JPH02243933A - Method for measuring internal temperature of thin plate - Google Patents

Method for measuring internal temperature of thin plate

Info

Publication number
JPH02243933A
JPH02243933A JP6519889A JP6519889A JPH02243933A JP H02243933 A JPH02243933 A JP H02243933A JP 6519889 A JP6519889 A JP 6519889A JP 6519889 A JP6519889 A JP 6519889A JP H02243933 A JPH02243933 A JP H02243933A
Authority
JP
Japan
Prior art keywords
thin plate
internal temperature
measured
ultrasonic wave
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6519889A
Other languages
Japanese (ja)
Inventor
Kazuo Fujisawa
藤沢 和夫
Riichi Murayama
村山 理一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6519889A priority Critical patent/JPH02243933A/en
Publication of JPH02243933A publication Critical patent/JPH02243933A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the internal temperature by sending an ultrasonic wave from the transmitting element of an S0-mode electromagnetic ultrasonic wave transmitting and receiving element, receiving it by the receiving element and measuring its propagation time, and correcting the measured time with a measured value of the thickness of the thin plate. CONSTITUTION:Three electromagnetic ultrasonic wave probes 2(2a and 2b) are provided in the width direction of the steel plate 1 to measure temperature at three points in the width direction. Each probe 2 consists of a transmitting element 2a and a receiving element 2b, which are set at a distance of 500mm in the length direction of the steel plate 1. In this constitution, the ultrasonic wave is sent from the transmitting element and received by the receiving element to measure the propagation time, which is corrected with the measured value of the thickness of the thin plate to accurately measure the internal temperature of the thin plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱延工程における鋼板、 AI板、 Ti板
等の金属薄板の内部温度を測定する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the internal temperature of a thin metal sheet such as a steel plate, an AI plate, or a Ti plate during a hot rolling process.

〔従来の技術〕[Conventional technology]

鉄鋼の薄板またはAI板、 Ti板等の非鉄金属の薄板
は、熱延工程のみまたは熱延工程及びこれに続く冷延工
程を経て製造されている。このような製造工程にあって
は、熱延工程において材料をどのような結晶状態にて変
形させるかが、製造される薄板の特性に大きな影響を及
ぼすことが知られており、材料の結晶状態は熱延工程に
おける材料内部温度に関係している。特に鋼板にあって
は、仕上げ圧延の温度(仕上げ圧延機群の入口及び出口
の温度)と巻取りの温度(コイラーラインの温度)とが
、製造される鋼板の機械的特性に大きく影響する。
Steel thin plates or non-ferrous metal thin plates such as AI plates and Ti plates are manufactured through only a hot rolling process or a hot rolling process followed by a cold rolling process. In such manufacturing processes, it is known that the crystalline state in which the material is deformed during the hot rolling process has a large effect on the properties of the manufactured thin sheet. is related to the internal temperature of the material during the hot rolling process. Particularly in the case of steel plates, the finish rolling temperature (temperature at the inlet and outlet of the finish rolling mill group) and coiling temperature (temperature at the coiler line) greatly influence the mechanical properties of the manufactured steel plate.

従って熱延工程における鋼板等の金属薄板の内部温度を
検出して、その温度管理を行うことは金属薄板を製造す
る場合において極めて重要である。
Therefore, detecting the internal temperature of a thin metal sheet such as a steel plate during the hot rolling process and controlling the temperature is extremely important when manufacturing a thin metal sheet.

従来では多数の放射温度計を熱延ラインに設けて、材料
の表面温度を連続測定し、この測定値に応じて材料の内
部温度を検出していた。ところがこの方法では、表面温
度の測定値と材料の板厚とに基づいて内部温度を推定し
ているだけであるので、材料の結晶状態を決定する内部
温度を正確に測定できないという問題があった。
Conventionally, a large number of radiation thermometers were installed on a hot rolling line to continuously measure the surface temperature of the material, and the internal temperature of the material was detected based on the measured values. However, this method only estimates the internal temperature based on the measured value of the surface temperature and the thickness of the material, so there was a problem that the internal temperature, which determines the crystalline state of the material, could not be accurately measured. .

この問題を解決するための測定方法が、特開昭63−8
3625号公報及び特開昭63−83626号公報に開
示されている。これらは、溶融金属を挟んで超音波送受
信素子を設け、超音波送受信素子間の距離及び超音波の
伝播時間から溶融金属における超音波の音速を求め、測
定対象の溶融金属における特有な温度−音速特性に基づ
いて溶融金属の内部温度を測定しようとするものであり
、この測定方法において溶融金属に代えて金属薄板を使
用することによって、金属薄板の内部温度を測定するこ
とが考えられる。なおこの場合、金属薄板の板厚測定に
はX線またはγ線の減衰を利用することが考えられる。
A measurement method to solve this problem was developed in Japanese Patent Application Laid-Open No. 63-8
It is disclosed in Japanese Patent Application Laid-open No. 3625 and Japanese Patent Application Laid-open No. 83626/1983. These methods involve installing ultrasonic transmitting and receiving elements across the molten metal, determining the sound speed of the ultrasonic wave in the molten metal from the distance between the ultrasonic transmitting and receiving elements and the propagation time of the ultrasound, and calculating the characteristic temperature - sound velocity of the molten metal to be measured. This method attempts to measure the internal temperature of molten metal based on its characteristics, and it is conceivable to measure the internal temperature of the metal thin plate by using a thin metal plate instead of the molten metal in this measurement method. In this case, it is conceivable to use the attenuation of X-rays or γ-rays to measure the thickness of the thin metal plate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところがx′ffAまたはγ線の減衰は金属薄板の密度
の関数であって、しかも密度は金属薄板の温度の関数で
あるので、上述した従来の測定方法では厳密な音速を求
めることは不可能であるという問題点がある。
However, the attenuation of x'ffA or γ-rays is a function of the density of the thin metal sheet, and the density is also a function of the temperature of the thin metal sheet, so it is impossible to determine the exact speed of sound using the conventional measurement method described above. There is a problem.

また従来の測定方法では、高精度に板厚を測定する必要
があるという難点がある。第6図は、鋼材温度(’C)
と超音波(′#1波)の音速(m/秒)との関係を示す
グラフである。変態点(約700℃)以上では音速変化
は約0.8 m/秒/℃であり、変態点(約700℃)
以上では音速が約5000 m /秒であるので、この
音速変化を板厚変化に換算すると、1.6 Xl0−’
 (=0.815000)となる。この結果板厚を10
鶴とした場合、l’cの測定精度にて内部温度を測定す
るためには、1.6μm(=lOn×1.6X 10−
’)の精度にて板厚を測定する必要がある。
Furthermore, the conventional measuring method has the disadvantage that it is necessary to measure the plate thickness with high precision. Figure 6 shows the steel material temperature ('C)
It is a graph showing the relationship between the sound velocity (m/sec) of the ultrasonic wave ('#1 wave) and the sound speed (m/sec). Above the transformation point (approximately 700°C), the sound velocity change is approximately 0.8 m/sec/°C;
In the above, the sound speed is approximately 5000 m/s, so converting this sound speed change into a plate thickness change is 1.6 Xl0-'
(=0.815000). As a result, the plate thickness was reduced to 10
In the case of a crane, in order to measure the internal temperature with a measurement accuracy of l'c, it is necessary to use 1.6 μm (= lOn x 1.6
It is necessary to measure the plate thickness with an accuracy of ').

温度測定の精度を10℃と設定しても、16μmの測定
精度が必要であり、X線またはγ線の減衰を利用する板
厚測定では、この精度を達成できないという難点がある
Even if the accuracy of temperature measurement is set to 10° C., a measurement accuracy of 16 μm is required, and there is a drawback that this accuracy cannot be achieved by plate thickness measurement using attenuation of X-rays or γ-rays.

また、縦波または横波を利用して高温状態の薄板におけ
る音速を測定する場合には、電磁超音波探触子の使用が
考えられるが、多重エコーを分解して測定するために高
い周波数を用いなければならないので、薄板と探触子と
のリフトオフを2〜3 mm以下に抑えることが必要で
あり、オンラインへの利用は困難であるという問題点が
ある。
In addition, when measuring the sound speed in a thin plate under high temperature using longitudinal waves or transverse waves, it is possible to use an electromagnetic ultrasonic probe, but a high frequency is used to resolve and measure multiple echoes. Therefore, it is necessary to suppress the lift-off between the thin plate and the probe to 2 to 3 mm or less, and there is a problem that it is difficult to use it online.

本発明はかかる事情に鑑みてなされたものであり、S0
モードの伝播時間に板厚値の補正を加えることにより、
高精度な板厚測定を必要とせずに薄板の内部温度を正確
に測定でき、しかもオンラインへの適用が可能である薄
板の内部温度測定方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and is
By adding thickness correction to the mode propagation time,
An object of the present invention is to provide a method for measuring the internal temperature of a thin plate, which can accurately measure the internal temperature of a thin plate without requiring highly accurate thickness measurement, and which can be applied online.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る第1の発明の薄板の内部温度測定方法は、
薄板における超音波の伝播時間に基づいて前記薄板の内
部温度を測定する方法において、一定距離を隔てて設け
たS0モード電磁超音波送受信素子の送信素子から80
モード超音波を送信して前記薄板を伝播させ、薄板を伝
播したS0モード超音波を受信素子にて受信して伝播時
間を測定し、この測定時間を、前記SOモード電磁超音
波送受信素子の近傍における前記薄板の厚さの測定値に
て補正して、前記薄板の内部温度を測定することを特徴
とする。
The method for measuring the internal temperature of a thin plate according to the first aspect of the present invention includes:
In the method of measuring the internal temperature of the thin plate based on the propagation time of the ultrasonic wave in the thin plate, the transmitting element of the S0 mode electromagnetic ultrasonic transmitting/receiving element provided at a certain distance
Mode ultrasound is transmitted and propagated through the thin plate, the S0 mode ultrasound propagated through the thin plate is received by a receiving element, the propagation time is measured, and this measurement time is calculated in the vicinity of the SO mode electromagnetic ultrasound transmitting/receiving element. The internal temperature of the thin plate is measured by correcting the measured value of the thickness of the thin plate in .

また本発明に係る第2の発明の薄板の内部温度測定方法
は、第1の発明において、S0モード超音波の周波数を
f (MHz)とし、前記薄板の厚さの最大値をT (
mm)とした場合に、f−T≦1.3であることを特徴
とする。
Further, in the method for measuring the internal temperature of a thin plate according to a second invention according to the present invention, in the first invention, the frequency of the S0 mode ultrasonic wave is f (MHz), and the maximum value of the thickness of the thin plate is T (
mm), f-T≦1.3.

更に本発明に係る第3の発明の薄板の内部温度測定方法
は、第1または第2の発明において、薄板の厚さの測定
精度が0.1 n以下であることを特徴とする。
Furthermore, the method for measuring the internal temperature of a thin plate according to a third aspect of the present invention is characterized in that, in the first or second aspect, the measurement accuracy of the thickness of the thin plate is 0.1 n or less.

〔作用〕[Effect]

本発明の薄板の内部温度測定方法にあっては、薄板上に
一定距離を隔てて設けたS0モード電磁超音波送受信素
子の送信素子から80モード超音波を送信して受信素子
にて受信し、このS0モード超音波の伝播時間を測定す
る。一方S0モード電磁超音波送受信素子の設置位置の
近傍における薄板の厚さを測定する。そしてこの厚さの
測定値にて伝播時間の測定値を補正する。そうすると、
板厚の測定精度が低くても内部温度を精度良く測定でき
、また低周波の80モードを用いるので、オンラインに
おけるリフトオフ変動にほとんど影響されることなく音
速を測定できる。
In the method for measuring the internal temperature of a thin plate of the present invention, 80-mode ultrasonic waves are transmitted from the transmitting element of the S0 mode electromagnetic ultrasonic transmitting/receiving element provided at a certain distance on the thin plate, and received by the receiving element, The propagation time of this S0 mode ultrasonic wave is measured. On the other hand, the thickness of the thin plate near the installation position of the S0 mode electromagnetic ultrasonic transceiver element is measured. Then, the measured value of the propagation time is corrected using the measured value of the thickness. Then,
Even if the measurement accuracy of the plate thickness is low, the internal temperature can be measured with high accuracy, and since the low frequency 80 mode is used, the sound speed can be measured almost unaffected by on-line lift-off fluctuations.

〔原理〕〔principle〕

′以下本発明の原理について、炭素鋼板の内部温度を測
定する場合を例にして説明する。
'Hereinafter, the principle of the present invention will be explained using an example in which the internal temperature of a carbon steel plate is measured.

第3図は、800〜1200℃における炭素鋼板の縦波
音速、横波音速に基づ(、周波数0におけるS0モード
の鋼板温度と音速との関係を示したものである。縦波、
横波及びS0モードの綱板における音速を夫々VL、V
、、V、。とすると、各音速は下記(1)〜(3)式に
て夫々示される。
Figure 3 shows the relationship between the steel plate temperature and sound velocity in the S0 mode at frequency 0, based on the longitudinal wave sound velocity and shear wave sound velocity of a carbon steel plate at 800 to 1200°C.Longitudinal wave,
The sound speed in the steel plate in transverse wave and S0 mode is VL and V, respectively.
,,V,. Then, each sound velocity is shown by the following equations (1) to (3), respectively.

λ、μ:ラメの定数、ρ:炭素鋼板の密度Δ:波長八へ
よる分散を示すものであって、鋼板の板厚をTとした場
合に下記(4)にて近似される 上記(4)式において、Δ−■とすると、Δ−〇となり
、前記(3)式は下記(5)式となる。
λ, μ: lame constant, ρ: density of carbon steel plate Δ: indicates dispersion due to wavelength 8, and when the thickness of the steel plate is T, the above (4) approximated by the following (4) ), if Δ−■ becomes Δ−〇, the above formula (3) becomes the following formula (5).

ところで前記(1)、 (21式よりラメの定数λ及び
μを求めると、下記(6)式、(7)式となる。
By the way, when the Lamé constants λ and μ are determined from the above equations (1) and (21), the following equations (6) and (7) are obtained.

λ=l) (Vt ”  2Vs ” )  ・”(6
)μ=ρ■s!    ・・・(7) そしてこの(6)式、(7)式を前記(5)式に代入す
ると、下記(8)式の如くなる。
λ=l) (Vt "2Vs") ・"(6
)μ=ρ■s! (7) Then, by substituting these equations (6) and (7) into the above equation (5), the following equation (8) is obtained.

定誤差に伴うv、oの誤差ΔV、。と真の値V3Gとの
比は下記(9)式の如くなる。
Error ΔV of v,o due to constant error. The ratio between V3G and the true value V3G is as shown in equation (9) below.

[(T+0.1  )  ”  −T”  )従って8
0モードの音速■、。は縦波音速VL+横波音速■、の
関数となり、しかもこれらの■、。
[(T+0.1) ”-T”) Therefore 8
Speed of sound in 0 mode ■. is a function of longitudinal wave sound speed VL + transverse wave sound speed ■, and these ■.

■、は温度の関数であるので、S0モードの音速■、。Since ■ is a function of temperature, the speed of sound in S0 mode is ■.

は温度の関数となり、この両者の関係を示したグラフが
第3図である。
is a function of temperature, and FIG. 3 is a graph showing the relationship between the two.

第3図からS。モードの音速■、。の温度に対する変化
は0.65m/秒/℃であり、音速を約4500 m7
秒として、その変化率は1.4 xlO−’/’c (
=0.65÷4500)となる。
S from Figure 3. ■Speed of sound in mode. The change with temperature is 0.65 m/sec/℃, which reduces the sound speed to about 4500 m7
seconds, its rate of change is 1.4 xlO-'/'c (
=0.65÷4500).

一方、Δ−50璽m、T=1〜13鳳鳳として、Δの(
直を計算すると第4図の如くなる。ここで板厚Tを0.
1龍の精度にて測定することにすると、この測(0,2
T+0.01)   ・・・(9)この(9)式に基づ
いて算出される誤差率を図示すると第5図の如くなる。
On the other hand, assuming Δ-50m and T=1 to 13, Δ(
Calculating the direct angle results in the result shown in Figure 4. Here, the plate thickness T is 0.
If we decide to measure with an accuracy of 1 dragon, this measurement (0, 2
T+0.01) (9) The error rate calculated based on equation (9) is illustrated in FIG. 5.

第3図に示すような八−■における温度と80モード音
速との関係を求め、その八による補正項であるΔを、0
.1*nの精度にて測定したTによって補正すれば、S
0モード音速V、。を、Δ=50nの場合、T≦13鰭
の範囲であれば、第5図に示すように3X10−’以下
の精度にて求めることができる。
Find the relationship between the temperature and the 80 mode sound velocity at 8-■ as shown in Figure 3, and set Δ, the correction term based on 8, to 0.
.. If corrected by T measured with an accuracy of 1*n, S
0 mode sound velocity V,. When Δ=50n, if T≦13 fins, it can be determined with an accuracy of 3×10−′ or less, as shown in FIG. 5.

ところで80モード電磁超音波送受信探触子(100k
Hz以下)では、その波長の10倍以上の距離を隔てて
送受信素子を設置した場合、測定対象の物体のリフトオ
フが±10龍であれば、S0モード超音波の伝播時間の
測定誤差を5X10−’以下で実現できることがわかっ
ている。従ってこのような状態に送受信素子を設置すれ
ば、5xio−’以下の精度にて音速を測定することが
できる。この誤差精度は、前述の音速の誤差精度(3X
10−’)と略同じである。
By the way, 80 mode electromagnetic ultrasonic transceiver probe (100k
Hz), if the transmitting and receiving elements are installed at a distance of 10 times the wavelength or more, and if the lift-off of the object to be measured is ±10, then the measurement error of the propagation time of the S0 mode ultrasound is 5X10- 'We know that the following can be achieved. Therefore, if the transmitter/receiver element is installed in such a state, the speed of sound can be measured with an accuracy of 5 xio-' or less. This error accuracy is the same as the sound speed error accuracy (3X
10-').

以上により、板厚Tを0.1 inの精度にて測定し、
しかも板厚Tを13mm以下に設定した場合には、l×
101の精度にて音速を十分に測定できるので、これよ
り測定される温度の測定精度は、音速の変化率が1.4
 Xl0−’であるので、7℃(= (I Xl0−3
)÷(1,4X 10−’)コとなる。
As described above, the plate thickness T was measured with an accuracy of 0.1 inch,
Moreover, when the plate thickness T is set to 13 mm or less, l×
Since the speed of sound can be sufficiently measured with an accuracy of 101, the measurement accuracy of the temperature measured from this is that the rate of change in the speed of sound is 1.4.
Since Xl0-', 7℃ (= (I Xl0-3
) ÷ (1,4X 10-').

このようにして、本発明では板厚の測定精度を高める必
要がなく (本発明では0,1m■の精度にて十分)、
正確に(本発明では7℃程度の誤差)薄板の内部温度を
測定することができる。
In this way, in the present invention, there is no need to increase the measurement accuracy of plate thickness (accuracy of 0.1 m is sufficient in the present invention),
The internal temperature of the thin plate can be measured accurately (with an error of about 7° C. in the present invention).

〔実施例〕〔Example〕

以下本発明の実施例について具体的に説明する。 Examples of the present invention will be specifically described below.

第1図(a)、 (b)は本発明の測定方法の実施状態
を示す平面図、断面図であり、図中1は測定対象の鋼板
を示す。。鋼板1の幅方向には、3組の電磁超音波探触
子(EMAT) 2が適長離隔して設けられており、幅
方向の3点にて温度を測定するようになっている。各組
の電磁超音波探触子2は何れも送信素子2a及び受信素
子2bから構成されており、送信素子2a+受信素子2
bは鋼板1の長平方向に500鰭だけ離隔させである。
FIGS. 1(a) and 1(b) are a plan view and a sectional view showing the implementation state of the measuring method of the present invention, and in the figures, 1 indicates a steel plate to be measured. . In the width direction of the steel plate 1, three sets of electromagnetic ultrasonic probes (EMAT) 2 are provided at appropriate distances apart, and the temperature is measured at three points in the width direction. Each set of electromagnetic ultrasound probes 2 is composed of a transmitting element 2a and a receiving element 2b, and the transmitting element 2a+receiving element 2
b is spaced apart by 500 fins in the longitudinal direction of the steel plate 1.

送信素子2a及び受信素子2bは略同様の構成をなして
おり、送信素子2a (受信素子2b)は、鋼板1を挟
んで設けられた極性が異なる2個の永久磁石20a、 
21a (20b、 21b)を有しており、鋼板1の
上面側の永久磁石20a (20b)の表面には、第2
図に示すように、コイル30g (30b)が貼付けら
れている。なお永久磁石としては、サマリウムコバルト
を積層したものを使用している。
The transmitting element 2a and the receiving element 2b have substantially the same configuration, and the transmitting element 2a (receiving element 2b) includes two permanent magnets 20a with different polarities, which are provided with a steel plate 1 in between,
21a (20b, 21b), and the surface of the permanent magnet 20a (20b) on the upper surface side of the steel plate 1 has a second
As shown in the figure, a coil 30g (30b) is attached. Note that the permanent magnet used is a laminated layer of samarium cobalt.

送信コイル30a、受信コイル30b及び鋼板1の下面
側の永久磁石21a、 21bのリフトオフは20龍と
し、また送信素子2a、受信素子2bから夫々200 
in離隔した位置に、ピンチロール(図示せず)を設け
て、鋼板1の上下動を±10臆麿以下に抑えている。
The lift-off of the transmitting coil 30a, the receiving coil 30b, and the permanent magnets 21a and 21b on the lower surface side of the steel plate 1 is 20 mm, and the lift-off of the transmitting element 2a and the receiving element 2b is 20 mm, respectively.
Pinch rolls (not shown) are provided at positions spaced apart to suppress vertical movement of the steel plate 1 to less than ±10 degrees.

このような構成において、周波数80kHz 、  5
周期のパース波により、各組の電磁超音波探触子2を繰
返し周波数64H2にて励振し、前述した原理に基づい
て仕上圧延における鋼板1の内部温度を測定した。なお
、伝播時間の測定はゼロクロス法を用いて精度IQns
ecにて測定し、また128回(2秒)にわたる平均値
を用いて内部温度を測定することとした。
In such a configuration, the frequency is 80kHz, 5
Each set of electromagnetic ultrasonic probes 2 was excited at a repetition frequency of 64H2 by periodic parsed waves, and the internal temperature of the steel plate 1 during finish rolling was measured based on the above-described principle. Note that the propagation time is measured using the zero-crossing method with an accuracy of IQns.
EC, and the internal temperature was determined using the average value over 128 times (2 seconds).

そしてこのようにして得られる測定結果に基づく温度管
理を行って鋼板を製造した。そうすると従来の方法、つ
まり放射温度計にて内部温度を推定する方法にて得られ
る温度データに基づく温度管理を行って製造した鋼板に
比して、本発明の方法を用いて製造した鋼板では、その
機械特性値のバラツキを半減させることができた。
A steel plate was manufactured by controlling the temperature based on the measurement results obtained in this manner. Therefore, compared to steel sheets manufactured using the conventional method, that is, temperature control based on temperature data obtained by estimating internal temperature using a radiation thermometer, the steel sheets manufactured using the method of the present invention have We were able to halve the variation in mechanical property values.

なお、本実施例では鋼板の内部温度を測定する場合につ
いて説明したが、AI板、 Ti板等の非鉄金属薄板に
ついても同様に行なえることは勿論である。
In this embodiment, a case has been described in which the internal temperature of a steel plate is measured, but it is of course possible to measure the internal temperature of a steel plate in the same manner as well.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の測定方法では、板厚と高精度
に測定しなくても、正確に薄板の内部温度を測定するこ
とができる。またこの際、S0モードの周波数f (M
Hz)と薄板の板厚の最大値T (in)との間にf−
T≦1.3を満たし、板厚の測定精度を0.1mm以下
に設定する場合には、約7°Cの精度にて薄板の内部温
度を測定できる。
As described in detail above, in the measuring method of the present invention, the internal temperature of a thin plate can be accurately measured without measuring the plate thickness with high accuracy. Also, at this time, the frequency f (M
Hz) and the maximum thickness T (in) of the thin plate.
When satisfying T≦1.3 and setting the plate thickness measurement accuracy to 0.1 mm or less, the internal temperature of the thin plate can be measured with an accuracy of about 7°C.

更に、薄板にある程度のリフトオフ変動が発生する場合
にあっても、正確に内部温度を測定できるので、オンラ
インにおいて利用できる等、本発明は優れた効果を奏す
る。
Further, even if a certain degree of lift-off fluctuation occurs in the thin plate, the internal temperature can be accurately measured, so the present invention has excellent effects such as being able to be used online.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る薄板の内部温度測定方法の実施状
態を示す模式図、第2図は本発明の実施に使用する電磁
超音波探触子の一部を示す平面図、第3図はS0モード
の音速特性を示すグラフ、第4図はS0モードの速度分
散項を示すグラフ、第5図はS0モードの速度誤差率を
示すグラフ、第6図は縦波の音速特性を示すグラフであ
る。 l・・・鋼板 2・・・電磁超音波探触子 2a・・・
送信素子 2b・・・受信素子 20a、20b、21
a、21b ”・永久磁石30a ・・・送信コイル 0b ・・・受信コイル 特 許
FIG. 1 is a schematic diagram showing the implementation state of the method for measuring the internal temperature of a thin plate according to the present invention, FIG. 2 is a plan view showing a part of the electromagnetic ultrasonic probe used in implementing the present invention, and FIG. is a graph showing the sound speed characteristics of S0 mode, Fig. 4 is a graph showing the velocity dispersion term of S0 mode, Fig. 5 is a graph showing the velocity error rate of S0 mode, and Fig. 6 is a graph showing the sound speed characteristics of longitudinal waves. It is. l... Steel plate 2... Electromagnetic ultrasound probe 2a...
Transmitting element 2b...receiving element 20a, 20b, 21
a, 21b ”・Permanent magnet 30a ... Transmission coil 0b ... Receiving coil patent

Claims (1)

【特許請求の範囲】 1、薄板における超音波の伝播時間に基づいて前記薄板
の内部温度を測定する方法において、一定距離を隔てて
設けたS_0モード電磁超音波送受信素子の送信素子か
らS_0モード超音波を送信して前記薄板を伝播させ、
薄板を伝播したS_0モード超音波を受信素子にて受信
して伝播時間を測定し、この測定時間を、前記S_0モ
ード電磁超音波送受信素子の近傍における前記薄板の厚
さの測定値にて補正して、前記薄板の内部温度を測定す
ることを特徴とする薄板の内部温度測定方法。 2、前記S_0モード超音波の周波数をf(MHz)と
し、前記薄板の厚さの最大値をT(mm)とした場合に
、f・T≦1.3である請求項1記載の薄板の内部温度
測定方法。 3、前記薄板の厚さの測定精度が0.1mm以下である
請求項1または2記載の薄板の内部温度測定方法。
[Scope of Claims] 1. In a method of measuring the internal temperature of a thin plate based on the propagation time of ultrasonic waves in the thin plate, the ultrasonic wave transmitting element of the S_0 mode electromagnetic ultrasonic wave transmitting/receiving element provided at a certain distance from the transmitting element of the S_0 mode electromagnetic ultrasonic wave transmitting/receiving element is transmitting sound waves to propagate through the thin plate;
The S_0 mode ultrasonic wave propagated through the thin plate is received by a receiving element, the propagation time is measured, and this measured time is corrected by the measured value of the thickness of the thin plate in the vicinity of the S_0 mode electromagnetic ultrasonic transmitting/receiving element. A method for measuring an internal temperature of a thin plate, comprising: measuring the internal temperature of the thin plate. 2. The thin plate according to claim 1, where f·T≦1.3, where the frequency of the S_0 mode ultrasonic wave is f (MHz) and the maximum thickness of the thin plate is T (mm). How to measure internal temperature. 3. The method for measuring the internal temperature of a thin plate according to claim 1 or 2, wherein the measurement accuracy of the thickness of the thin plate is 0.1 mm or less.
JP6519889A 1989-03-16 1989-03-16 Method for measuring internal temperature of thin plate Pending JPH02243933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6519889A JPH02243933A (en) 1989-03-16 1989-03-16 Method for measuring internal temperature of thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6519889A JPH02243933A (en) 1989-03-16 1989-03-16 Method for measuring internal temperature of thin plate

Publications (1)

Publication Number Publication Date
JPH02243933A true JPH02243933A (en) 1990-09-28

Family

ID=13279980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6519889A Pending JPH02243933A (en) 1989-03-16 1989-03-16 Method for measuring internal temperature of thin plate

Country Status (1)

Country Link
JP (1) JPH02243933A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025724A (en) * 2008-07-18 2010-02-04 Kobe Steel Ltd Temperature measuring device and method for measuring temperature
JP2011145219A (en) * 2010-01-15 2011-07-28 Toshiba Corp Piping and device monitoring apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025724A (en) * 2008-07-18 2010-02-04 Kobe Steel Ltd Temperature measuring device and method for measuring temperature
JP2011145219A (en) * 2010-01-15 2011-07-28 Toshiba Corp Piping and device monitoring apparatus and method

Similar Documents

Publication Publication Date Title
US5557970A (en) Automated thickness measurement system
US4334433A (en) Method and apparatus for measuring thickness of clad steel
US5467655A (en) Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
JPH02243933A (en) Method for measuring internal temperature of thin plate
CN111424166B (en) Method for accurately controlling primary recrystallization size of oriented silicon steel
CN111256630B (en) Method for rapidly measuring thickness of metal plate by utilizing electromagnetic ultrasonic guided wave frequency dispersion characteristic
JP2707841B2 (en) Method for controlling plastic strain ratio of continuously heat-treated thin steel sheet
Murayama et al. Development of an on-line evaluation system of formability in cold-rolled steel sheets using electromagnetic acoustic transducers (EMATs)
JP3656555B2 (en) Electromagnetic ultrasonic measurement method
JPH05281201A (en) Method and apparatus for measurement of depth of quenched and hardened layer
JP2611714B2 (en) Ultrasonic applied measuring device
JP4411734B2 (en) Hot ultrasonic thickness gauge and thickness measurement method
JPS5890129A (en) Ultrasonic level meter
JP2773535B2 (en) Ultrasonic applied measuring device
JPH03245026A (en) Measuring method for internal temperature of cast metal
JPH0777465A (en) Measuring method for surface layer average temperature and thickness direction temperature distribution
Murayama Non-destructive evaluation of formability in cold rolled steel sheets using the SH0-mode plate wave by electromagnetic acoustic transducer
JPH021547A (en) Method for evaluating deep drawing property of metallic sheet
Dixon et al. Characterisation of thickness and crystallographic texture of sheet using non-contact ultrasonic measurements
JPH05215617A (en) Method for measuring average temperature on cross-section of object
Dixon et al. Non-contact strip characterisation: Characterisation of thickness and crystallographic texture of sheet using non-contact ultrasonic measurements
JPH1164309A (en) Method and apparatus for measuring material characteristic of roll material
JP3770522B2 (en) Method and apparatus for measuring internal temperature of steel material
JP4617540B2 (en) Ultrasonic characteristic measuring method, acoustic anisotropy measuring method, and acoustic anisotropy measuring apparatus
JPH01214757A (en) Apparatus for evaluating deep drawing of thin metal plate