement of illuminance distribution as described above has conventionally been carried out only to check whether the illuminance distribution on the exposed surface has been approximately flattened using a condenser lens, etc., and is based on this illuminance distribution measurement data. Therefore, no consideration was given to further actively correcting the illuminance distribution. A conventional technique for a projection exposure apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 59-43324.
ところで、前述した如く投影露光系の照度分布を、プロ
セスウェハやレティクルなしの条件で測定した場合には
、゛実露光(実際にウェハ及びレティクルをセット、し
て行なう投影露光)時にウェハやレティクルの存在によ
って生じる多重反射光や迷光等の影響を配慮していない
ため、照度分布測定データと実露光時の光照度分布にず
れが生じていた。By the way, as mentioned above, when the illuminance distribution of a projection exposure system is measured without a process wafer or reticle, the wafer and reticle during actual exposure (projection exposure with the wafer and reticle actually set). Since the effects of multiple reflected light and stray light caused by the presence of light were not considered, a discrepancy occurred between the illuminance distribution measurement data and the light illuminance distribution during actual exposure.
以下、この問題点を第6図及び第7図により説明する。This problem will be explained below with reference to FIGS. 6 and 7.
第6図は、従来の縮小投影露光系の実露光時の光線の状
態と露光光学系主要部の照度分布。FIG. 6 shows the state of the light beam during actual exposure of a conventional reduction projection exposure system and the illuminance distribution of the main parts of the exposure optical system.
光強度分布を示し、第7図は、受光器を用いてウェハ面
上相当域の照度分布を測定した場合の光線の状態と露光
光学系主要部の照度分布、光強度分布を示すものである
。Figure 7 shows the state of the light beam, the illuminance distribution of the main part of the exposure optical system, and the light intensity distribution when the illuminance distribution of the corresponding area on the wafer surface is measured using a light receiver. .
第6図において、4aは前記したコンデンサレンズ4の
レンズ反射面、5aはレティクル5の反射面、6aは縮
小レンズ6の反射面である。In FIG. 6, 4a is the lens reflection surface of the condenser lens 4, 5a is the reflection surface of the reticle 5, and 6a is the reflection surface of the reduction lens 6.
光源からの主光、!19は、縮小レンズ6の色収差を補
正すべく純度の高い単色光となっており、この主光線1
9がウェハ反射面8aで定在波効果を起こして反射し、
この反射光が縮小レンズ反射面6aやレティクル反射面
5aやコンデンサレンズ反射面4a等で再反射して多重
反射光20となり、主光線19の周りにその一部が集ま
ってくる。Main light from the light source,! 19 is monochromatic light with high purity in order to correct the chromatic aberration of the reduction lens 6, and this principal ray 1
9 causes a standing wave effect on the wafer reflective surface 8a and is reflected,
This reflected light is re-reflected by the reduction lens reflective surface 6a, the reticle reflective surface 5a, the condenser lens reflective surface 4a, etc., and becomes multiple reflected light 20, a part of which gathers around the principal ray 19.
更にインテグレータ3の出射側や縮小レンズ入射@7で
の光強度分布21.23の影響もあって。Furthermore, there is also the influence of the light intensity distribution 21.23 on the output side of the integrator 3 and the incidence of the reduction lens @7.
レティクル面照度分布22はほぼ平坦であるにもかかわ
らず5ウ工ハ面照度分布24はその中央に上積みされた
形となっている。Even though the reticle surface illuminance distribution 22 is almost flat, the fifth substrate surface illuminance distribution 24 is stacked in the center thereof.
一方、照度分布開定を行なう場合には、第7図に示すよ
うに、レティクル5がないことと、受光器16の上面が
黒色表面処理を施しているため、多重反射光20の量が
実露光時よりは少なく、ウェハ面上照度分布28中心に
上積みされる光の量も第6図の実露光時の分布24より
少ない。On the other hand, when determining the illuminance distribution, as shown in FIG. The amount of light accumulated at the center of the illuminance distribution 28 on the wafer surface is also smaller than the distribution 24 during actual exposure shown in FIG. 6.
このように第6図、第7図を比較しても明らかなように
、従来は受光器を用いた照度分布データと、実露光時の
照度分布状態との間には゛、′多重反射光に起因してず
れが生じる。更に、レティクルをセットした場合としな
い場合では、レティクルの光遮蔽率が低い条件の下では
1両者の光強度にさほどの光学的な差異はないが、光の
遮蔽率が高い条件の下では1両者の光強度に比較的大き
な光学的な差異が生じていた。As can be seen by comparing Figures 6 and 7, in the past there was a difference between the illuminance distribution data obtained using a light receiver and the illuminance distribution state during actual exposure due to multiple reflections. This causes a deviation. Furthermore, when the reticle is set and when it is not set, there is not much optical difference in the light intensity between the two under conditions where the light shielding rate of the reticle is low, but under conditions where the light shielding rate is high. There was a relatively large optical difference in the light intensity between the two.
ところで、近年増々高集積化されている半導体ウェハの
製造分野では、被露光面の照度分布の平坦化がフォトリ
ソグラフィ工程におけるパターンの線幅精度やレジスト
面域りに影響を及ぼすことから、従来以上に照度分布の
平坦化の要求が強まっている。そのため、被露光域照度
分布の測定が実露光に即したものであること、及びこの
測定データを基にして実際の被露光域照度分布が精度良
く平坦化される技術が必要とされてきた。By the way, in the field of semiconductor wafer manufacturing, which has become increasingly highly integrated in recent years, the flattening of the illumination distribution on the exposed surface affects the pattern line width accuracy and resist surface area in the photolithography process. There is an increasing demand for flattening the illuminance distribution. Therefore, there has been a need for a technique that allows the measurement of the illuminance distribution of the exposed area to be based on actual exposure, and for flattening the actual illuminance distribution of the exposed area with high precision based on this measurement data.
本発明は以上の点に鑑みてなされたもので、その第1の
目的とするところは、実露光の条件に合った投影露光の
照度分布を測定してその測定の信頼性を高めることにあ
り、第2の目的とするところは、さらにプロセスウェハ
等の被露光物の照度分布の平坦化を精度良く図ることで
、被露光物に形成されるパターンの線幅精度、リニャリ
ティの向■−及びレジスト膜減りの一様化を図ることに
ある。The present invention has been made in view of the above points, and its first purpose is to improve the reliability of the measurement by measuring the illuminance distribution of projection exposure that meets the conditions of actual exposure. The second objective is to flatten the illuminance distribution of the exposed object such as a process wafer with high precision, thereby improving the line width accuracy and linearity of the pattern formed on the exposed object. The purpose is to uniformize the reduction of the resist film.
第1の課題解決手段は、上記第1の目的を達成するため
の照度分布補正法に係り、その内容は、照明光学系、結
像光学系を介してレディクルの原図パターンを転写する
投影露光装置の被露光面相当位置に、n先光に対して感
度をもつ受光器をセットして、この受光器により被露光
面の照度分布を測定する方法において、
前記受光器の受光面を被露光対象物たる基板上の光反射
条件と同じ状態とし、且つパターン投影用のレティクル
を実際に装着した状態で、前記被露光面の照度分布を測
定することを特徴とする。The first problem-solving means relates to an illuminance distribution correction method for achieving the above-mentioned first objective, and the contents thereof include a projection exposure device that transfers the original pattern of the redicle through an illumination optical system and an imaging optical system. In the method of measuring the illuminance distribution of the exposed surface by setting a photoreceiver sensitive to n-point light at a position corresponding to the exposed surface, the light receiving surface of the photoreceiver is set as the exposed object The method is characterized in that the illuminance distribution on the exposed surface is measured under the same light reflection conditions as on the physical substrate and with a pattern projection reticle actually attached.
第2の課題解決手段は、上記第2の目的を達成するため
の照度分布補正法に係り、その内容とするところは、照
明光学系、結像光学系を介してレティクルの原図パター
ンを基板上に投影露光する投影露光装置において、
実際の投影露光に際して、被露光面に相当する位置に露
光光照度分布測定用の受光器をセットし、且つこの受光
器の受光面髪前記基板りの光反射条件と同じに設定する
と共に、レティクルを実際に装着した状態で、前記受光
器により被露光面相当位置の露光光照度分布を測定し、
測定された照度分布と要求の照度分布とにずわがある場
合には、測定された照度分布を基にして照度分布補正用
の光学系フィルタを形成し、実際の基板へ投影露光を行
なう場合には、前記照度分布補正用のフィルタを投影露
光の光路上の適宜位置にセットし、て行なうことを特徴
とする。The second problem-solving means relates to an illuminance distribution correction method for achieving the above-mentioned second objective, and the content thereof is to transfer the original pattern of the reticle onto the substrate via an illumination optical system and an imaging optical system. In a projection exposure apparatus that performs projection exposure, during actual projection exposure, a light receiver for measuring the exposure light illuminance distribution is set at a position corresponding to the exposed surface, and the light reflection conditions of the light receiving surface of this light receiver and the substrate are set. and measure the exposure light illuminance distribution at a position corresponding to the exposed surface using the light receiver with the reticle actually attached.
If there is a discrepancy between the measured illuminance distribution and the required illuminance distribution, an optical system filter for illuminance distribution correction is formed based on the measured illuminance distribution, and when performing projection exposure on the actual substrate. The method is characterized in that the illuminance distribution correction filter is set at an appropriate position on the optical path of projection exposure.
第3の課題解決手段は、上記第2の課題解決手段の照度
分布補正用法を実施するための装置に関し、その内容と
するところは、
被露光対象たる基板の位置決め行なう位置決め調整機構
付きステージと、前記基板にレティクルパターンを転写
するための照明光学系及−び結像光学系を備える装置に
おいて、
前記ステージ上に基板面相当位置で露光光照度分布を測
定する受光器を搭載し、この受光器の受光面を前記基板
の光反射条件と同じに設定し、且つ、前記受光器により
検出された照度分布測定データをモニタリ′ングする手
段と、前記照度分布3111定データを基にして被露光
面の照度分布を所望の分布に修正する光学系フィルタと
を備えてなることを特徴とする。The third problem-solving means relates to an apparatus for implementing the illuminance distribution correction method of the second problem-solving means, and its contents include: a stage with a positioning adjustment mechanism for positioning a substrate to be exposed; In the apparatus comprising an illumination optical system and an imaging optical system for transferring a reticle pattern to the substrate, a light receiver for measuring the exposure light illuminance distribution at a position corresponding to the substrate surface is mounted on the stage, and the light receiver is means for setting the light receiving surface to be the same as the light reflection condition of the substrate, and monitoring the illuminance distribution measurement data detected by the light receiver; It is characterized by comprising an optical system filter that corrects the illuminance distribution to a desired distribution.
第1の課題解決手段によれば、投影露光における被露光
対象物(基板)上の露光光照度分布を7!l’l定する
場合には、レティクルを実際にセット・し、11つ受光
器の受光面は基板上の光反射条件と同一・となるように
設定したので、基板なしの条件で被露光面相当位置の照
度分布を測定した場合でも、実露光時(レティクル及び
基板をセットした実際の投影橢光時)と同じの露光光照
度分布を測定することができる。すなわち1.〔発明が
解決しようとする課題〕の項でも述べたように、実露光
時には、露光光の主光線の一部が基板(プロセスウェハ
)上で反射し、これがレティクル等で再反射し、て、基
板、レティクル間に多重反射光が発生し、その−・部が
主光線に重なることで、基板上の被露光面における照度
分布の中心等に部分的に光強度が強い領域が生じる′が
、本発明では基板に代わる受光器の受光面を基板の光反
射条件と同じにすることで、かつ測定時にレティクルを
セットすることで、基板相当位置での露光光照度分布を
測定するどきに、基板がなくとも失血光同様の多重反射
現象を再現させることができるためである。なお、この
ようにレティクルを実際に装着して照度分布を測定する
場合には、レティクルパターンが照度分布に入ってくる
ため、データを読み取る場合には、予めパターンの存在
による減光分を平滑化するためのスムージング処理を行
なって、照度分布の測定データの読み取りを行なう、ま
た、本測定法によれば、レティクル材質そのものの光透
過率の影響を加味して被露光領域の照度分布を測定する
ことが可能となる。According to the first problem solving means, the exposure light illuminance distribution on the exposed object (substrate) in projection exposure is reduced to 7! When determining the amount of light, the reticle was actually set and the light receiving surfaces of the 11 light receivers were set to be the same as the light reflection conditions on the substrate, so the exposed surface could be adjusted without the substrate. Even when the illuminance distribution at the corresponding position is measured, it is possible to measure the same exposure light illuminance distribution as during actual exposure (at the time of actual projection illumination with the reticle and substrate set). That is, 1. As mentioned in the [Problems to be Solved by the Invention] section, during actual exposure, a part of the principal ray of the exposure light is reflected on the substrate (process wafer), and this is re-reflected by the reticle etc. Multiple reflected light occurs between the substrate and the reticle, and the - part overlaps with the principal ray, resulting in a region with high light intensity at the center of the illuminance distribution on the exposed surface of the substrate. In the present invention, by making the light-receiving surface of the photodetector that replaces the substrate the same as the light reflection conditions of the substrate, and by setting the reticle at the time of measurement, the substrate is This is because at least the multiple reflection phenomenon similar to that of blood loss light can be reproduced. Note that when measuring the illuminance distribution by actually wearing the reticle in this way, the reticle pattern will be included in the illuminance distribution, so when reading the data, it is necessary to smooth out the amount of light attenuation due to the presence of the pattern in advance. In addition, according to this measurement method, the illuminance distribution of the exposed area is measured by taking into account the influence of the light transmittance of the reticle material itself. becomes possible.
そして、このような照度分布測定のデータを用いれば、
照度分布に補正すべき箇所がある場合には、実露光の照
度分布に即した補正を行なうことができる。Then, if we use data from such illuminance distribution measurement,
If there is a portion to be corrected in the illuminance distribution, correction can be performed in accordance with the illuminance distribution of actual exposure.
この補正法は第2の課題解決手段により達成される。This correction method is achieved by the second problem solving means.
すなわち、第2の課題解決手段によれば、第1の課題解
決手段による照度分布測定を行なった後に、この測定さ
れた照度分布データを基にして照度分布のどの箇所が補
正すべきかを見出し、これにそった照度分布測定用の光
学系フィルタを形成する。この補正用のフィルタは具体
的には、たとえば、光透過性を有するプレートで補正箇
所に対応する位置に低透過率となる表面処理を施す等し
て行なう、そして、この補正用フィルタを投影露光系の
光路上の適宜位置にセットすれば、照度領域のうち光の
強すぎる部分は設定レベルとなるように補正される。特
に本発明では、前述したように実露光と同じ状態で測定
した露光光照度分布のデータにより照度分布を補正する
ので、照度分布の平坦化など所望の照度分布を忠実に得
ることができる。That is, according to the second problem solving means, after the illuminance distribution is measured by the first problem solving means, it is found which part of the illuminance distribution should be corrected based on the measured illuminance distribution data, An optical system filter for illuminance distribution measurement is formed along this line. Specifically, this correction filter is made by, for example, applying a surface treatment to give a low transmittance at a position corresponding to the correction area using a light-transmitting plate, and then this correction filter is formed by projection exposure. By setting it at an appropriate position on the optical path of the system, parts of the illuminance region where the light is too strong are corrected to the set level. In particular, in the present invention, as described above, since the illuminance distribution is corrected using data of the exposure light illuminance distribution measured under the same conditions as actual exposure, it is possible to faithfully obtain a desired illuminance distribution, such as flattening the illuminance distribution.
なお、被露光面照度分布を平坦化する補正を行なう場合
、例えば補正前の照度分布がその中央域にて強度が平坦
レベルよりも高くなっている場合には、照度分布、中心
が減光されるようなフィルタを投影露光の適宜の光路上
にセットして補正するが、この補正用フィルタの影響に
より照度分布に傾きが生じる場合もありえる。この場合
には、当初の補正用フィルタ(第1のフィルタ)に加え
、照度分布の傾きをなくすよう形成された第2のフィル
タを装着すればよい、なお、この第1のフィルタ、第2
のフィルタは第1図の実施例の31゜32に相当するの
で、その詳細は実施例の項で参照されたい。Note that when performing correction to flatten the illuminance distribution on the exposed surface, for example, if the intensity of the illuminance distribution before correction is higher than the flat level in the central region, the illuminance distribution will be dimmed at the center. Although correction is performed by setting a filter such as the above on an appropriate optical path for projection exposure, the illuminance distribution may be tilted due to the influence of this correction filter. In this case, in addition to the original correction filter (first filter), a second filter formed to eliminate the slope of the illuminance distribution may be installed.
Since the filter corresponds to 31°32 of the embodiment of FIG. 1, please refer to the embodiment section for details.
また第3の課題解決手段の装置も実施例で具体的に述べ
てあり、ここでの説明は省略する。Further, the device of the third problem-solving means is also specifically described in the embodiment, and its explanation here will be omitted.
本発明の一実施例を第1図ないし第3図に基づき説明す
る。An embodiment of the present invention will be described based on FIGS. 1 to 3.
第1図は本実施例の適用対象となる縮小投影露光装置の
構成図及び露光光学装置の各主要部の光強度分布、光照
度分布説明図、第2図ないし第3図はこれに使用する光
照度分布補正用の光学フィルタを示す図であ・る。Fig. 1 is a block diagram of a reduction projection exposure apparatus to which this embodiment is applied, and an explanatory diagram of the light intensity distribution and light illuminance distribution of each main part of the exposure optical apparatus, and Figs. 2 and 3 show the light illuminance used therein. FIG. 3 is a diagram showing an optical filter for distribution correction.
第1図において、既述した第4図、第5図で示した従来
例の装置と同一符号は同−或いは共通する要素を示す。In FIG. 1, the same reference numerals as those of the conventional apparatus shown in FIGS. 4 and 5 above indicate the same or common elements.
すなわち、1は集光鏡、2は光源となる水銀ランプ、3
はインテグレータ、4はレティクル5に均一な光を照明
するためのコンデンサレンズ、5は原画パターンとなる
レティクル、6は縮小レンズ、7は縮小レンズの入射瞳
、8はレジストが塗布されたプロセスウェハ、9はウェ
ハチャック。In other words, 1 is a condenser mirror, 2 is a mercury lamp serving as a light source, and 3 is a condensing mirror.
4 is an integrator, 4 is a condenser lens for illuminating the reticle 5 with uniform light, 5 is a reticle that becomes the original pattern, 6 is a reduction lens, 7 is an entrance pupil of the reduction lens, 8 is a process wafer coated with resist, 9 is a wafer chuck.
10はZステージ、11はYステージ、12はXステー
ジで、これらの要素については従来例と共通する。10 is a Z stage, 11 is a Y stage, and 12 is an X stage, and these elements are common to the conventional example.
33は本発明の主要素となる露光光照度分布測定用の受
光器で、受光器33はZステージ1o上に、ウェハチャ
ック9の隣に位置するよう搭載されている。受光器33
は、その受光面がプロセスウェハ8の表面における光反
射条件と同一に設定しである。具体的には、受光器33
の受光面に。Reference numeral 33 denotes a light receiver for measuring exposure light illuminance distribution, which is a main element of the present invention, and the light receiver 33 is mounted on the Z stage 1o so as to be located next to the wafer chuck 9. Light receiver 33
The light receiving surface is set to the same light reflection condition as the surface of the process wafer 8. Specifically, the light receiver 33
on the light receiving surface.
ウェハ8と同じ光反射率の光透過性プレートを乗せるか
、或いは受光面そのものをウェハ8の光反射条件と同じ
状態となるよう表面処理加工を施す。A light transmitting plate having the same light reflectance as the wafer 8 is placed on the wafer 8, or the light receiving surface itself is subjected to surface treatment so as to have the same light reflection conditions as the wafer 8.
また本実施例には、実露光を行なう場合には、水銀ラン
プ2を基準にしてインテグレータ3の手前(後でもよい
)に光学補正用のフィルタ31を配置し、コンデンサレ
ンズ4の手前に光学補正用のフィルタ32を配置する。In addition, in this embodiment, when performing actual exposure, an optical correction filter 31 is placed before (or after) the integrator 3 with the mercury lamp 2 as a reference, and an optical correction filter 31 is placed before the condenser lens 4. A filter 32 for use is arranged.
しかして、本実施例においてウェハ8面相当位置での照
度分布測定を行なう場合には、実際に使用するレティク
ル5をセットした状態で行なう。Therefore, in this embodiment, when measuring the illuminance distribution at positions corresponding to the eight surfaces of the wafer, the measurement is performed with the reticle 5 that will actually be used set.
なお、この場合、当初は補正用の光学フィルタ31及び
32をセットしない。そして、第1図に示すように受光
器33が投影露光系の光照射域にくるようにステージを
XY力方向制御し、かつ受光器33の受光面がウェハ8
の被露光面に相当する高さ位置となるようステージをZ
方向に位置制御して、光照度分布の測定を行なう。In this case, the correction optical filters 31 and 32 are not set initially. Then, as shown in FIG. 1, the stage is controlled in the XY force direction so that the light receiver 33 is located in the light irradiation area of the projection exposure system, and the light receiving surface of the light receiver 33 is positioned above the wafer 8.
Z the stage so that it is at a height corresponding to the exposed surface.
The light illuminance distribution is measured by controlling the position in the direction.
このような露光光照度分布訓電によれば、レティクル5
を実際にセットし、且つ受光器33の受光面はウェハ8
との光反射条件と同一・どなるように設定したので、°
ウェハ8なしの条件で投影露光系の照度分布をI測定し
た場合でも、第6図同様の実露光時(レティクル5及び
ウェハ8をセットした実際の投影露光時)と同じ状態の
露光光照度分布を測定することができる。すなわち、実
露光時には、露光光の主光線の一部がウェハ8上で反射
し、これがコンデンサレンズ反射面4a、縮小レンズ反
射面6aの外にレティクル反射面58等で再反射して多
重反射光となり、その−・部が主光線に重なることで、
ウェハ8上の被露光域の中心等に部分的に光強度が強い
領域が生じるが、本実施例によればこのような実露光時
の露光光照度分布を再現して、露光光照度分布を測定す
ることができる。According to such exposure light illuminance distribution training, reticle 5
is actually set, and the light receiving surface of the light receiver 33 is aligned with the wafer 8.
Since the light reflection conditions were set to be the same as that of
Even when the illuminance distribution of the projection exposure system is measured without the wafer 8, the exposure light illuminance distribution is the same as in the actual exposure shown in Figure 6 (actual projection exposure with the reticle 5 and wafer 8 set). can be measured. That is, during actual exposure, a part of the principal ray of the exposure light is reflected on the wafer 8, and this is re-reflected by the reticle reflective surface 58, etc. outside of the condenser lens reflective surface 4a and the reduction lens reflective surface 6a, resulting in multiple reflected light. , and the - part overlaps with the chief ray, so
Although a region where the light intensity is partially strong occurs at the center of the exposed area on the wafer 8, according to this embodiment, the exposure light illuminance distribution during actual exposure is reproduced and the exposure light illuminance distribution is measured. be able to.
この照度分布測定は、例えば受光器33の検出信号に基
づくデータをCRTデイスプレィ等でモニタリングする
ことで認識できる。なお、被露光域の照度分布をモニタ
リングする場合には、実際にはレティクル5のパターン
も照度分布に入ってくるので、このパターンの存在のな
い状態を想定して照度分布測定データの読み取りを行な
う必要がある。そのため、モニタリング装置には、レテ
ィクルパターンの減光の影響をなくすため、このパター
ンに起因する照度分布の減光分を平滑化するためのスム
ージング回路を設けである。This illuminance distribution measurement can be recognized, for example, by monitoring data based on the detection signal of the light receiver 33 on a CRT display or the like. Note that when monitoring the illuminance distribution of the exposed area, the pattern of the reticle 5 is actually included in the illuminance distribution, so read the illuminance distribution measurement data assuming a state where this pattern does not exist. There is a need. Therefore, in order to eliminate the influence of the dimming of the reticle pattern, the monitoring device is provided with a smoothing circuit for smoothing the dimming of the illuminance distribution caused by this pattern.
そして、この測定データに基づきウェハ面相当位置の露
光光照度分布を補正する。具体的には、先ずモニタリン
グされた照度分布測定データを基に補正すべき第1のフ
ィルタ31を形成する。このフィルタ31は、既述した
第6図の実露光時の照度分布24の中央の盛り上がりを
なくすためのもので、第2図に示すように周辺41より
中心42の方が光透過率を低くしたもので、中心42の
光透過率が照度分布測定データを基に定めである。Then, based on this measurement data, the exposure light illuminance distribution at a position corresponding to the wafer surface is corrected. Specifically, first, the first filter 31 to be corrected is formed based on the monitored illuminance distribution measurement data. This filter 31 is for eliminating the bulge in the center of the illuminance distribution 24 during actual exposure shown in FIG. 6, which has already been described.As shown in FIG. 2, the light transmittance is lower at the center 42 than at the periphery 41. The light transmittance at the center 42 is determined based on illuminance distribution measurement data.
この光学フィルタ31の存在により、インテグレータ3
及び縮小レンズ6の入射瞳7上の光強度分布34.36
が図示のように中央が凹んだ分布となる。この場合の光
強度分布の凹み具合は、レティクル5〜ウ工ハ8表面に
見立てた受光器(ウェハ相当面)33間に生じる多重反
射光がウェハ而の露光光照度分布に及ぼす影響を相殺す
る程度に設定するもの・である、すなわち、この光強度
分布の凹みが第6図の実露光時相光の露光光照度分布2
4の中央付近に生じる光強度の盛り上がりを相殺する。Due to the presence of this optical filter 31, the integrator 3
and the light intensity distribution on the entrance pupil 7 of the reduction lens 6 34.36
As shown in the figure, the distribution is concave in the center. In this case, the degree of concavity of the light intensity distribution is such that it cancels out the influence of multiple reflected light generated between the light receiver (wafer equivalent surface) 33, which is assumed to be the surface of the reticle 5 to the wafer 8, on the exposure light illuminance distribution of the wafer itself. In other words, the concavity of this light intensity distribution is the exposure light illuminance distribution 2 of the actual exposure time phase light in Fig. 6.
This offsets the rise in light intensity that occurs near the center of 4.
但し、フィルタ31を投影露光系に装着した場合、その
精度が悪いと微妙な所で調整がきかず、レティクル5面
上の照度分布35ひいてはウェハ8相当ifi、i 、
1の照度分布37に図のような傾きが生じる。However, when the filter 31 is attached to the projection exposure system, if its accuracy is poor, adjustments cannot be made in delicate areas, and the illuminance distribution 35 on the surface of the reticle 5, as well as the wafer 8 equivalent ifi,i,
The illuminance distribution 37 of No. 1 has a slope as shown in the figure.
この、1−)な照度分布の傾きが生じた場合には、これ
を修正するために本実施例ではコンデンサレンズ4の上
方に第2の補正フィルタ32を設ける。In this embodiment, a second correction filter 32 is provided above the condenser lens 4 in order to correct this 1-) slope of the illuminance distribution.
補正フィルタ32は、第3図に示すようなガラス板で、
符号38に示すように照度分布35,37の傾きを相殺
する傾きを有するように設定しである。The correction filter 32 is a glass plate as shown in FIG.
As shown by reference numeral 38, it is set to have a slope that cancels out the slopes of the illuminance distributions 35 and 37.
なお、フィルタ31は、例えばガラス板にその時の状況
に応じた透過率となるようクロム蒸着したり、これに代
えて低透過率となるべき箇所をすりガラス状に形成し、
照度傾き補正用のフィルタ32はクロム蒸・着の徐々に
濃度分布を変化させることで形成している。Note that the filter 31 may be formed by, for example, depositing chromium on a glass plate so as to have a transmittance depending on the situation at the time, or alternatively, forming a portion where the transmittance should be low into a frosted glass shape.
The filter 32 for correcting the illuminance gradient is formed by gradually changing the concentration distribution of chromium vapor/deposition.
しかして、本実施例では、プロセスウェハの実露光時相
光の露光光照度分布をモニタリングできるため、露光光
照度分布の測定精度を高め、さらにこの実露光相当の測
定データに基づき光分布の補正を行なうことで、実露光
に即した平坦なウェハ面照度分布を得ることができる。Therefore, in this embodiment, since the exposure light illuminance distribution of the actual exposure time phase light of the process wafer can be monitored, the measurement accuracy of the exposure light illuminance distribution is improved, and the light distribution is further corrected based on the measurement data corresponding to this actual exposure. As a result, a flat wafer surface illuminance distribution suitable for actual exposure can be obtained.
その結果、半導体ウェハのバタ・−ンの線幅精度やリニ
ャリティを良好なものとし、またフィールド内のIノジ
スト膜減りを一様にできることから、メモリ、撮像素子
等とそのデバイスの種類を問わず高い製品歩留まりを得
ることができる。As a result, the line width accuracy and linearity of the semiconductor wafer can be improved, and the reduction of the I-nodist film in the field can be made uniform, so it can be used regardless of the type of device such as memory, image sensor, etc. A high product yield can be obtained.
以上のように本発明によれば、第1には実露光の条件に
合った投影露光の照度分布を測定して、その測定の信頼
性を高めることができ、第2には。As described above, according to the present invention, firstly, the illuminance distribution of projection exposure that meets the conditions of actual exposure can be measured and the reliability of the measurement can be improved, and secondly.
プロセスウェハ等の被露光物の照度分布の平坦化を精度
良く図ることで、被露光物(基板)に形成されるパター
ンの線幅精度、リニャリティの向上及びレジスト面域′
りの一様化を図り、製品品質の向上化を図ることができ
る。By precisely flattening the illuminance distribution of the exposed object such as a process wafer, the line width accuracy and linearity of the pattern formed on the exposed object (substrate) can be improved, and the resist surface area'
It is possible to improve the product quality by making the process more uniform.
第1図は本発明の一実施例を示す装置の構成図、第2図
及び第3図は上記実施例に使用する光学補正用フィルタ
の説明図、第4図は従来の縮小投影露光装置の構成図、
第5図は従来の露光光照度分布測定の説明図、第6図は
従来の実露光時における光線状態と光学系主要部での光
強度、照度分布を示す説明図、第7図は従来の露光光照
度分布測定時の光線状態と光強度、照度分布を示す説明
図である。
1・・・集光鏡、2・・・水銀ランプ、3・・・インテ
グレータ、4・・・コンデンサレンズ、5・・・レティ
クル、6・・・縮小レンズ、7・・・入射瞳、8・・・
基@(プロセスウェハ)、10,11.12・・・ステ
ージ、31.32・・・補正用フィルタ、33受光器。
第1図
第2図
第3図
第
図
第
図
第
図
第
図FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams of an optical correction filter used in the above embodiment, and FIG. 4 is a diagram of a conventional reduction projection exposure apparatus. Diagram,
Fig. 5 is an explanatory diagram of conventional exposure light illuminance distribution measurement, Fig. 6 is an explanatory diagram showing the light beam condition during conventional actual exposure, light intensity and illuminance distribution in the main part of the optical system, and Fig. 7 is an explanatory diagram of conventional exposure light illuminance distribution measurement. FIG. 3 is an explanatory diagram showing a light beam state, light intensity, and illuminance distribution at the time of measuring the light illuminance distribution. DESCRIPTION OF SYMBOLS 1... Condenser mirror, 2... Mercury lamp, 3... Integrator, 4... Condenser lens, 5... Reticle, 6... Reduction lens, 7... Entrance pupil, 8...・・・
Base @ (process wafer), 10, 11. 12... stage, 31. 32... correction filter, 33 light receiver. Figure 1 Figure 2 Figure 3 Figure Figure Figure Figure Figure
Claims (1)
パターンを転写する投影露光装置の被露光面相当位置に
、露光光に対して感度をもつ受光器をセットして、この
受光器により被露光面の照度分布を測定する方法におい
て、 前記受光器の受光面を被露光対象物たる基板上の光反射
条件と同じ状態とし、且つレティクルを実際に装着した
状態で、前記被露光面の照度分布を測定することを特徴
とする投影露光の被露光面照度分布測定法。 2、第1請求項において、前記受光器の受光面には、前
記基板上の光反射条件と同じ状態を作り出すプレートを
乗せるか、或いは受光面そのものを前記基板上の光反射
条件と同じ状態となるよう表面処理加工を施してなる投
影露光の被露光面照度分布測定法。 3、照明光学系、結像光学系を介してレティクルの原図
パターンを基板上に投影露光する投影露光装置において
、 実際の投影露光に際して、被露光面に相当する位置に露
光光照度分布測定用の受光器をセットし、且つこの受光
器の受光面を前記基板上の光反射条件と同じに設定する
と共に、レティクルを実際に装着した状態で、前記受光
器により被露光面相当位置の露光光照度分布を測定し、
測定された照度分布と要求の照度分布とにずれがある場
合には、測定された照度分布を基にして照度分布補正用
の光学系フィルタを形成し、実際の基板へ投影露光を行
なう場合には、前記照度分布補正用のフィルタを投影露
光の光路上の適宜位置にセットして行なうことを特徴と
する投影露光の被露光面照度分布補正法。 4、第3請求項において、前記投影露光装置は縮小投影
露光用の装置で、前記照度分布補正用のフィルタは、縮
小投影レンズの入射瞳上の光強度分布を変えることので
きる位置と、レティクル面上の照度分布を変えることの
できる位置にセットされ、これらのフィルタの存在で前
記縮小レンズ入射瞳上の光強度分布、レティクル面上の
照度分布を変えることで、前記基板上の照度分布の補正
を行なう投影露光の被露光面照度分布補正法。 5、第3請求項又は第4請求項において、前記照度分布
補正用のフィルタは、光透過性を有するプレートで補正
箇所に対応する位置に低透過率となる表面処理を補正の
度合に応じて施してなる投影露光の被露光面照度分布補
正法。 6、被露光対象たる基板の位置決め行なう位置決め調整
機構付きステージと、前記基板にレティクルパターンを
転写するための照明光学系及び結像光学系を備える装置
において、 前記ステージ上に基板面相当位置で露光光照度分布を測
定する受光器を搭載し、この受光器の受光面を前記基板
の光反射条件と同じに設定し、且つ、前記受光器により
検出された照度分布測定データをモニタリングする手段
と、前記照度分布測定データを基にして被露光面の照度
分布を所望の分布に修正する光学系フィルタとを備えて
なることを特徴とする投影露光装置。 7、第6請求項において、前記照度分布測定データをモ
ニタリングする手段は、測定された照度分布に前記レテ
ィクルのパターンが入ることを配慮して、このレティク
ルパターンの存在による照度分布の減光分を平滑化する
ためのスムージング処理機能を有する投影露光装置。 8、第6請求項または第7請求項において、前記投影露
光装置は縮小投影露光用の装置で、且つ前記照度分布を
修正する光学系フィルタは、縮小レンズ入射瞳上の光強
度分布を補正するフィルタと、レティクル面上の照度分
布を補正するフィルタ等で構成し、これらのフィルタを
介して基板直上の照度分布を最終的に修正するよう設定
してなる投影露光装置。[Claims] 1. A light receiver sensitive to exposure light is set at a position corresponding to the exposed surface of a projection exposure device that transfers the original pattern of the reticle via an illumination optical system and an imaging optical system. In this method of measuring the illuminance distribution of the exposed surface using this light receiver, the light receiving surface of the light receiver is set to the same light reflection conditions as the substrate that is the exposed object, and the reticle is actually attached. . A method for measuring illuminance distribution on a surface to be exposed in projection exposure, characterized in that the illuminance distribution on the surface to be exposed is measured. 2. In the first aspect, a plate is placed on the light receiving surface of the light receiver to create the same light reflection conditions as on the substrate, or the light receiving surface itself is brought into the same state as the light reflection conditions on the substrate. A method for measuring illuminance distribution on the exposed surface of projection exposure using surface treatment processing. 3. In a projection exposure apparatus that projects and exposes the original pattern of a reticle onto a substrate via an illumination optical system and an imaging optical system, a light receiving device for measuring the exposure light illuminance distribution is placed at a position corresponding to the exposed surface during actual projection exposure. With the light receiving surface of this light receiver set to the same light reflection conditions as on the substrate, and with the reticle actually attached, the light receiver measures the exposure light illuminance distribution at a position corresponding to the exposed surface. measure,
If there is a discrepancy between the measured illuminance distribution and the required illuminance distribution, an optical system filter for illuminance distribution correction is formed based on the measured illuminance distribution, and when performing projection exposure on the actual substrate. A method for correcting illuminance distribution on an exposed surface in projection exposure, characterized in that the illuminance distribution correction filter is set at an appropriate position on the optical path of projection exposure. 4. In the third aspect, the projection exposure apparatus is a reduction projection exposure apparatus, and the illuminance distribution correction filter has a position on the entrance pupil of the reduction projection lens that can change the light intensity distribution, and a reticle. These filters are set at positions where they can change the illuminance distribution on the surface, and by changing the light intensity distribution on the entrance pupil of the reduction lens and the illuminance distribution on the reticle surface, the illuminance distribution on the substrate can be changed. A projection exposure illuminance distribution correction method for the exposed surface. 5. In the third or fourth claim, the filter for illuminance distribution correction is a plate having light transmittance, and a surface treatment that provides low transmittance is applied to a position corresponding to the correction location according to the degree of correction. A method for correcting illuminance distribution on an exposed surface for projection exposure. 6. In an apparatus comprising a stage with a positioning adjustment mechanism for positioning a substrate to be exposed, and an illumination optical system and an imaging optical system for transferring a reticle pattern to the substrate, exposing the stage at a position corresponding to the substrate surface. means for mounting a light receiver for measuring light illuminance distribution, setting the light receiving surface of the light receiver to be the same as the light reflection condition of the substrate, and monitoring illuminance distribution measurement data detected by the light receiver; 1. A projection exposure apparatus comprising: an optical system filter that corrects the illuminance distribution of an exposed surface to a desired distribution based on illuminance distribution measurement data. 7. In the sixth aspect, the means for monitoring the illuminance distribution measurement data takes into consideration that the pattern of the reticle is included in the measured illuminance distribution, and calculates the attenuation of the illuminance distribution due to the presence of the reticle pattern. A projection exposure device that has a smoothing processing function for smoothing. 8. In claim 6 or 7, the projection exposure apparatus is a reduction projection exposure apparatus, and the optical system filter for correcting the illuminance distribution corrects the light intensity distribution on the entrance pupil of the reduction lens. A projection exposure apparatus is composed of a filter, a filter for correcting the illuminance distribution on the reticle surface, etc., and is set so that the illuminance distribution directly above the substrate is finally corrected through these filters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1065628A JPH0644546B2 (en) | 1989-03-17 | 1989-03-17 | Projection exposure illuminance distribution measurement method, exposure surface illuminance distribution correction method, and projection exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1065628A JPH0644546B2 (en) | 1989-03-17 | 1989-03-17 | Projection exposure illuminance distribution measurement method, exposure surface illuminance distribution correction method, and projection exposure apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02244707A true JPH02244707A (en) | 1990-09-28 |
JPH0644546B2 JPH0644546B2 (en) | 1994-06-08 |
Family
ID=13292475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1065628A Expired - Fee Related JPH0644546B2 (en) | 1989-03-17 | 1989-03-17 | Projection exposure illuminance distribution measurement method, exposure surface illuminance distribution correction method, and projection exposure apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0644546B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04161305A (en) * | 1990-10-26 | 1992-06-04 | Canon Inc | Manufacture of lens and its manufacturing device |
US7630058B2 (en) | 2007-07-30 | 2009-12-08 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57117238A (en) * | 1981-01-14 | 1982-07-21 | Nippon Kogaku Kk <Nikon> | Exposing and baking device for manufacturing integrated circuit with illuminometer |
JPS63313819A (en) * | 1987-06-17 | 1988-12-21 | Hitachi Ltd | Exposing device |
JPH02106917A (en) * | 1988-10-17 | 1990-04-19 | Nikon Corp | Aligner |
-
1989
- 1989-03-17 JP JP1065628A patent/JPH0644546B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57117238A (en) * | 1981-01-14 | 1982-07-21 | Nippon Kogaku Kk <Nikon> | Exposing and baking device for manufacturing integrated circuit with illuminometer |
JPS63313819A (en) * | 1987-06-17 | 1988-12-21 | Hitachi Ltd | Exposing device |
JPH02106917A (en) * | 1988-10-17 | 1990-04-19 | Nikon Corp | Aligner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04161305A (en) * | 1990-10-26 | 1992-06-04 | Canon Inc | Manufacture of lens and its manufacturing device |
US7630058B2 (en) | 2007-07-30 | 2009-12-08 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0644546B2 (en) | 1994-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6115107A (en) | Exposure apparatus | |
JP3634068B2 (en) | Exposure method and apparatus | |
US6525817B1 (en) | Inspection method and apparatus for projection optical systems | |
TWI534558B (en) | Detection device, exposure apparatus, and device manufacturing method using same | |
JPH0883753A (en) | Focal point detecting method | |
TW201337476A (en) | Angularly resolved scatterometer and inspection method | |
US7197176B2 (en) | Mark position detecting apparatus and mark position detecting method | |
JP3125360B2 (en) | Position detecting device and projection exposure device | |
US5978069A (en) | Exposure apparatus and methods | |
JP4392914B2 (en) | Surface position detection apparatus, exposure apparatus, and device manufacturing method | |
TWI358529B (en) | Shape measuring apparatus, shape measuring method, | |
JPH0792096A (en) | Foreign matter inspection device, and manufacture of exposing device and device with it | |
JPH02244707A (en) | Projection exposure face illuminance distribution measuring method, and exposure face illuminance distribution compensating method, and projection exposer | |
JPH11297615A (en) | Projection aligner and manufacture of semiconductor device using the aligner | |
TW201013326A (en) | Exposure apparatus and method of manufacturing device | |
JPH10172900A (en) | Exposure apparatus | |
JPH10284414A (en) | Imaging position detecting apparatus and manufacture of semiconductor device | |
JPH1131652A (en) | Residual aberration correction plate and projection aligner using the same | |
JPS60188950A (en) | Correcting method of light quantity control device | |
JP2000195778A (en) | Aligner and manufacture of telecentricity irregularity compensating member | |
JP7446131B2 (en) | Detection device, exposure device, and article manufacturing method | |
JP3245026B2 (en) | Exposure method, exposure apparatus, and device manufacturing method using the same | |
JPH11260689A (en) | Uniform optical system, pattern tester and pattern testing method therefor | |
JPS6122626A (en) | Projecting exposure | |
KR20230111579A (en) | Detection apparatus, detection method, exposure apparatus and article manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080608 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |