JPH021547A - Method for evaluating deep drawing property of metallic sheet - Google Patents

Method for evaluating deep drawing property of metallic sheet

Info

Publication number
JPH021547A
JPH021547A JP1026429A JP2642989A JPH021547A JP H021547 A JPH021547 A JP H021547A JP 1026429 A JP1026429 A JP 1026429A JP 2642989 A JP2642989 A JP 2642989A JP H021547 A JPH021547 A JP H021547A
Authority
JP
Japan
Prior art keywords
plastic strain
plate
rolling direction
strain ratio
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1026429A
Other languages
Japanese (ja)
Other versions
JPH0679018B2 (en
Inventor
Riichi Murayama
村山 理一
Kazuo Fujisawa
藤沢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1026429A priority Critical patent/JPH0679018B2/en
Publication of JPH021547A publication Critical patent/JPH021547A/en
Publication of JPH0679018B2 publication Critical patent/JPH0679018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Abstract

PURPOSE:To execute the evaluation by an appropriate non-destructive measurement as an on-line-like evaluation by deriving a plastic strain ratio by propagating directly an ultrasonic wave to a metallic sheet. CONSTITUTION:A rolling direction propagation plate probe 11 sends/receives an ultrasonic plate wave which is propagated by a prescribed distance in the rolling direction of a sample. A rolling 45 deg. direction propagation plate wave probe 12 sends/receives the ultrasonic plate wave which is propagated by a prescribed distance in the direction inclined by 45 deg. against the rolling direction of the sample. A rolling orthogonal direction propagation plate wave probe 13 sends/receives the ultrasonic plate wave which is propagated by a prescribed distance in the direction orthogonal to the rolling direction of the sample. In this state, the quantity for evaluating a main crystal azimuth component of the sample by using a measured value of each propagation time is derived by a computing element 40. As a result, an in-plane mean value and an in-plane azimuth difference of a plastic strain ratio are derived. In such a way, the evaluation by an appropriate non-destructive measurement is executed as an on-line-like evaluation.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は低炭素冷延鋼板等の圧延された金属薄板の深絞
り性を評価する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for evaluating the deep drawability of a rolled metal sheet such as a low carbon cold rolled steel sheet.

〔従来技術〕[Prior art]

自動車、家電製品等の製品の外装に用いられる冷延鋼板
は一般に、プレス成形によって深絞り加工が施されるた
めその加工性、特に深絞り性が重要視されているが、深
絞り性は鋼板が伸ばされたときに生じる板幅方向の歪み
と板厚方向の歪みとの比、所謂塑性歪み比(ランクフォ
ード値又はr値ともいう)によって評価されている。
Cold-rolled steel sheets used for the exterior of products such as automobiles and home appliances are generally deep drawn by press forming, so the workability, especially the deep drawability, is important. It is evaluated based on the ratio of the strain in the width direction to the strain in the thickness direction, which is the so-called plastic strain ratio (also referred to as the Lankford value or r value).

深絞り性を評価するための塑性歪み比を求める方法とし
ては、例えば引張り試験を行って塑性歪み比を直接的に
求める直接法が用いられている。
As a method for determining the plastic strain ratio for evaluating deep drawability, for example, a direct method is used in which a tensile test is performed to directly determine the plastic strain ratio.

直接法による場合は鋼板から引張り試験片を採取し、引
張り試験片に対して15〜20%の伸びを与える単軸引
張り試験を行い、それによって生じた板幅方向の歪みと
板厚方向の歪みとを実測することによって塑性歪み比(
r = i n(W/Wo)/ l n(を八。)。
When using the direct method, a tensile test piece is taken from a steel plate, and a uniaxial tensile test is performed to give the tensile test piece an elongation of 15 to 20%, and the resulting strain in the plate width direction and plate thickness direction is measured. By actually measuring the plastic strain ratio (
r = i n(W/Wo)/l n(8.).

W、W。、 t、 to:引き伸し前後の試験片の板巾
、板厚)を直接的に求める。なお実際に用いられる塑性
歪み比としては、次式によって与えられる面内平均値7
が採用される。
W, W. , t, to: the width and thickness of the test piece before and after stretching are directly determined. The plastic strain ratio actually used is the in-plane average value 7 given by the following formula:
will be adopted.

r=(ro・ +2r4.・ +r、。・ )/4 ・
・・(1)但し、ro・ :圧延方向に沿って採取した
引張り試験片による塑性歪み比 「45・ :圧延方向に対して45°方向に採取した引
張り試験片による塑性 歪み比 r、。・ :圧延方向に対して直交する方向に採取した
引張り試験片による 塑性歪み比 かかる塑性歪み比の面内平均値下は、それが大きいと深
絞り性が高くなって深絞り性を評価する上での指標とな
るが、次式によって与えられる塑性歪み比の面内方位差
Δrは、耳割れの発生し易さの指標となる。
r=(ro・+2r4.・+r,.・)/4・
・・(1) However, ro・: plastic strain ratio by a tensile test piece taken along the rolling direction; :Plastic strain ratio of tensile test pieces taken in the direction perpendicular to the rolling direction.The lower the in-plane average value of the plastic strain ratio, the higher the value, the higher the deep drawability. The in-plane orientation difference Δr of the plastic strain ratio given by the following equation is an index of the ease with which edge cracks occur.

Δr =(ro、2 r4s、+ rq。、)/2 ・
・・(2)また、所定の大きさのサンプルを共振させる
ことによって求めたヤング率から塑性歪み比を推定する
共振法も用いられる。共振法による場合は、先ず鋼板か
ら所定の大きさのサンプルを圧延方向と、圧延方向に対
して45°だけ傾斜する方向と、圧延方向に対して直交
する方向との3方向に分けて複数個採取し、これらサン
プルに対して電磁誘導にて磁気歪みを与えてこれを共振
させる。そして共振するサンプルの共振周波数を電磁誘
導にて求め、共振周波数より各サンプルのヤング率を求
める。
Δr = (ro, 2 r4s, + rq.,)/2 ・
(2) A resonance method is also used in which the plastic strain ratio is estimated from the Young's modulus obtained by causing a sample of a predetermined size to resonate. In the case of the resonance method, first, a plurality of samples of a predetermined size are prepared from a steel plate and divided into three directions: the rolling direction, a direction inclined by 45 degrees to the rolling direction, and a direction perpendicular to the rolling direction. These samples are then subjected to magnetic distortion using electromagnetic induction to cause them to resonate. Then, the resonant frequency of the resonating sample is determined by electromagnetic induction, and the Young's modulus of each sample is determined from the resonant frequency.

そして下記(3)式、(4)式にて与えられる平均ヤン
グ率■及びその方位差AEを求める。
Then, the average Young's modulus (■) and its orientation difference AE given by the following equations (3) and (4) are determined.

1=(■。、 +2E4s、+E9゜、)/4 ・・・
(3)τE= (Eo、2 Ens、+Eqo、) /
 2  ・・・(4)但し、πo、:圧延方向に沿って
採取したサンプルのヤング率の平均値 π45・ :圧延方向に対して45°方向に採取したサ
ンプルのヤング率の平 均値 ■、。・ :圧延方向に対して直交する方向に採取した
サンプルのヤング率 の平均値 E、AEは塑性歪み比の面内平均値下1面内方位差Δr
との間で一定の相関関係があるため、この相関関係に基
づいて塑性歪み比の面内平均値7゜面内方位差Δrを求
める。
1=(■., +2E4s, +E9゜,)/4...
(3) τE= (Eo, 2 Ens, +Eqo,) /
2...(4) However, πo: Average value of Young's modulus of samples taken along the rolling direction π45・: Average value of Young's modulus of samples taken at 45° with respect to the rolling direction ■.・: The average value E and AE of the Young's modulus of the samples taken in the direction perpendicular to the rolling direction are the in-plane orientation difference Δr below the in-plane average value of the plastic strain ratio
Since there is a certain correlation between the two, the in-plane average value of the plastic strain ratio 7° in-plane orientation difference Δr is determined based on this correlation.

また、XyA回折によって特定結晶方位によって進路変
更されるX線の強度から塑性歪み比を求めるX線法も用
いられる。X線法による場合は鋼板から試験片、サンプ
ル等を採取せず、鋼板に直接X線を照射する。このX線
は試料に特定な結晶面にて回折されるが、その回折によ
り進路変更されてくるX線の強度を測定することによっ
て試料の集合組織を推定し、それによって塑性歪み比を
導き出す。従ってX線法は、前述の直接法、共振法等と
異なって非破壊測定による評価が可能であるという利点
がある。
Furthermore, an X-ray method is also used in which the plastic strain ratio is determined from the intensity of X-rays whose course is changed by a specific crystal orientation using XyA diffraction. When using the X-ray method, the steel plate is directly irradiated with X-rays without taking any test pieces or samples from the steel plate. These X-rays are diffracted by crystal planes specific to the sample, and by measuring the intensity of the X-rays whose course is changed due to the diffraction, the texture of the sample is estimated, and the plastic strain ratio is derived from this. Therefore, unlike the above-mentioned direct method, resonance method, etc., the X-ray method has the advantage that evaluation can be performed by non-destructive measurement.

更に、X線法と同様に非破壊測定による評価方法として
、超音波探傷法を利用した方法がある。
Furthermore, there is a method using ultrasonic flaw detection as a non-destructive measurement evaluation method similar to the X-ray method.

具体的には試料としての前記鋼板の所定方向へ超音波板
波を伝播させてその鋼中伝播速度を所定の計測手段によ
って求め、その結果を用いて、例えば塑性歪み比を導き
出す方法である(特開昭57−66355号)。
Specifically, it is a method in which an ultrasonic plate wave is propagated in a predetermined direction of the steel plate as a sample, the propagation velocity in the steel is determined by a predetermined measuring means, and the result is used to derive, for example, the plastic strain ratio ( JP-A No. 57-66355).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこのような塑性歪み比を求めて深絞り性を評価す
る方法゛にあっては、例えば直接法による場合は引張り
試験片の採取及び歪みの実測に多大な時間及び労力がか
かり、また共振法による場合もサンプル採取に伴う作業
効率の低下は避けられない等の問題点があった。しかも
上述の方法はいずれも原理的に破壊測定が必要となるた
め、オンライン的な評価方法としては適切な方法である
とはいい難かった。一方、X線法による場合は、非破壊
測定による評価が可能となってオンライン的に適切な評
価方法であるが、使用する装置がかなり大掛かりなもの
となって経費が嵩む上、塑性歪み比の測定精度を一定の
水準に保つためには10秒/同程度の間隔にて塑性歪み
比を求める必要があってオンライン的な評価方法として
はやはり不満が残るという問題点があった。更に前記超
音波探傷法による場合は、超音波板波を銅板の所定方向
へ伝播させることにより、その所定方向における塑性歪
み比を求めるものであるため、任意に深絞り性を評価す
る方法としてはやはり難点があった。
However, in this method of evaluating deep drawability by determining the plastic strain ratio, for example, if the direct method is used, it takes a lot of time and effort to take a tensile test piece and actually measure the strain, and the resonance method requires a lot of time and effort. However, there are also problems such as an unavoidable decrease in work efficiency due to sample collection. Moreover, since all of the above-mentioned methods require destructive measurements in principle, it is difficult to say that they are suitable as online evaluation methods. On the other hand, when using the X-ray method, evaluation is possible through non-destructive measurement and is an appropriate online evaluation method, but the equipment used is quite large and costs increase, and the plastic strain ratio In order to maintain the measurement accuracy at a certain level, it is necessary to obtain the plastic strain ratio at intervals of about 10 seconds, which is a problem that remains unsatisfactory as an online evaluation method. Furthermore, in the case of using the ultrasonic flaw detection method, the plastic strain ratio in a predetermined direction is determined by propagating an ultrasonic plate wave in a predetermined direction of the copper plate. Therefore, as a method for arbitrarily evaluating deep drawability, As expected, there were some difficulties.

そこで、本発明者等はオンライン的な深絞り性の評価が
可能な実用的方法として、鋼板の板厚方向へ伝播する超
音波板波の縦波及び2種類の横波の各伝播時間を測定し
、その測定結果から縦波と横波との速度比を求め、これ
ら速度比から塑性歪み比を求める方法を提案した(特願
昭62−238183号)。
Therefore, as a practical method that enables online evaluation of deep drawability, the present inventors measured the propagation time of the longitudinal wave and two types of transverse waves of the ultrasonic plate wave propagating in the thickness direction of the steel plate. proposed a method of determining the velocity ratio of longitudinal waves and transverse waves from the measurement results and determining the plastic strain ratio from these velocity ratios (Japanese Patent Application No. 62-238183).

かかる方法においては鋼板の結晶方位分布を考慮してい
るために任意な深絞り性の評価が可能となるが、該方法
においても解決すべき問題がないではなく、試料の板厚
が例えば9.5 nun以下と極めて薄い場合に超音波
の底面エコーの分離が困難になるという実用上の問題が
あった。
In this method, since the crystal orientation distribution of the steel sheet is taken into consideration, it is possible to evaluate the deep drawability as desired. However, this method is not without problems that need to be solved, and the thickness of the sample is, for example, 9.5 mm. There is a practical problem in that when the thickness is extremely thin, such as less than 5 nm, it becomes difficult to separate the bottom echo of ultrasonic waves.

本発明はかかる事情に鑑みてなされたものであり、従来
の直接法、共振法等と異なってオンライン的な評価方法
として適切な非破壊測定による評価が可能であり、また
従来のX線法に比しては簡易且つ迅速に塑性歪み比を求
めることができ、更にメッキ金属薄板についても塑性歪
み比を求めることが出来、従来の超音波探傷法を利用し
た方法に比してより実用的で、しかも広範囲の金属薄板
に適用可能な深絞り性評価方法を提供するごとを目的と
している。
The present invention has been made in view of the above circumstances, and unlike the conventional direct method, resonance method, etc., evaluation can be performed by appropriate non-destructive measurement as an online evaluation method, and it is also capable of evaluation using non-destructive measurement suitable for the conventional X-ray method. In comparison, the plastic strain ratio can be determined easily and quickly, and the plastic strain ratio can also be determined for plated metal thin plates, making it more practical than the conventional ultrasonic flaw detection method. Moreover, the purpose is to provide a deep drawability evaluation method that can be applied to a wide range of thin metal sheets.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る金属薄板の深絞り性評価方法は、圧延され
た金属薄板中に30モードの超音波板波を圧延方向と圧
延方向に対して45°だけ傾斜する方向と圧延方向に対
して直交する方向との3方向に一定距離だけ伝播させ、
その各伝播時間を測定し、その測定値を用いて金属薄板
の主要結晶方位を評価する量を導出することにより塑性
歪み比の面内平均値及び面内方位差を演算し、またこの
演算に際しては金属薄板の板厚情報による補正を行い、
更にメッキ金属薄板に対してはメッキ厚さに基く伝播時
間の補正を行って、塑性歪み比の面内平均値1面内方位
差を演算する。
The method for evaluating deep drawability of a thin metal sheet according to the present invention includes applying ultrasonic plate waves of 30 modes to a rolled thin metal sheet in a rolling direction, in a direction inclined by 45 degrees to the rolling direction, and in a direction perpendicular to the rolling direction. propagate a certain distance in three directions,
By measuring each propagation time and using the measured values to derive a quantity for evaluating the main crystal orientation of the thin metal sheet, the in-plane average value of the plastic strain ratio and the in-plane orientation difference are calculated. is corrected based on the thickness information of the thin metal plate,
Furthermore, for the plated metal thin plate, the propagation time is corrected based on the plating thickness, and the in-plane average value of the plastic strain ratio and the in-plane orientation difference are calculated.

〔作用〕[Effect]

かかる本発明方法は、従来の直接法、共振法等と比較し
た場合、金属薄板から試験片、サンプル等を採取するこ
となく、金属薄板に直接超音波を伝播させることによっ
て塑性歪み比を求めることとしているため、オンライン
的な評価方法として適切な非破壊測定による評価が可能
となる。また従来のX線法と比較した場合、使用する装
置が簡易なもので済む上、短い間隔にて塑性歪み比を求
めてもその測定精度を一定の水準に保つことができ、簡
易且つ迅速に塑性歪み比を求めることができる。更に従
来の超音波探傷法を利用した方法と比較した場合、金属
薄板の結晶方位分布関数を導入して塑性歪み比を求めて
いるため、正確で直接的な評価量として深絞り性の評価
が可能となる上、上述の如く求められた塑性歪み比は金
属薄板の板厚情報によって補正されるため、その板厚変
動による影響が抑えられる。またメッキ金属薄板におい
てはメッキ厚さの変動に基く音速変化による伝播時間変
化の補正を行うことによりメッキ金属薄板についても適
用が可能となる。
When compared with the conventional direct method, resonance method, etc., the method of the present invention allows the plastic strain ratio to be determined by directly propagating ultrasonic waves to a thin metal sheet without taking a test piece, sample, etc. from the thin metal sheet. Therefore, evaluation using non-destructive measurement is possible as an online evaluation method. In addition, when compared with the conventional X-ray method, the equipment used is simple, and the measurement accuracy can be maintained at a certain level even when determining the plastic strain ratio at short intervals, making it easy and quick. The plastic strain ratio can be determined. Furthermore, when compared to methods using conventional ultrasonic flaw detection, the plastic strain ratio is obtained by introducing the crystal orientation distribution function of the thin metal sheet, so deep drawability can be evaluated as an accurate and direct evaluation quantity. Not only is this possible, but the plastic strain ratio determined as described above is corrected using information on the thickness of the thin metal plate, so the influence of variations in the thickness can be suppressed. In addition, the present invention can also be applied to plated metal thin plates by correcting changes in propagation time due to changes in sound speed based on variations in plating thickness.

〔実施例1〕 以下本発明をその実施例を示す図面に基づいて説明する
[Example 1] The present invention will be described below based on drawings showing examples thereof.

第1図は本発明方法の実施に使用する装置の要部のブロ
ック図であり、図中10は、S0モードの超音波板波を
送受するセンサ部を示している。第2図は超音波板波の
モードを示すグラフであり、横軸に〔周波数×板厚〕を
とり、また縦軸に〔位相速度〕をとって示してあり、試
料である冷延鋼+ff1S(以下単に試料Sという)の
板厚に対して十分に低い周波数を有し、速度分散性の少
ないS0モードの超音波板波はグラフ中の○印で囲んだ
領域である。センサ部10は第3図及び第4図に示す如
く、試料Sの圧延方向へ一定距離したけ伝播する前記超
音波板波を送受するために試料Sに配置せしめられる圧
延方向伝播板波探触子11と、試料Sの圧延方向に対し
て45°だけ傾斜する方向へ一定距離したけ伝播する超
音波板波を送受するために試料Sに配置せしめられる圧
延45°方向伝播板波探触子12と、試料Sの圧延方向
に対して直交する方向へ一定距離■7だけ伝播する超音
波板波を送受するために試料Sに配置せしめられる圧延
直交方向伝播板波探触子13とからなっている。
FIG. 1 is a block diagram of the main parts of the apparatus used to carry out the method of the present invention, and numeral 10 in the figure indicates a sensor section that transmits and receives ultrasonic plate waves in the S0 mode. Figure 2 is a graph showing the mode of ultrasonic plate waves, with [frequency x plate thickness] plotted on the horizontal axis and [phase velocity] plotted on the vertical axis. The S0 mode ultrasonic plate wave, which has a sufficiently low frequency relative to the plate thickness of the sample S (hereinafter simply referred to as sample S) and has little velocity dispersion, is in the area circled by a circle in the graph. As shown in FIGS. 3 and 4, the sensor section 10 is a rolling direction propagation plate wave probe disposed on the sample S to transmit and receive the ultrasonic plate waves that propagate a certain distance in the rolling direction of the sample S. 11 and a rolled 45° direction propagation plate wave probe placed on the sample S to transmit and receive ultrasonic plate waves that propagate a certain distance in a direction inclined at 45° with respect to the rolling direction of the sample S. 12, and a plate wave probe 13 that propagates in a direction perpendicular to rolling, which is placed on the sample S to transmit and receive ultrasonic plate waves that propagate a certain distance ■7 in a direction perpendicular to the rolling direction of the sample S. ing.

圧延方向伝播板波探触子11は、具体的には第3図に示
す如く、超音波板波を送受する送信子11aとそれを受
信する受信子11bとがその相互離隔距離が一定距離り
となるように距離固定軸11cにて連結された構造とな
っており、送信子11a及び受信子11bが試料Sに配
置せしめられるようになっ一ζいる。、また圧延45°
方向伝播板波探触子12及び圧延直交方向伝播板波探触
子13も、圧延方向伝播板波探触子11の構造と同様の
構造となっていて各送信子12a、13a及び各受信子
12b、 13bが試料Sに配置せしめられるようにな
っている。そしてこれらの探触子11.12.13は、
第4図に示す如く、試料S上にその圧延方向に対する角
度が夫々所定角度(探触子11は0°、探触子12は4
5°、探触子13は90°)となるように配置される。
Specifically, as shown in FIG. 3, the rolling direction propagation plate wave probe 11 has a transmitter 11a that transmits and receives ultrasonic plate waves, and a receiver 11b that receives the ultrasonic plate waves, which are separated from each other by a certain distance. The structure is such that the transmitter 11a and the receiver 11b are connected by a fixed distance axis 11c so that the transmitter 11a and the receiver 11b are placed on the sample S at a distance of 1ζ. , also rolling 45°
The direction propagation plate wave probe 12 and the rolled orthogonal direction propagation plate wave probe 13 have the same structure as the rolling direction propagation plate wave probe 11, and each transmitter 12a, 13a and each receiver. 12b and 13b are arranged on the sample S. And these probes 11.12.13 are
As shown in FIG.
5°, and the probe 13 is arranged at 90°).

なお、各探触子11.12.13の距離固定軸が相互干
渉するのを回避するためにはその高さを相互に異ならせ
るとよい。
Incidentally, in order to avoid interference between the fixed distance axes of the respective probes 11, 12, and 13, it is preferable to make their heights different from each other.

或いは別の固定方法を用いてもよい。Alternatively, other fixing methods may be used.

また上記探触子としては電磁超音波を発生する送受信子
を用いても良い。
Further, as the probe, a transceiver that generates electromagnetic ultrasonic waves may be used.

各探触子11,12.13は、パルサ及びレシーバ(例
えば探触子11に関していえば第3図に示す如きバルサ
21a及びレシーバ21b)を備える超音波探傷器21
.22.23に夫々接続されており、また超音波探傷器
21.22.23は伝播時間測定器31,32.33に
夫々接続されている。そして伝播時間測定器31.32
.33においては、超音波探傷器21.22.23で個
々に得られる超音波波形から、前記3種類の超音波板波
が一定距離したけ伝播するのに要する伝播時間T0.。
Each probe 11, 12.13 is an ultrasonic flaw detector 21 equipped with a pulser and a receiver (for example, regarding the probe 11, a balsa 21a and a receiver 21b as shown in FIG. 3).
.. The ultrasonic flaw detectors 21, 22, and 23 are connected to propagation time measuring devices 31, 32, and 33, respectively. and propagation time measuring device 31.32
.. 33, the propagation time T0. required for the three types of ultrasonic plate waves to propagate a certain distance is determined from the ultrasonic waveforms individually obtained by the ultrasonic flaw detectors 21, 22, and 23. .

7456 、 T9゜、が個々に測定される。かくして
測定される伝播時間T0・、T45・、T、。・に関す
るデータは演算器40へ入力される。そして演算器40
はそれらのデータを用いて試料Sの結晶方位分布関数の
展開係数W4゜。、W44゜を求める。そして上述の如
く求められた展開係数W4゜。、W44゜に関するデー
タは換算器50へ人力され、換算器50はそのデータを
用いて塑性歪み比の面内平均値r及び面内方位差Δrを
換算する。換算器50にて求められた結果は表示器60
に表示されるようになっている。
7456, T9°, are measured individually. The propagation times T0·, T45·, T, thus measured. Data regarding . is input to the computing unit 40. and arithmetic unit 40
is the expansion coefficient W4° of the crystal orientation distribution function of sample S using those data. , find W44°. And the expansion coefficient W4° obtained as described above. , W44° is manually input to the converter 50, and the converter 50 uses the data to convert the in-plane average value r of the plastic strain ratio and the in-plane orientation difference Δr. The result obtained by the converter 50 is displayed on the display 60.
is now displayed.

次に、前記演算器40にて行われる演算及び前記換算器
′50にて行われる換算の根拠となる考え方について説
明する。
Next, the concept underlying the calculation performed by the arithmetic unit 40 and the conversion performed by the converter '50 will be explained.

先ず、試料Sの結晶方位分布を考えるに、その結晶方位
分布関数F(ξ、ψ、φ)は次式にて表される。
First, considering the crystal orientation distribution of sample S, its crystal orientation distribution function F (ξ, ψ, φ) is expressed by the following equation.

・・・(5) 但し、ξ、ψ、φ:結晶軸と試料に固定した軸との間の
関係を示すオイラ 一角 Zい、:展開関数 Wlffin:展開係数 そして試料Sが立方晶の結晶からなる直交異方性を持つ
斜方晶系とすると、試料Aの板厚に対して十分に低い(
板厚に対して音速の分散性がない)周波数のS。モード
の超音波板波の速度は次式にて計算される。
...(5) However, ξ, ψ, φ: Euler angle Z indicating the relationship between the crystal axis and the axis fixed to the sample, Wlffin: expansion coefficient, and if the sample S is from a cubic crystal. If it is an orthorhombic system with orthotropy of
There is no dispersion of the sound velocity with respect to the plate thickness) frequency S. The speed of the ultrasonic plate wave mode is calculated using the following formula.

但し、V3(θ):50モードの超音波1反波の速度ρ
 :試料Aの密度 μ、λ:ラメの定数 C:弾性定数 θ :超音波板波の伝播方向と圧延方向とがなす角度 そして ・・・(8) To、    T、S、    T、+、−そして、前
記展開係数W4゜。と塑性歪み比の面内平均値下とは例
えば第5図に示す如く一定の相関関係を示し、かかる相
関関係に基づき、展開係前記(6)式は次式の如く変形
される。
However, V3(θ): Speed ρ of 50-mode ultrasonic wave 1 repulsion
: Density μ, λ of sample A: Lamé constant C: Elastic constant θ: Angle between the propagation direction of the ultrasonic plate wave and the rolling direction, and... (8) To, T, S, T, +, - and the expansion coefficient W4°. and the in-plane average value of the plastic strain ratio show a certain correlation as shown in FIG.

(4)式、(5)式中に表れる展開係数W4゜O+ W
440は、前記演算器40にて演算した(t/T、・ 
+2/ T a5− + 1 / ’T’ qo、)及
び(1/T、、 −2/Tas・+t /Tq。・)の
値との間で、例えば下記(8)式、(9)式に示す如く
1次対応の関係があり、その関係を用いると前記展開係
数W40+1 + Wa4oは容易に演算される。なお
かかる演算は演算器40にて行なわれる。
Expansion coefficient W4゜O+W appearing in formulas (4) and (5)
440 is calculated by the calculation unit 40 (t/T, ·
Between the values of +2/Ta5- + 1/'T'qo,) and (1/T, -2/Tas・+t/Tq.・), for example, the following equations (8) and (9) As shown in the figure, there is a relationship of linear correspondence, and using this relationship, the expansion coefficient W40+1 + Wa4o can be easily calculated. Note that this calculation is performed by the calculator 40.

数W4゜。から塑性歪み比の面内平均値7が換算される
。物理的にはこのW4゜0は、集合組織の主要方位成分
の体゛積分率に対応するもので、H1li集合Mi織が
支配的な冷延鋼板では(1111面の体積分率に対応し
、即ちr値に対応することとなる。
Number W4゜. The in-plane average value 7 of the plastic strain ratio is converted from . Physically, this W4゜0 corresponds to the volume fraction of the main orientation components of the texture, and in cold rolled steel sheets in which H1li-set Mi texture is dominant (corresponds to the volume fraction of the 1111 plane, In other words, it corresponds to the r value.

また前記展開係数W44゜と塑性歪み比の面内方位差Δ
rとは例えば第6図に示す如く一定の相関関係を示し、
ゆ)かる相関関係に基づき、展開係数W A 40から
塑性歪み比の面内方位差Δrが換算される。
In addition, the in-plane orientation difference Δ between the expansion coefficient W44° and the plastic strain ratio
For example, as shown in FIG. 6, r shows a certain correlation,
Based on this correlation, the in-plane orientation difference Δr of the plastic strain ratio is converted from the expansion coefficient W A 40.

なおかかる換算は換算器50にて行われる。Note that this conversion is performed by a converter 50.

また、測定値T。、T41. T9.より伝播距離りを
用イテV s (0)”、 V s (45)”、 V
 s (90)”を演算し、それらの値と(4)式を用
いて次式の如< Waoo+Waa。
Also, the measured value T. , T41. T9. Using longer propagation distances, V s (0)”, V s (45)”, V
s (90)'' and using these values and equation (4), the following equation is obtained: < Waoo+Waa.

を求めてもよい。You may also ask for

・・・θ0) Jb かくして試料S、即ち金属薄板の塑性歪み比の面内平均
値下及び面内方位差Δrを求め、その金属薄板の深絞り
性を評価する場合は、金属薄板から試験片、サンプル等
を採取することな(、金属薄(反に直接超音波を伝播さ
せることによって塑性歪み比を求めることとしているた
め、オンライン的な評価方法として適切な非破壊測定に
よる評価が可能となる。また使用する装置がX線装置等
と異なって簡易な超音疲装置で済む上、短い間隔(・列
えば1秒/回)にて塑性歪み比を求めてもその測定精度
を一定の水準に保つことができ、簡易訃つ迅速に塑性歪
み比を求めることができる。更に金属薄板の結晶方位分
布関係を導入して塑性歪み比を求めているため、任意な
深絞り性の評価が可能となる上、金属薄板の板厚に対し
て十分に低い周波数で発生させた速度分散性の少ないS
0モ・・・(II) 一ドの超音波板波を用いるため、超音波の底面エコー等
が問題となることはない。
...θ0) Jb Thus, when determining the in-plane average value of the plastic strain ratio and the in-plane orientation difference Δr of the sample S, that is, the thin metal sheet, and evaluating the deep drawability of the thin metal sheet, a test piece is extracted from the thin metal sheet. Since the plastic strain ratio is determined by directly propagating ultrasonic waves without taking samples, etc. (in contrast to metal thin sheets), it is possible to evaluate by appropriate non-destructive measurement as an online evaluation method. In addition, unlike an X-ray device, the device used is a simple ultrasonic fatigue device, and even if the plastic strain ratio is measured at short intervals (1 second/time in a row), the measurement accuracy remains at a certain level. The plastic strain ratio can be determined simply and quickly.Furthermore, since the plastic strain ratio is determined by introducing the crystal orientation distribution relationship of the thin metal sheet, it is possible to evaluate any deep drawability. In addition, S with low velocity dispersion generated at a sufficiently low frequency relative to the thickness of the thin metal plate
0Mo...(II) Since a one-wave ultrasonic plate wave is used, there is no problem with the bottom echo of the ultrasonic waves.

次に、実施例1の方法を用いて得た測定結果について例
示する。第7図は横軸に試料のトップからの距離をとり
縦軸に塑性歪み比の面内平均値7をとって咳面内平均値
7の測定値の分布を示したグラフであるが、図より本発
明方法を用いて塑性歪み比のオンライン測定が円滑に行
えることが分かる。
Next, measurement results obtained using the method of Example 1 will be illustrated. Figure 7 is a graph showing the distribution of measured values of the in-plane average value 7, with the horizontal axis representing the distance from the top of the sample and the vertical axis representing the in-plane average value 7 of the plastic strain ratio. It can be seen that online measurement of the plastic strain ratio can be smoothly performed using the method of the present invention.

なお、実施例1の方法を実施するにあたって、前記送受
信子の試料に対する位置決め及び相互間の位置決めを行
うのに、一対の送受信子を距離固定軸にて連結した前記
探触子11.12.13に替え、第8図に示す如くホル
ダ14aに設けた一対の倣いローラ14b、 14b間
の適宜位置に全ての送受信子11a。
In carrying out the method of Example 1, the probes 11, 12, and 13, in which a pair of transceivers are connected by a fixed distance axis, are used to position the transceiver with respect to the sample and with respect to each other. Instead, as shown in FIG. 8, all the transceivers 11a are placed at appropriate positions between a pair of copying rollers 14b, 14b provided on a holder 14a.

11b、 12a、 12b、 13a、 13bを配
置してなる探触子14を用い、試料をローラ14b、 
14bに倣わせつつ送受信子11a、 llb、 12
a+ 12b、 13a、 13b上を摺動させること
とすれば、その位置決め操作が容易となる。
11b, 12a, 12b, 13a, and 13b are used to move the sample to the rollers 14b,
14b, transmitting/receiving elements 11a, llb, 12
By sliding on the a+ 12b, 13a, and 13b, the positioning operation becomes easy.

なお、ここで用いる送受信子として電磁超音波を発生す
るものを用いることができる。第9図はその送受信子の
構造を示した説明図であり、この送受信子は磁石70に
プローブコイル71が重なった構造となっており、プロ
ーブコイル71にパルサ72よりパルス電流が印加され
ると薄板表面に誘電電流が誘発され、この誘電電流と磁
石より発生する磁場との相互作用によりローレンツ力が
発生する。
Note that as the transmitter/receiver used here, one that generates electromagnetic ultrasonic waves can be used. FIG. 9 is an explanatory diagram showing the structure of the transmitter/receiver. This transmitter/receiver has a structure in which a probe coil 71 is overlapped with a magnet 70. When a pulse current is applied to the probe coil 71 from a pulser 72, A dielectric current is induced on the surface of the thin plate, and Lorentz force is generated by the interaction between this dielectric current and the magnetic field generated by the magnet.

プローブコイル71はその流れる電流が発生させる板波
の波長を%毎に向きが変わるようになっており、前記ロ
ーレンツ力は結局、半波長毎に力の向きを180 ’変
えて発生するため、この力により所定の波長の板波が発
生する。発生した板波は薄板中を伝播した後、受信側プ
ローブコイル71によって同様の原理によって電気信号
に変換された後、プリアンプ73で増幅し、フィルタ7
4で所定の形に整形し、更にメインアンプ75で増幅し
た後、時間測定器31でその伝播時間が測定される。
The direction of the probe coil 71 changes by % of the wavelength of the plate wave generated by the flowing current, and the Lorentz force is generated by changing the direction of the force by 180' every half wavelength. The force generates a plate wave of a predetermined wavelength. After the generated plate wave propagates through the thin plate, it is converted into an electrical signal by the receiving side probe coil 71 using the same principle, and then amplified by the preamplifier 73 and passed through the filter 7.
After the signal is shaped into a predetermined shape in step 4 and further amplified in main amplifier 75, its propagation time is measured by time measuring device 31.

〔実施例2〕 第10図は本発明の他の実施例に使用する装置の要部の
構成を示すブロック図であり、この実施例にあっては演
算器40に板厚情報出力装置34から鋼板SのFi厚情
報に関するデータD、及び探傷周波数情報゛出力装置3
5から探傷周波数情報に関するデータfも入力するよう
にしである。他の構成は第1〜4図に示す実施例と実質
的に同じであり、対応する部分には同じ番号を付して説
明を省略する。
[Embodiment 2] FIG. 10 is a block diagram showing the configuration of main parts of an apparatus used in another embodiment of the present invention. Data D regarding Fi thickness information of steel plate S and flaw detection frequency information output device 3
5, data f regarding flaw detection frequency information is also input. The other configurations are substantially the same as those of the embodiment shown in FIGS. 1 to 4, and corresponding parts are given the same numbers and explanations will be omitted.

而してこのような実施例にあっては、第1〜4図に示す
実施例についての説明中の(6)式に対応する式は下記
(12)式の如くになる。即ち、試料Sが立方晶の結晶
からなる直交異方性を持つ斜方晶系として、S0モード
の超音波板波が角度θ(圧延方向に対する角度)方向へ
伝播する速度■(0)は、速度分散を考慮した次式を用
いて計算できる。
In such an embodiment, the equation (12) below corresponds to equation (6) in the explanation of the embodiment shown in FIGS. 1 to 4. That is, assuming that the sample S is an orthorhombic system consisting of cubic crystals and has orthotropic anisotropy, the speed ■(0) at which the ultrasonic plate wave in the S0 mode propagates in the direction of the angle θ (angle with respect to the rolling direction) is: It can be calculated using the following formula that takes velocity dispersion into account.

(以下余白) μ:ラメの定数 :試料Sの密度 :探傷周波数 :試料Sの板厚の半分 但し、 16λ (λ十μ) 8゛3+ い+2#)・ 4μ(λ十μ) λ+2μ C:Jlo 4J2π2 かかる(13)式、04式による展開係数W4゜。、W
44゜の演算には上述の如(試料Sの板厚情報り力く用
し)られるため、その板厚変動による影響力く抑えられ
る。
(Leaving space below) μ: Lame constant: Density of sample S: Detection frequency: Half of the plate thickness of sample S However, 16λ (λ0μ) 8゛3+ +2#)・4μ (λ0μ) λ+2μ C: Jlo 4J2π2 Expansion coefficient W4° according to equation (13) and equation 04. ,W
Since the calculation of 44° is performed as described above (using the information on the thickness of the sample S), the influence of variations in the thickness can be suppressed.

そして、前記展開係数W4゜Oと塑性歪み比の面内平均
値下とは一定の相関関係を示し、この相関関係に基づき
展開係数W4゜。力1ら塑性歪み比の面内平均値下が換
算できる。また前言己展開係数C:弾性定数 W400+W42G+W440  :試料Sの結晶方位
分布関数を球展開したとき の展開係数 ところで、試料S、即ち冷延鋼板において発生し深絞り
性に影響を与える代表的な結晶方位としては、(110
) <110>、 (till <112>、 (11
0) <OOb。
There is a certain correlation between the expansion coefficient W4°O and the in-plane average value of the plastic strain ratio, and the expansion coefficient W4° is based on this correlation. The in-plane average value of the plastic strain ratio can be converted from force 1. In addition, the aforementioned self-expansion coefficient C: Elastic constant W400 + W42G + W440: Expansion coefficient when the crystal orientation distribution function of sample S is expanded into a sphere By the way, typical crystal orientations that occur in sample S, that is, cold-rolled steel sheets, and affect deep drawability. As (110
) <110>, (till <112>, (11
0) <OOb.

(100) <011> 、  (100) <OOb
等が考えられるが、これらの結晶方位の存在確率が1で
ある場合、展開係数W L a *は計算することが可
能である。また逆に展開係数W、、1が分かれば、塑性
歪み比の面内平均値下及び面内方位差Δrの値が予測で
きることになる。
(100) <011> , (100) <OOb
etc., but if the probability of existence of these crystal orientations is 1, the expansion coefficient W L a * can be calculated. Conversely, if the expansion coefficient W, , 1 is known, the in-plane average value of the plastic strain ratio and the value of the in-plane orientation difference Δr can be predicted.

具体的には、09式より導かれる下記側式、圓式を用い
て展開係数W4゜。、W44゜を求めることができる。
Specifically, the expansion coefficient W4° is obtained using the following side equation and circle equation derived from equation 09. , W44° can be obtained.

w、、、= (Vz(0°)+ 2 V”(45’)+
 V”(90°)4■。” ) /4AD      
   ・・・03)W’aao = (V ”(0°)
−2V”(45°)+V2(90°))/4CD・・・
04) W44゜と塑性歪み比の面内方位差Δrとは一定の相関
関係を示し、この相関関係に基づき、展開係数W44゛
。から塑性歪み比の面内方位差が換算できる。
w,,, = (Vz (0°) + 2 V"(45') +
V"(90°)4■.") /4AD
...03) W'aao = (V'' (0°)
-2V" (45°) + V2 (90°))/4CD...
04) W44° and the in-plane orientation difference Δr of the plastic strain ratio show a certain correlation, and based on this correlation, the expansion coefficient W44° is determined. The in-plane orientation difference of the plastic strain ratio can be calculated from

かくして実施例2においては実施例1と同様に試料S、
即ち金属薄板の塑性歪み比の面内平均値r及び面内方位
差Δrを求め、金属薄板から試験片、サンプル等を採取
することなく、金属薄板に直接超音波を伝播させること
によって塑性歪み比を求め得、オンライン的な評価方法
として適切な非破壊測定による評価が可能となる。また
使用する装置がX線装置等と異なって簡易な超音波装置
で済む上、短い間隔(例えば1秒/回)にて塑性歪み比
を求めてもその測定精度を一定の水準に保つことができ
、簡易且つ迅速に塑性歪み比を求めることができる。更
に金属薄板の結晶方位を考慮してワ性歪み比を求めてい
るため、任意な深絞り性の評価が可能となる上、前記塑
性歪み比の演算に際して金属薄板の板厚情報による補正
が行われるため、該演算に基づく深絞り性の評価の信頼
性が向上する。
Thus, in Example 2, as in Example 1, sample S,
That is, the in-plane average value r and the in-plane orientation difference Δr of the plastic strain ratio of the thin metal sheet are determined, and the plastic strain ratio is determined by directly propagating ultrasonic waves to the thin metal sheet without taking a test piece, sample, etc. from the thin metal sheet. can be obtained, and evaluation using appropriate non-destructive measurement is possible as an online evaluation method. In addition, unlike an X-ray device or the like, the device used is a simple ultrasonic device, and even if the plastic strain ratio is determined at short intervals (for example, 1 second/time), the measurement accuracy can be maintained at a constant level. The plastic strain ratio can be determined simply and quickly. Furthermore, since the warping strain ratio is determined by taking into account the crystal orientation of the thin metal sheet, it is possible to evaluate the deep drawability as desired, and when calculating the plastic strain ratio, corrections are made using the sheet thickness information of the thin metal sheet. Therefore, the reliability of deep drawability evaluation based on the calculation is improved.

次に、実施例2の効果を具体的なデータに基づいて説明
する。
Next, the effects of Example 2 will be explained based on specific data.

第11図は超音波の周波数はIMllzで一定とし、試
料Sの板厚を変化させて板波の速度分散を無視しつつ求
めた展開係数W4゜。の真値からのずれ(百分率)を、
試料Sの板厚を横軸に前記真値からのずれを縦軸に夫々
とって示したものである。図より板厚が0.5mm程度
までは誤差が10%以内におさまるが、板厚が0.5m
mを越えると誤差が許容できないようになることが分か
る。
FIG. 11 shows the expansion coefficient W4° determined by changing the thickness of the sample S and ignoring the velocity dispersion of the plate waves, with the ultrasonic frequency kept constant at IMllz. The deviation (percentage) from the true value of
The thickness of the sample S is shown on the horizontal axis, and the deviation from the true value is shown on the vertical axis. From the figure, the error is within 10% up to a plate thickness of about 0.5 mm, but when the plate thickness is 0.5 m
It can be seen that when the value exceeds m, the error becomes unacceptable.

然るに、実施例2の方法による場合は展開係数W 、 
、)、)の演算に際して前記板厚に関する情報による補
正が行われるため、その演算精度が第12図及び第13
図に示す如く向上する。即ち、第12図は引張試験によ
って得た塑性歪み比の面内平均値rと実施例2の方法の
実施にあたって演算した展開係数W、、)6との相関を
示し、また第13図は引張試験によって得た塑性歪み比
の面内方位差Δrと実施例2の方法の実施にあたって演
算した展開係数W440との相関を示すが、両者共優れ
た対応関係がみられる。従ってかかる展開係数W4゜。
However, in the case of the method of Example 2, the expansion coefficient W,
, ), ) is corrected using the information regarding the plate thickness, so the calculation accuracy is as shown in Figures 12 and 13.
It improves as shown in the figure. That is, Fig. 12 shows the correlation between the in-plane average value r of the plastic strain ratio obtained by the tensile test and the expansion coefficient W, )6 calculated in carrying out the method of Example 2, and Fig. 13 shows the correlation between the in-plane average value r of the plastic strain ratio obtained by the tensile test and the expansion coefficient The correlation between the in-plane orientation difference Δr of the plastic strain ratio obtained by the test and the expansion coefficient W440 calculated in implementing the method of Example 2 is shown, and an excellent correspondence relationship is observed between the two. Therefore, the expansion coefficient W4°.

、W44゜を用いて塑性歪み比を演算する場合はその演
算精度が向上することとなる。
, W44° to calculate the plastic strain ratio, the calculation accuracy is improved.

〔実施例3〕 この実施例では母材である延伸鋼板の表面にメッキを施
したメッキ鋼板を深絞り性評価の対象としていや。本発
明者等の実験、研究に依ればメッキ鋼板におけるメッキ
厚さと、これを伝播するs0モードの音速とはメッキJ
Vさに応じて音速が変化する対応関係にあるが、板面内
の音速分布は変わらないという関係にある。従ってメッ
キ厚さに対する音速の変化分を補正すればその下地母材
である鋼板それ自体における板波の伝播速度を求めるこ
とが可能となり、この音速値を用いて実施例1゜2と同
様に深絞り性を評価することが可能となる。
[Example 3] In this example, a plated steel plate in which the surface of a drawn steel plate, which is a base material, has been plated was evaluated for deep drawability. According to the experiments and research conducted by the present inventors, the plating thickness in a plated steel sheet and the sound speed of the s0 mode that propagates this are determined by the plating J
There is a correspondence relationship in which the sound velocity changes depending on the V, but there is a relationship in which the sound velocity distribution within the plate surface does not change. Therefore, by correcting the change in the sound velocity with respect to the plating thickness, it is possible to determine the propagation velocity of the plate wave in the steel plate itself, which is the underlying base material, and using this sound velocity value, the depth It becomes possible to evaluate the drawability.

第14図(イ)、(ロ)、(ハ)はメッキ厚さ(200
p m。
Figure 14 (a), (b), and (c) show the plating thickness (200
p m.

50μm、 10μm)と音速との関係を示すグラフで
あり、横軸に板波伝播方向を、また縦軸に音速(m/秒
)をとって示しである。グラフ中・印でプロットしたの
はメッキ無し冷延鋼板中の音速を、またO印でプロット
したのはメッキ鋼板中の音速を示している。
50 μm, 10 μm) and the speed of sound, with the horizontal axis representing the plate wave propagation direction and the vertical axis representing the sound speed (m/sec). The mark plotted in the graph indicates the sound velocity in an unplated cold-rolled steel sheet, and the O mark plotted in the graph indicates the sound velocity in a plated steel sheet.

このグラフから明らかなようにメッキ厚さによって音速
は変化するが、音速分布、即ち板波伝播方向における音
速変化量は変わらないことが解る。
As is clear from this graph, although the sound speed changes depending on the plating thickness, it can be seen that the sound speed distribution, that is, the amount of sound speed change in the plate wave propagation direction, does not change.

母材厚さ2d、メッキ厚さΔdとして本発明者等は05
)式の如き音速■の補正式を算出した。
The inventors set the base material thickness to 2d and the plating thickness to Δd.
) A correction formula for the speed of sound (■) was calculated.

但し、 μFl)+  λFa二鋼材の弾性定数μm、λ1 :
メッキ材の弾性定数 ρF、二鉄の密度 ρイ    二メッキ材の密度 第15図は横軸にメッキ厚さΔd(μm)を、また縦軸
にメッキ無し冷延鋼板中の音速に対するメッキ鋼板中の
音速の比をとって示してあり、グラフ中O印でプロット
したのは09式を用いて・求めた計算値、・印でプロッ
トしたのは測定値である。
However, μFl) + λFa Two elastic constants of steel μm, λ1:
The elastic constant ρF of the plated material, the density ρi of the di-plated material, and the density of the plated material Figure 15 shows the plating thickness Δd (μm) on the horizontal axis, and the velocity of sound in the unplated cold-rolled steel plate versus the velocity of sound in the unplated cold-rolled steel plate on the vertical axis. It is shown by taking the ratio of the speed of sound. In the graph, the O symbol plotted is the calculated value obtained using formula 09, and the . symbol plotted is the measured value.

このグラフから明らかな如く計算値は測定値と略一致す
ることが確認された。
As is clear from this graph, it was confirmed that the calculated values substantially matched the measured values.

第16図は実施例3に使用する装置の要部の構成を示す
ブロック図である。この実施例では演算器40に対し、
各伝播時間測定器31.32.33の出力である伝播時
間の外に、板厚情報出力装置34がら板厚情報D、探傷
周波数情報出力装置35がら探傷周波数情報f、及びメ
ッキ厚情報出力装置36がらメッキ厚情報Δdが入力さ
れるようになっている。
FIG. 16 is a block diagram showing the configuration of the main parts of the apparatus used in the third embodiment. In this embodiment, for the arithmetic unit 40,
In addition to the propagation time which is the output of each propagation time measuring device 31, 32, 33, plate thickness information D from the plate thickness information output device 34, flaw detection frequency information f from the flaw detection frequency information output device 35, and plating thickness information output device 36, plating thickness information Δd is input.

他の構成は第1〜4図及び第10図に示す装置と実質的
に同じであり、対応する部分には同じ番号を付しである
The rest of the structure is substantially the same as the device shown in FIGS. 1-4 and 10, and corresponding parts are given the same numbers.

演算器40における演算内容は次の如くである。The contents of the calculation in the calculation unit 40 are as follows.

各伝播時間測定器3L32,33から入力される伝播時
間To、+ Tas、+ Tq。、と母材板厚情報出力
装置34から入力される板厚2d(d=z板j¥)、メ
ッキ厚情報出力装置36から入力されるメッキ厚Δd(
片面の厚さ)及び送受時間路i9Lに基づいて、メッキ
が施されていない状態の鋼板におけるS。
Propagation times To, +Tas, +Tq input from each propagation time measuring device 3L32, 33. , the plate thickness 2d (d=z plate j ¥) inputted from the base material plate thickness information output device 34, and the plating thickness Δd( inputted from the plating thickness information output device 36).
S in an unplated steel plate based on the thickness of one side) and the transmission/reception time path i9L.

モード超音波(電磁超音波)の音速■。・、■4.・V
 9G・を09式に対応させた下記06)、 07)、
 08)式に従って算出する。
Sound speed of mode ultrasound (electromagnetic ultrasound)■.・, ■4.・V
The following 06), 07), which corresponds to the 09 type with 9G.
08) Calculate according to the formula.

(以下余白) 次に換算器50にて■。・、■4.・、  V2O・を
用いて試料Sの結晶方位分布関数を球展開したときの展
開係数W4゜。、W44゜を下記Q9)、 12[11
式に従っで求める。
(Left below) Next, use the converter 50 to calculate ■.・, ■4.・, Expansion coefficient W4° when the crystal orientation distribution function of sample S is expanded into a sphere using V2O・. , W44° as below Q9), 12[11
Find it according to the formula.

W 、 6゜= (vo、”+ 2 V4.”+ Vq
o、”  4 vo、zl  ’・・・Q9) W4゜。と下、W 4 d。とΔrとの間には既述した
如く一次対応関係が存在しており、W4゜。1w44゜
の値と対応する7、Δrの値を表示器6oに出力し表示
させる。
W, 6゜= (vo,"+ 2 V4."+ Vq
o, "4 vo, zl '...Q9) As mentioned above, there is a linear correspondence between W4゜. and lower, W 4 d. and Δr, and the value of W4゜.1w44゜The value of 7 and Δr corresponding to is output to the display 6o and displayed.

なおQ9)、1211)式の代わリニ実施例1 (7)
(to)、 (10式を用いてもよい。
In addition, instead of Q9) and 1211), Rini Example 1 (7)
(to), (Equation 10 may be used.

第17図はW4゜。とr4fLとの関係を、また第18
図ハW44゜とΔrとの関係を示すグラフである。
Figure 17 shows W4°. and r4fL, and the 18th
Figure C is a graph showing the relationship between W44° and Δr.

第17図は横軸に下値を、また縦軸にW4゜。をとって
示してあり、また第18図は横軸にへr値を、また縦軸
にW44゜をとって示しである。
In Figure 17, the horizontal axis shows the lower price, and the vertical axis shows W4°. In FIG. 18, the horizontal axis represents the r value, and the vertical axis represents W44°.

このグラフから明らかなように一次対応の関係があるこ
とが解る。
As is clear from this graph, there is a linear correspondence relationship.

従って実施例1,2の場合と同様にメッキζ板A −D に直接超音波を伝播させることによって塑性歪み比を求
め得、深絞り性についてオンライン的な評価を行い得る
こととなる。
Therefore, as in Examples 1 and 2, by directly propagating ultrasonic waves to the plated ζ plate A-D, the plastic strain ratio can be determined, and the deep drawability can be evaluated online.

〔効果〕〔effect〕

以上詳述した如く本発明方法によれば、金属薄板の深絞
り性を評価するに際し、非破壊測定によって簡易且つ迅
速に塑性歪み比を求めることができ、また超音波の底面
エコーの問題等を回避して有効に、しかも任意に塑性歪
み比を求めることができる。更に電磁超音波を発生原理
とする送受信子を用いることにより、薄板と送受信子と
の間に接触媒質を用いる必要が無くなるため、オンライ
ン化が容易となり、また時間の計測精度も向上する。ま
た評価対象である金属薄板の厚さによる音速補正を行う
から深絞り性評価の精度も高められる。更にメッキ金属
薄板等に対しても正確に深絞り性を評価することが可能
となり、適用範囲が広い等本発明は優れた効果を奏する
ものである。
As detailed above, according to the method of the present invention, when evaluating the deep drawability of a thin metal sheet, the plastic strain ratio can be easily and quickly determined by non-destructive measurement, and the problem of ultrasonic bottom echoes can be solved. By avoiding this, the plastic strain ratio can be effectively and arbitrarily determined. Furthermore, by using a transmitter/receiver that uses electromagnetic ultrasonic waves as its generation principle, there is no need to use a couplant between the thin plate and the transmitter/receiver, which facilitates online operation and improves time measurement accuracy. In addition, since the sound velocity is corrected according to the thickness of the thin metal sheet to be evaluated, the accuracy of deep drawability evaluation can be improved. Furthermore, the present invention has excellent effects such as being able to accurately evaluate the deep drawability of plated metal thin plates and the like, and having a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の方法の実施に使用する装置の要部の
構成を示すブロック、第2図は超音波板波の各モードを
示すグラフ、第3図は板波探触子を超音波探傷器及び試
料と共に示す縦断面図、第4図は板波探触子の各送受信
子と試料との関係を示す平面図、第5図は塑性歪み比の
内面平均値7と結晶方位分布関数の展開係数W4゜。と
の相関を示すグラフ、第6図は塑性歪み比の面内方位差
Δrと結晶方位分布関数の展開係数W44゜との相関を
示すグラフ、第7図は実施例1の方法によって得られた
測定結果を例示するグラフ、第8図は実施例1の方法の
実施に使用する装置における探触子の他の態様゛を示す
斜視図、第9図は電磁超音波を発生する送受信子の構造
を示した説明図、第10図は本発明の実施例2に使用す
る装置の要部の構成を示すブロック図、第11図は板波
の速度分散を無視しつつ求めた展開係数W4゜。の真値
からのずれを板厚に対応させて示したグラフ、第12図
及び第13図は実施例2の方法の実施にあたって演算し
た展開係数W4゜。、W44゜と引張試験によって得た
データとの比較結果を示すグラフ、第14図(イ)。 (ロ)、(ハ)はメッキ厚さと板波の伝播速度との関係
を示すグラフ、第15図はメッキ厚さと、冷延鋼板、゛
メッキ鋼板の音速比との関係を示すグラフ、第16図は
本発明の実施例3に使用する装置の要部の構成を示すブ
ロック図、第17図及び第19図は本発明方法の実施に
あたって演算した展開係数W4゜。。 W44゜と引張試験によって得たデータとの比較結果を
示すグラフである。 10・・・センサ部 11・・・圧延方向伝播板波探触
子12・・・圧延45°方向伝播板波探触子13・・・
圧延直交方向伝播板波探触子21.22.23・・・超
音波探傷器 31.32.33・・・伝播時間測定器 40・・・演
算器50・・・換算器 60・・・表示器 S・・・試料としての冷延鋼板(金属薄板)特 許 出
願人  住友金属工業株式会社代理人 弁理士  河 
 野  登  夫1.0 2.0 板 厚 (mm) ++ 図 引張り試験によるT 図 引張りi餞によるΔT 図 1.0 1.5 引張り試験による7饋 図 引張り試験による△T1直 B 図
Fig. 1 is a block diagram showing the configuration of the main parts of the device used to carry out the method of Example 1, Fig. 2 is a graph showing each mode of the ultrasonic plate wave, and Fig. 3 is a block diagram showing the configuration of the main parts of the device used to carry out the method of Example 1. A vertical cross-sectional view showing the sonic flaw detector and the sample, Fig. 4 is a plan view showing the relationship between each transmitter/receiver of the plate wave probe and the sample, and Fig. 5 shows the inner surface average value 7 of the plastic strain ratio and the crystal orientation distribution. Expansion coefficient W4° of function. 6 is a graph showing the correlation between the in-plane orientation difference Δr of the plastic strain ratio and the expansion coefficient W44° of the crystal orientation distribution function. FIG. A graph illustrating the measurement results, FIG. 8 is a perspective view showing another aspect of the probe in the device used to carry out the method of Example 1, and FIG. 9 is the structure of the transceiver that generates electromagnetic ultrasound. FIG. 10 is a block diagram showing the configuration of the main parts of the device used in Example 2 of the present invention, and FIG. 11 shows the expansion coefficient W4° obtained while ignoring the velocity dispersion of the plate wave. 12 and 13 are graphs showing the deviation from the true value of W4° corresponding to the plate thickness. , a graph showing the comparison results between W44° and data obtained by a tensile test, FIG. 14 (a). (b) and (c) are graphs showing the relationship between plating thickness and plate wave propagation velocity, Fig. 15 is a graph showing the relationship between plating thickness and sound speed ratio of cold rolled steel sheet and plated steel sheet, and Fig. 16 The figure is a block diagram showing the configuration of the main parts of the apparatus used in the third embodiment of the present invention, and FIGS. 17 and 19 show the expansion coefficient W4° calculated in carrying out the method of the present invention. . It is a graph showing a comparison result between W44° and data obtained by a tensile test. 10...Sensor part 11...Rolling direction propagation plate wave probe 12...Rolling 45° direction propagation plate wave probe 13...
Rolling orthogonal direction propagation plate wave probe 21.22.23...Ultrasonic flaw detector 31.32.33...Propagation time measuring device 40...Calculator 50...Converter 60...Display Applicant S: Cold-rolled steel sheet (thin metal sheet) as a sample Patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Kawa
Noboru No 1.0 2.0 Plate thickness (mm) ++ Figure T by tensile test Figure 1.0 1.5 Figure 7 Figure tensile test △T1 straight B Figure

Claims (1)

【特許請求の範囲】 1、圧延された金属薄板中に、その板厚に対して十分に
低い周波数で発生させた速度分散性の十分に少ないS_
0モードの超音波板波を、圧延方向と、圧延方向に対し
て45°だけ傾斜する方向と、圧延方向に対して直交す
る方向との3方向に一定距離だけ伝播させて各伝播時間
を測定し、その測定値を用いて金属薄板の主要結晶方位
成分を評価する量を導出することにより塑性歪み比の面
内平均値及び面内方位差を求めることを特徴とする金属
薄板の深絞り性評価方法。 2、圧延された金属薄板中にS_0モードの超音波板波
を、圧延方向と、圧延方向に対して45°だけ傾斜する
方向と、圧延方向に対して直交する方向との3方向に一
定距離だけ伝播させて各伝播時間を測定し、その測定値
を用いて金属薄板の主要結晶方位成分を評価する量を導
出することにより塑性歪み比の面内平均値及び面内方位
差を演算し、またその演算に際しては金属薄板の板厚情
報による補正を行うことを特徴とする金属薄板の深絞り
性評価方法。 3、メッキを施した圧延金属薄板中にS_0モードの超
音波板波を、圧延方向と、圧延方向に対して45°だけ
傾斜する方向と、圧延方向に対して直交する方向との3
方向に一定距離だけ伝播させてその各伝播時間を測定し
、この伝播時間をメッキ厚さに基づいて補正し、その補
正値を用いて金属薄板の主要結晶方位成分を評価する量
を導出することにより塑性歪み比の面内平均値及び面内
方位差を演算するごとを特徴とする金属薄板の深絞り性
評価方法。
[Claims] 1. S_ with sufficiently low velocity dispersion generated in a rolled thin metal plate at a sufficiently low frequency relative to the plate thickness.
0 mode ultrasonic plate waves were propagated a certain distance in three directions: the rolling direction, a direction inclined at 45° to the rolling direction, and a direction perpendicular to the rolling direction, and the propagation time of each was measured. deep drawability of a thin metal sheet, characterized in that the in-plane average value of the plastic strain ratio and the in-plane orientation difference are determined by deriving a quantity for evaluating the main crystal orientation component of the metal thin sheet using the measured value. Evaluation method. 2. S_0 mode ultrasonic plate waves are applied to the rolled metal thin plate at a certain distance in three directions: the rolling direction, a direction inclined at 45° to the rolling direction, and a direction perpendicular to the rolling direction. The in-plane average value of the plastic strain ratio and the in-plane orientation difference are calculated by propagating the plastic strain and measuring each propagation time, and using the measured values to derive a quantity for evaluating the main crystal orientation component of the metal thin plate. A method for evaluating deep drawability of a thin metal sheet, characterized in that during the calculation, correction is performed using sheet thickness information of the thin metal sheet. 3. S_0 mode ultrasonic plate waves are applied to the plated rolled metal sheet in the rolling direction, in a direction inclined by 45° to the rolling direction, and in a direction perpendicular to the rolling direction.
To propagate a certain distance in a direction, measure each propagation time, correct this propagation time based on the plating thickness, and use the correction value to derive a quantity for evaluating the main crystal orientation component of a thin metal plate. A method for evaluating deep drawability of a thin metal sheet, characterized by calculating an in-plane average value of a plastic strain ratio and an in-plane orientation difference.
JP1026429A 1988-02-23 1989-02-03 Evaluation method for deep drawability of thin metal sheets Expired - Fee Related JPH0679018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026429A JPH0679018B2 (en) 1988-02-23 1989-02-03 Evaluation method for deep drawability of thin metal sheets

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP63-41638 1988-02-23
JP63-41637 1988-02-23
JP4163788 1988-02-23
JP4163888 1988-02-23
JP1026429A JPH0679018B2 (en) 1988-02-23 1989-02-03 Evaluation method for deep drawability of thin metal sheets

Publications (2)

Publication Number Publication Date
JPH021547A true JPH021547A (en) 1990-01-05
JPH0679018B2 JPH0679018B2 (en) 1994-10-05

Family

ID=27285397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026429A Expired - Fee Related JPH0679018B2 (en) 1988-02-23 1989-02-03 Evaluation method for deep drawability of thin metal sheets

Country Status (1)

Country Link
JP (1) JPH0679018B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236724A (en) * 1991-01-14 1992-08-25 Sumitomo Metal Ind Ltd Method for controlling temperature in continuous heat treatment line
JP2008256575A (en) * 2007-04-06 2008-10-23 Sumitomo Metal Ind Ltd Method for measuring depth of cured layer
RU2648309C1 (en) * 2016-12-23 2018-03-23 Федеральное государственное бюджетное учреждение науки Институт проблем машиноведения Российской академии наук (ИПМаш РАН) Method of determination of the contribution of plastic deformation to the amount of acoustic anisotropy in measuring of details of machines and elements of the design

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236724A (en) * 1991-01-14 1992-08-25 Sumitomo Metal Ind Ltd Method for controlling temperature in continuous heat treatment line
JP2008256575A (en) * 2007-04-06 2008-10-23 Sumitomo Metal Ind Ltd Method for measuring depth of cured layer
RU2648309C1 (en) * 2016-12-23 2018-03-23 Федеральное государственное бюджетное учреждение науки Институт проблем машиноведения Российской академии наук (ИПМаш РАН) Method of determination of the contribution of plastic deformation to the amount of acoustic anisotropy in measuring of details of machines and elements of the design

Also Published As

Publication number Publication date
JPH0679018B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
Veit et al. An ultrasonic guided wave excitation method at constant phase velocity using ultrasonic phased array probes
Le Clezio et al. Numerical predictions and experiments on the free-plate edge mode
US5467655A (en) Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
Castaings et al. Air-coupled measurement of plane wave, ultrasonic plate transmission for characterising anisotropic, viscoelastic materials
Hirao et al. Ultrasonic monitoring of texture in cold‐rolled steel sheets
JPH021547A (en) Method for evaluating deep drawing property of metallic sheet
Kolkoori et al. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens–Fresnel diffraction model: theory and experimental comparison
Hasanian et al. Directional nonlinear guided wave mixing: case study of counter-propagating shear horizontal waves
CN111256630B (en) Method for rapidly measuring thickness of metal plate by utilizing electromagnetic ultrasonic guided wave frequency dispersion characteristic
US20040206181A1 (en) Defect type classifying method
Clark Jr et al. Ultrasonic measurement of sheet steel texture and formability: Comparison with neutron diffraction and mechanical measurements
JPH0557542B2 (en)
JPH01214757A (en) Apparatus for evaluating deep drawing of thin metal plate
Kubrusly et al. Measurement of plate thickness based on the optimal unidirectional generation of ultrasonic waves using dual electromagnetic acoustic transducer
Haugwitz et al. Lamb wave reflection and transmission in bent steel sheets at low frequency
JP2611714B2 (en) Ultrasonic applied measuring device
JP2773535B2 (en) Ultrasonic applied measuring device
Davis et al. Prediction of elastic modulus+ anisotropy using x-ray and electron backscattered diffraction texture quantification and ultrasonic (electromagnetic acoustic transducer) measurements in aluminum sheets
JPH1164309A (en) Method and apparatus for measuring material characteristic of roll material
JPH02210258A (en) Method for measuring material of cold rolled steel sheet and measuring instrument of speed of ultrasonic wave propagated in cold rolled steel plate
JPH01301162A (en) Method of evaluating edge cracking property of metallic sheet
JP2746037B2 (en) Metal plate deep drawability evaluation system
US11467075B1 (en) Method of estimating material properties of an elastic plate
Dixon et al. Characterisation of thickness and crystallographic texture of sheet using non-contact ultrasonic measurements
JP3037897B2 (en) Ear ratio measurement method for thin metal plates

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees