JPH0224393B2 - - Google Patents

Info

Publication number
JPH0224393B2
JPH0224393B2 JP58201566A JP20156683A JPH0224393B2 JP H0224393 B2 JPH0224393 B2 JP H0224393B2 JP 58201566 A JP58201566 A JP 58201566A JP 20156683 A JP20156683 A JP 20156683A JP H0224393 B2 JPH0224393 B2 JP H0224393B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
submount
thermal expansion
laser device
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58201566A
Other languages
Japanese (ja)
Other versions
JPS6092687A (en
Inventor
Akira Ootsuka
Shinichi Iguchi
Yoshimitsu Yamazoe
Nobuo Ogasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58201566A priority Critical patent/JPS6092687A/en
Publication of JPS6092687A publication Critical patent/JPS6092687A/en
Publication of JPH0224393B2 publication Critical patent/JPH0224393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02492CuW heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 この発明は半導体レーザー装置、特にその放熱
特性の改良に関するものである。 (ロ) 従来技術 半導体レーザー装置は電流駆動による大電力素
子であるため、動作中の発熱量が大きい。そのた
め、適切な放熱設計が行なわれていない場合に
は、通電使用中の発熱により性能の劣化、素子寿
命の低下、あるいは半導体レーザー素子の破壊を
まねく危険がある。 具体的には半導体レーザー素子は一般に第2図
に示すような温度特性をもつ。図から明らかなよ
うに、発光出力は素子温度に大きく依存する。温
度20℃で光出力2mWを得るには約30mAの電流
が必要であるが、温度50℃で使用する場合には30
mAではレーザ発振にさえ達することが出来ず、
光出力2mWを得るには60mA以上の駆動電流が
必要となる。しかも、温度上昇による光出力の低
下を補なうために駆動電流を増加してやれば、電
流増加にともなう素子の発熱量の増加がひきおこ
され、さらに素子温度が上昇するという悪循環を
生じることになり、素子の急速な劣化や、はなは
だしい場合は素子の破壊にいたる。 したがつて、半導体レーザー素子を支持するス
テムは、熱伝導率の高い材料を用いて熱放散を良
好にする必要がある。 また、上記ステムと半導体レーザー素子の熱膨
脹係数に差があると、発熱に伴つてひずみが発生
し、半導体レーザー素子に不必要なストレスが加
わる。このようなストレスは、半導体レーザー素
子の性能の劣化を加速し、更にはその破壊の原因
となるものである。 したがつて、ステムの材料としては、熱伝導率
がが高く、しかも熱膨脹係数が半導体レーザー素
子のそれとできるだけ近いものであることが要求
される。 そこで、従来は、第1図に示すように、半導体
レーザー素子1をサブマウント2を介してパツケ
ージのマウント内ブロツク3に取付け、そのサブ
マウント2の材料として、コバール(商品名)の
如き低熱膨脹特性を示す材料を使用することが行
なわれていた。 (ハ) 発明によつて解決しようとする問題点 サブマウント2の材料は、前述のとおり熱伝導
率が良好で、かつ熱膨脹係数が半導体レーザー素
子1のそれに近いことが要求される。 しかしながら、従来使用されているコバール
は、第1表に示すように、熱膨脹係数は半導体レ
ーザー素子1に非常に近いが、熱伝導率が低い問
題があり、このことが半導体レーザーの性能改良
の上で大きな障害となつていた。 (ニ) 問題点を解決するための手段 この発明は、GaAs、GaP又はGaSbを基板と
する半導体レーザー素子を用いた半導体レーザー
を対象とし、この場合のサブマウントの材料とし
て、熱膨脹係数が5.0〜8.5×10-6cm/cm・℃の範
囲にある次の金属、すなわち (1) WにCuを均一に含有させた合金 (2) MoにCuを均一に含有させた合金 (3) W・Mo合金にCuを均一に含有させた合金 のいずれか一つを使用することとしたものであ
る。上記の合金は溶浸法によつて製造することが
できる。 サブマウントの材料が上記の熱膨脹係数の範囲
を越えると、半導体レーザー素子との熱膨脹係数
の不整合が大きくなり、素子に生じるストレスに
より、素子の破損又は発光効率の低下などが起こ
る。また、上記範囲の熱膨脹係数を満足する上記
金属材料のCu含有量を重量%で示せば次のとお
りである。 W+Cu:0.5〜30%(前記(1)の金属材料) Mo+Cu:5〜35%(前記(2)の金属材料) W・Mo+Cu:0.5〜35%(前記(3)の金属材料) なお、上記金属材料の熱伝導率は、0.35〜
0.70cal/cm・sec・℃である。 この発明の金属材料と従来例(コバール)との
対比、及び素子基板の熱膨脹係数を参考までに示
せば、次の第1表に示すとおりである。
(a) Industrial Application Field This invention relates to a semiconductor laser device, and particularly to improvement of its heat dissipation characteristics. (b) Prior Art Since a semiconductor laser device is a high-power device driven by current, it generates a large amount of heat during operation. Therefore, if an appropriate heat dissipation design is not carried out, there is a risk that the heat generated during energized use may lead to performance deterioration, shortened element life, or destruction of the semiconductor laser element. Specifically, semiconductor laser elements generally have temperature characteristics as shown in FIG. As is clear from the figure, the light emission output largely depends on the element temperature. To obtain an optical output of 2 mW at a temperature of 20°C, a current of approximately 30 mA is required, but when used at a temperature of 50°C, a current of 30 mA is required.
mA cannot even reach laser oscillation,
A drive current of 60 mA or more is required to obtain an optical output of 2 mW. Furthermore, if the drive current is increased to compensate for the decrease in optical output due to temperature rise, the increase in current will cause an increase in the amount of heat generated by the element, creating a vicious cycle in which the element temperature will further rise. , leading to rapid deterioration of the device and, in extreme cases, destruction of the device. Therefore, the stem supporting the semiconductor laser element needs to be made of a material with high thermal conductivity to improve heat dissipation. Furthermore, if there is a difference in the coefficient of thermal expansion between the stem and the semiconductor laser element, distortion occurs due to heat generation, and unnecessary stress is applied to the semiconductor laser element. Such stress accelerates the deterioration of the performance of the semiconductor laser device and even causes its destruction. Therefore, the material for the stem is required to have high thermal conductivity and a coefficient of thermal expansion as close as possible to that of the semiconductor laser element. Therefore, conventionally, as shown in FIG. 1, a semiconductor laser element 1 was attached to a block 3 in a mount of a package via a submount 2, and the submount 2 was made of a material with low thermal expansion such as Kovar (trade name). The practice was to use materials that exhibit specific properties. (c) Problems to be Solved by the Invention As mentioned above, the material of the submount 2 is required to have good thermal conductivity and a coefficient of thermal expansion close to that of the semiconductor laser element 1. However, as shown in Table 1, the conventionally used Kovar has a coefficient of thermal expansion very close to that of semiconductor laser element 1, but it has a problem of low thermal conductivity, and this has made it difficult to improve the performance of semiconductor lasers. This was a major obstacle. (d) Means for solving the problem The present invention is directed to a semiconductor laser using a semiconductor laser element having a substrate of GaAs, GaP, or GaSb, and in this case, the material of the submount has a thermal expansion coefficient of 5.0 or more. The following metals in the range of 8.5×10 -6 cm/cm・℃, namely (1) Alloy containing W and Cu uniformly (2) Alloy containing Mo uniformly containing Cu (3) W・It was decided to use one of the alloys in which Cu is uniformly contained in a Mo alloy. The above alloys can be manufactured by an infiltration method. If the material of the submount exceeds the above-mentioned range of coefficient of thermal expansion, the mismatch in coefficient of thermal expansion with the semiconductor laser element will become large, and the stress generated on the element will cause damage to the element or a decrease in luminous efficiency. Further, the Cu content of the metal material satisfying the thermal expansion coefficient in the above range is as follows in weight %. W + Cu: 0.5 to 30% (metal material in (1) above) Mo + Cu: 5 to 35% (metal material in (2) above) W・Mo+Cu: 0.5 to 35% (metal material in (3) above) The thermal conductivity of metal materials is 0.35~
It is 0.70 cal/cm・sec・℃. A comparison between the metal material of the present invention and a conventional example (Kovar) and the coefficient of thermal expansion of the element substrate are shown in Table 1 below for reference.

【表】 上記第1表からわかるように、この発明の場合
は、熱膨脹係数が半導体レーザー装置の素子基板
のそれにきわめて近く、また熱伝導率は従来のコ
バールより約10倍程度、タングステン、モリブデ
ンに比べ約40〜70%改良されている。 (ホ) 実施例 GaAs基板上にAlGaAsをエピタキシヤル成長
させたダブルヘテロ構造を持つ半導体レーザー素
子を第2表に示す各種のサブマウント、ステムに
固着した半導体レーザー装置を製作し、その性能
の比較を行つた。
[Table] As can be seen from Table 1 above, in the case of the present invention, the coefficient of thermal expansion is extremely close to that of the element substrate of a semiconductor laser device, and the thermal conductivity is about 10 times that of conventional Kovar, compared to tungsten and molybdenum. This is an improvement of about 40-70%. (e) Example Semiconductor laser devices in which a semiconductor laser device with a double heterostructure in which AlGaAs was epitaxially grown on a GaAs substrate were fixed to various submounts and stems shown in Table 2 were fabricated, and their performances were compared. I went there.

【表】【table】

【表】 つまり本半導体レーザー装置の素子の温度上昇
は、従来のFe−Ni(コバール)を使用したものに
比べ約25〜35%低減し、また発光効率は70〜80
%、寿命は約100倍に伸びた。なおCuの含有量が
多い程放熱特性が良好になることが確認出来た。 (ヘ) 効果 以上のとおりであるから、この発明によれば、
放熱が良好でかつ発熱に伴うストレスの少ない半
導体レーザー装置を得ることができる。又、第3
図に示した如く、サブマウントとマウント用ブロ
ツク及びステムを一体にしたパツケージ構造も容
易にとりうることができた。
[Table] In other words, the temperature rise of the element of this semiconductor laser device is reduced by about 25 to 35% compared to the device using conventional Fe-Ni (Kovar), and the luminous efficiency is 70 to 80%.
%, the lifespan has increased approximately 100 times. It was confirmed that the higher the Cu content, the better the heat dissipation characteristics. (f) Effects As described above, according to this invention,
A semiconductor laser device with good heat dissipation and less stress caused by heat generation can be obtained. Also, the third
As shown in the figure, we were able to easily create a package structure in which the submount, mounting block, and stem were integrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の半導体レーザ装置を示す上面
図、第1図bはAA′における断面図である。第2
図は半導体レーザの発光特性の一例を示す図面で
ある。第3図aは本発明の半導体レーザ装置の一
例を示す上面図、第3図bはBB′における断面図
である。図において各番号の意味するところは次
のとおりである。同一番号は、各図面における相
当部分を示す。 1:半導体レーザ素子、2:サブマウント、
3:マウント用ブロツク材、4:光取出窓、5:
キヤツプ、6:パツケージ本体すなわちステム、
7:第1のリード線、8:第2のリード線、9:
絶縁物、10:リードワイヤー。
FIG. 1a is a top view showing a conventional semiconductor laser device, and FIG. 1b is a sectional view taken at AA'. Second
The figure is a drawing showing an example of the light emission characteristics of a semiconductor laser. FIG. 3a is a top view showing an example of the semiconductor laser device of the present invention, and FIG. 3b is a sectional view at BB'. The meanings of each number in the figure are as follows. The same numbers indicate corresponding parts in each drawing. 1: semiconductor laser element, 2: submount,
3: Mounting block material, 4: Light extraction window, 5:
Cap, 6: Package body or stem;
7: First lead wire, 8: Second lead wire, 9:
Insulator, 10: Lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 基板がGaAs、GaP又はGaSbの半導体レー
ザー素子から成る半導体レーザー装置において、
サブマウント及びステムの材料として、W、Mo
若しくはW−Mo合金のいずれかに溶浸法により
Cuを均一に含有させ、熱膨張係数を5.0〜8.5×
10-6cm/cm・℃の範囲に調整するとともに熱伝導
性を改良した合金を用い、かつサブマウントとス
テムとを一体成形したことを特徴とする半導体レ
ーザー装置。
1. In a semiconductor laser device consisting of a semiconductor laser element whose substrate is GaAs, GaP or GaSb,
W, Mo are used as submount and stem materials.
Or by infiltration method into either W-Mo alloy
Uniformly contains Cu and has a thermal expansion coefficient of 5.0 to 8.5×
A semiconductor laser device characterized by using an alloy whose thermal conductivity is adjusted to within the range of 10 -6 cm/cm・℃, and in which a submount and a stem are integrally molded.
JP58201566A 1983-10-26 1983-10-26 Semiconductor laser Granted JPS6092687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201566A JPS6092687A (en) 1983-10-26 1983-10-26 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201566A JPS6092687A (en) 1983-10-26 1983-10-26 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6092687A JPS6092687A (en) 1985-05-24
JPH0224393B2 true JPH0224393B2 (en) 1990-05-29

Family

ID=16443176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201566A Granted JPS6092687A (en) 1983-10-26 1983-10-26 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6092687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371686A1 (en) 2010-03-29 2011-10-05 Honda Access Corporation Accessory mounting device for a saddle riding type vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637652A (en) * 1986-06-27 1988-01-13 Sumitomo Electric Ind Ltd Metal package for airtight sealing of semiconductor
JPH0758743B2 (en) * 1986-06-27 1995-06-21 住友電気工業株式会社 Method for manufacturing hermetically sealed metal package for semiconductor
JPH06314857A (en) * 1993-03-04 1994-11-08 Mitsubishi Electric Corp Semiconductor light emitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891692A (en) * 1981-11-27 1983-05-31 Hitachi Ltd Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891692A (en) * 1981-11-27 1983-05-31 Hitachi Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371686A1 (en) 2010-03-29 2011-10-05 Honda Access Corporation Accessory mounting device for a saddle riding type vehicle

Also Published As

Publication number Publication date
JPS6092687A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
US6323059B1 (en) Method of fabricating a semiconductor device
CN1222092C (en) Semiconductor lighting device
US20090080485A1 (en) Nitride semiconductor laser device
JP2001168442A (en) Method of manufacturing semiconductor laser element, installation substrate, and support substrate
JP3736462B2 (en) Semiconductor laser device
JP3618989B2 (en) Semiconductor laser device
JP4126873B2 (en) Semiconductor laser device
JPH0224393B2 (en)
JP2006196505A (en) Semiconductor laser device
JPH0224392B2 (en)
JP2000261088A (en) Light emitting element
JP2001230498A (en) Group iii nitride-base compound semiconductor laser
JP6988268B2 (en) Semiconductor laser device
JPH0436473B2 (en)
JP2009004760A (en) Semiconductor laser device
JP2005101149A (en) Semiconductor light emitting device and its manufacturing method
TWI236196B (en) Semiconductor laser device
US11114817B2 (en) Semiconductor laser device
US7873086B2 (en) Semiconductor device
JPS63144588A (en) Sub-mount for semiconductor chip laser
JP2007027375A (en) Laser module
JPH0436474B2 (en)
JPH1168237A (en) Semiconductor light-emitting device and semiconductor device
JPH11204704A (en) Semiconductor device
JP2007013044A (en) Light emitting device