JPH02243929A - Fourier transform infrared spectrophotometer - Google Patents

Fourier transform infrared spectrophotometer

Info

Publication number
JPH02243929A
JPH02243929A JP6523289A JP6523289A JPH02243929A JP H02243929 A JPH02243929 A JP H02243929A JP 6523289 A JP6523289 A JP 6523289A JP 6523289 A JP6523289 A JP 6523289A JP H02243929 A JPH02243929 A JP H02243929A
Authority
JP
Japan
Prior art keywords
section
sample
interferometer
parabolic mirror
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6523289A
Other languages
Japanese (ja)
Inventor
Hiromasa Hattori
服部 裕允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP6523289A priority Critical patent/JPH02243929A/en
Publication of JPH02243929A publication Critical patent/JPH02243929A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve S/N with a simple condensing optical system by selecting the focal distance of 1st and 2nd paraboloidal mirrors according to the optical path length from the 1st parabolic mirror via a sample part to the 2nd parabolic mirror. CONSTITUTION:The sample S is set on a sample base 28 perpendicularly to a base plate in the case of analyzing the sample S by a micropoint transmission measurement method. The parabolic mirrors 26, 27 necessary for a desired beam diameter are then selected. A detecting part 23 is registered by moving stages 31, 33, 35 in directions x, y, z in such a manner that the optical axis of the transmitted light reflected in the direction x by the mirror 27 and the incident optical axis of the detecting part 23 align to each other. The IR light emitted from a light source 24 is thereafter introduced through a collimator 25 to an interferometer. The luminous flux emitted in the direction x from the interferometer part 21 is condensed via the parabolic mirror 26 to the sample S. The luminous flux transmitted and diffused through the sample S is condensed via the mirror 27 and a condenser mirror 29 to a detector 30.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフーリエ変換赤外分光光度計に関し、特に、簡
単な集光光学系を用いた信号対雑音比(S/N)の良い
フーリエ変換赤外分光光度計に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Fourier transform infrared spectrophotometer, and in particular, to a Fourier transform infrared spectrophotometer with a good signal-to-noise ratio (S/N) using a simple focusing optical system. Regarding infrared spectrophotometer.

[従来の技術] 従来、第3図に示すような構成のフーリエ変換赤外分光
光度計が知られている。第3図においてフーリエ変換赤
外分光光度計1は光源部2、干渉計部3、試料室4、検
出部5から一体的に構成されている。光源部2内の光源
6から出射した赤外光はコリメータ7で平行光にされ、
干渉計部3に導入される。そして、該干渉計部3から出
射した光束は試料室4内に配置された試料8に集光され
る。該試料8を透過し拡散した光束は検出部5に導入さ
れ、集光鏡9及び10を介して検出器11に集光される
[Prior Art] Conventionally, a Fourier transform infrared spectrophotometer having a configuration as shown in FIG. 3 is known. In FIG. 3, the Fourier transform infrared spectrophotometer 1 is integrally constructed from a light source section 2, an interferometer section 3, a sample chamber 4, and a detection section 5. The infrared light emitted from the light source 6 in the light source section 2 is made into parallel light by a collimator 7,
It is introduced into the interferometer section 3. The light beam emitted from the interferometer section 3 is focused on a sample 8 placed in a sample chamber 4. The light beam transmitted through the sample 8 and diffused is introduced into the detection section 5, and is focused on the detector 11 via the condensing mirrors 9 and 10.

[発明が解決しようとする課題] 上述のような構成の装置では、試料の測定方法に応じて
試料室4内に様々な集光光学系が組み込まれる。例えば
、試料室4内には第4図に示すような全反射吸収測定を
行うためのATR結晶12及び反射鏡a−dを用いた光
学系や、第5図に示すような微小点測定を行うため、反
射鏡e−1を用いた複雑なビームコンデンサー光学系等
が試料と共に組み込まれる。さて、これらの光学系では
、該光学系の入射光軸と干渉計部3の出射光軸及び該光
学系の出射光軸と検出部5の入射光軸を合致させる必要
があるため、数多くの反射鏡を用いて光線を各光軸へ導
くようにしている。しかしながら、このように多くの反
射鏡を用いた場合、該反射鏡による分析光の吸収や減衰
が多くなり信号対雑音比(S/N)が悪くなり、分析精
度が低下することが問題となる。
[Problems to be Solved by the Invention] In the apparatus configured as described above, various condensing optical systems are incorporated in the sample chamber 4 depending on the sample measurement method. For example, the sample chamber 4 includes an optical system using an ATR crystal 12 and reflectors a to d for total internal reflection absorption measurement as shown in FIG. 4, and a minute point measurement as shown in FIG. In order to do this, a complicated beam condenser optical system using a reflecting mirror e-1, etc. is installed together with the sample. Now, in these optical systems, it is necessary to match the incident optical axis of the optical system with the output optical axis of the interferometer section 3, and the output optical axis of the optical system with the incident optical axis of the detection section 5, so there are many Reflecting mirrors are used to guide light rays to each optical axis. However, when a large number of reflecting mirrors are used in this manner, the absorption and attenuation of the analysis light by the reflecting mirrors increases, resulting in a poor signal-to-noise ratio (S/N) and a decrease in analysis accuracy. .

また、試料室4の容積が制限されているにも拘らず、該
試料室内に数多くの反射鏡を設けて光線を各光軸へ導く
ようにしているために、収容できる試料の大きさが使用
される集光光学系によって制限されてしまうことが問題
とされている。
In addition, even though the volume of the sample chamber 4 is limited, many reflecting mirrors are installed in the sample chamber to guide the light beam to each optical axis, so the size of the sample that can be accommodated is limited. The problem is that it is limited by the condensing optical system used.

本発明は、上記問題点を考慮し、簡単な集光光学系を用
いた信号対雑音比(S/N)の良いフーリエ変換赤外り
)先光反吐を提供することを目的としている。
The present invention has been made in consideration of the above-mentioned problems, and an object of the present invention is to provide a Fourier transform infrared light ejection system that uses a simple condensing optical system and has a good signal-to-noise ratio (S/N).

[課題を解決するための手段] 本発明は、基盤と、該基盤上に配置された干渉計部と、
該干渉計部から出射した光線が導入される試料部と、該
試料部から出射した光線を検出するため前記基盤上に配
置された検出部を備えたフーリエ変換赤外分光光度計に
おいて、前記基盤に平行な平面内においてX方向と該X
方向に垂直なX方向を考え、前記干渉計部に対して前記
検出部を相対的にX方向に移動させるためのX移動機構
を設け、前記干渉計部に対して前記検出部を相対的にX
方向に移動させるためのy移動機構を設け、前記試料部
をX方向及びX方向に移動させるための機構を設け、前
記干渉計部からのX方向に沿って進行する光をX方向に
垂直な方向に反射させて前記試料部に導くための第1の
放物面鏡を配置し、前記試料部よりの光をX方向に反射
させて前記検出部に導くための第2の放物面鏡を配置し
、前記第1の放物面鏡に入射した平行光が前記試料部を
介して前記第2の放物面鏡から平行光として出射するよ
うに前記第1.第2の放物面鏡を配置する際の位置を可
変とするための機構を設け且つ該第1、第2の放物面鏡
の焦点距離が第1の放物面鏡から試料部を介して第2の
放物面鏡に至る光路長に応じて選ばれていることを特徴
とする。
[Means for Solving the Problems] The present invention provides a base, an interferometer section disposed on the base,
A Fourier transform infrared spectrophotometer comprising a sample section into which a light beam emitted from the interferometer section is introduced, and a detection section disposed on the substrate for detecting the light beam emitted from the sample section. In the plane parallel to the X direction and the
Considering the X direction perpendicular to the direction, an X moving mechanism is provided for moving the detection section in the X direction relative to the interferometer section, and X
A y-moving mechanism is provided for moving the sample section in the X direction, and a mechanism is provided for moving the sample section in the X direction and the X direction. A first parabolic mirror is arranged to reflect the light in the X direction and guide it to the sample section, and a second parabolic mirror is arranged to reflect the light from the sample section in the X direction and guide it to the detection section. are arranged such that parallel light incident on the first parabolic mirror exits as parallel light from the second parabolic mirror via the sample section. A mechanism for making the position of the second parabolic mirror variable is provided, and the focal length of the first and second parabolic mirrors is different from the first parabolic mirror through the sample part. The second parabolic mirror is selected according to the optical path length leading to the second parabolic mirror.

[作用] 本発明においては、干渉計部に対して検出部が相対的に
移動可能であるため、従来のように試料室内に反射鏡を
設けて入射光軸と出射光軸を一致させる必要がなくなり
、集光光学系を簡単化することのできるフーリエ変換赤
外分光光度計が実現される。
[Function] In the present invention, since the detection unit is movable relative to the interferometer unit, it is not necessary to provide a reflecting mirror in the sample chamber to align the incident optical axis and the output optical axis as in the conventional case. Thus, a Fourier transform infrared spectrophotometer is realized in which the condensing optical system can be simplified.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の一実施例を説明するための装置構成図、第
2図は動作を説明するための図である。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a configuration diagram of an apparatus for explaining an embodiment of the present invention, and FIG. 2 is a diagram for explaining the operation.

第1図及び第2図において20は基盤、21は干渉計部
、22は試料室、23は検出部、24は光源、25はコ
リメータ、26.27は放物面鏡、28は試料台、29
は集光鏡、30は検出器、31はX方向移動ステージ、
32はX方向移動用ガイドレール、33はX方向移動ス
テージ、34はX方向移動用ガイドレール、35は検出
部支持ステージ、36は2方向移動用ガイドレール、3
7゜38.39は目盛、40,41.42はステージス
トッパ、43,44.45.46はパージ用筒体である
In FIGS. 1 and 2, 20 is a base, 21 is an interferometer section, 22 is a sample chamber, 23 is a detection section, 24 is a light source, 25 is a collimator, 26.27 is a parabolic mirror, 28 is a sample stage, 29
30 is a detector, 31 is a moving stage in the X direction,
32 is a guide rail for moving in the X direction, 33 is a stage for moving in the X direction, 34 is a guide rail for moving in the X direction, 35 is a detection part support stage, 36 is a guide rail for moving in two directions, 3
7°38.39 is a scale, 40, 41.42 is a stage stopper, and 43, 44, 45, 46 is a purge cylinder.

前記基盤20に平行な平面内においてX方向と該X方向
に垂直なX方向を第1図に示すように規定し、更に該平
面に垂直な方向を2方向とする。
In a plane parallel to the base 20, an X direction and an X direction perpendicular to the X direction are defined as shown in FIG. 1, and two directions are defined as directions perpendicular to the plane.

前記X方向移動ステージ31はガイドレール32に案内
されてX方向に移動可能に取り付けられている。前記X
方向移動ステージ33はステージ31上に設けられたガ
イドレール34に案内されてX方向に移動可能に取り付
けられている。そして、前記検出部支持ステージ35は
ステージ33上に設けられたガイドレール36に案内さ
れて2方向に移動可能に取り付けられており、該ステー
ジ35上には検出部23が配置されている。
The X-direction moving stage 31 is guided by guide rails 32 and is attached to be movable in the X-direction. Said X
The directional movement stage 33 is guided by a guide rail 34 provided on the stage 31 and is attached to be movable in the X direction. The detection section support stage 35 is guided by a guide rail 36 provided on the stage 33 and is mounted so as to be movable in two directions, and the detection section 23 is disposed on the stage 35.

放物面鏡26及び27はX方向の軸A及びBのまわりに
回転可能で、且つX方向及びX方向及び2方向に移動可
能に設けられている。
The parabolic mirrors 26 and 27 are provided to be rotatable around the axes A and B in the X direction, and movable in the X direction and the X direction and two directions.

パージ用筒体43乃至46は干渉計部21と試料室22
及び試料室22と検出部23との間の光路を密閉すると
共に、前記放物面鏡の移動に伴い伸縮可能に設けられて
いる。
The purge cylinders 43 to 46 are connected to the interferometer section 21 and the sample chamber 22.
It seals the optical path between the sample chamber 22 and the detection section 23, and is provided so as to be expandable and retractable as the parabolic mirror moves.

上述のような構成の装置において、微小点透過i1P+
定法により試料Sの分析を行う場合には、第1図に示す
ように試料室22内の試料台28に試料Sが基盤20に
対して垂直にセットされる。次に、所望のビーム径を得
るために必要な放物面鏡26及び27が選定され、該放
物面鏡26は前記干渉計部21からのX方向に沿って進
行する光をX方向に反射させて前記試料室22に導く位
置に配置され、放物面m27は該試料室よりの試料透過
光をX方向に反射させる位置に配置される。そして、こ
の放物面鏡27によってX方向に反射された透過光の光
軸と検出部23の入射光軸が合致するように検出部23
をX方向移動ステージ31、X方向移動ステージ33.
2方向移動ステージ35によって位置合わせを行なう。
In the device configured as described above, minute point transmission i1P+
When analyzing a sample S using a conventional method, the sample S is set perpendicularly to the base 20 on a sample stage 28 in a sample chamber 22, as shown in FIG. Next, the parabolic mirrors 26 and 27 necessary to obtain the desired beam diameter are selected, and the parabolic mirror 26 directs the light traveling along the X direction from the interferometer section 21 in the X direction. The paraboloid m27 is placed at a position to reflect the sample transmitted light from the sample chamber 22 in the X direction. The detection unit 23 is arranged so that the optical axis of the transmitted light reflected in the X direction by the parabolic mirror 27 and the incident optical axis of the detection unit 23 match.
X-direction moving stage 31, X-direction moving stage 33.
Positioning is performed using a two-direction moving stage 35.

このよう位置合わせ後、干渉計部21内の光源24から
出射した赤外光はコリメータ25で平行光にされ、干渉
計に導入される。そして、該干渉計部21からX方向へ
平行光として出射された光束は放物面鏡26によりX方
向に垂直な方向に反射されて試料室22内に配置された
試料Sに集光される。そして、該試料Sを透過し拡散し
た光束は、放物面鏡27によりX方向に反射されて前記
検出部23に導入され、集光鏡29を介して検出器30
に集光される。
After such alignment, the infrared light emitted from the light source 24 in the interferometer section 21 is made into parallel light by the collimator 25 and introduced into the interferometer. The light beam emitted as parallel light from the interferometer section 21 in the X direction is reflected by the parabolic mirror 26 in a direction perpendicular to the X direction, and is focused on the sample S placed in the sample chamber 22. . The light flux that has passed through the sample S and diffused is reflected in the X direction by the parabolic mirror 27 and introduced into the detection section 23, and then passed through the condenser mirror 29 to the detector 30.
The light is focused on.

一方、微小点透過測定法により試料Sの分析を行う場合
であって、試料Sを基盤20に対して水平にセットする
必要がある場合には、第2図に示すように検出部を移動
させれば良い。即ち、第1図に示す実施例の状態から、
まず放物面m26は軸へのまわりで回転され、入射光が
下方(2方向)に反射されるようにセットされる。次に
、該放物面鏡26の下方に試料室22が配置される。そ
して、検出部23は検出部支持ステージ35により下方
(2方向)に移動されると共に、X方向移動ステージ3
3によりX方向に水平移動され試料室22の下部に配置
される。該位置において放物面鏡27は輔Bのま1)り
て回転され、該試料室22よりの透過光がX方向に反射
されるようにセットされる。そして、該反射された透過
光の光軸と検出部23の入射光軸が合致するように前記
検出部23がX方向移動ステージ31、X方向移動ステ
ージ33、検出部支持ステージ35によって位置合わせ
される。これにより、干渉計部21から出射された赤外
光は水平にセットされた試料を透過して検出部23に導
入される。
On the other hand, when analyzing the sample S using the minute point transmission measurement method, and when the sample S needs to be set horizontally with respect to the base 20, the detection unit must be moved as shown in Fig. 2. That's fine. That is, from the state of the embodiment shown in FIG.
First, the paraboloid m26 is rotated about its axis and set so that the incident light is reflected downward (in two directions). Next, the sample chamber 22 is arranged below the parabolic mirror 26. Then, the detection unit 23 is moved downward (in two directions) by the detection unit support stage 35, and the X-direction moving stage 3
3, it is horizontally moved in the X direction and placed in the lower part of the sample chamber 22. At this position, the parabolic mirror 27 is rotated along with the support B, and set so that the transmitted light from the sample chamber 22 is reflected in the X direction. Then, the detection section 23 is aligned by the X-direction moving stage 31, the X-direction moving stage 33, and the detection section support stage 35 so that the optical axis of the reflected transmitted light and the incident optical axis of the detection section 23 match. Ru. As a result, the infrared light emitted from the interferometer section 21 passes through the horizontally set sample and is introduced into the detection section 23.

なお、上述した実施例は本発明の一実施例に過ぎず、本
発明は種々変形して実施することができる。例えば、上
述した実施例においては透過A11j定に適用した場合
について説明したが、検出部を適宜移動することにより
反射411]定等、種々の測定にも適用可能である。
Note that the above-described embodiment is only one embodiment of the present invention, and the present invention can be implemented with various modifications. For example, in the above-mentioned embodiment, the case where the present invention is applied to transmission A11j constant has been described, but it can also be applied to various measurements such as reflection A11j constant by moving the detection section appropriately.

また、上述した実施例においては検出部を移動可能に設
けたが、干渉計部を移動可能に設けても良いし、検出部
と干渉計部の双方を移動可能に設けても良い。
Further, in the embodiments described above, the detection section is provided movably, but the interferometer section may be provided movably, or both the detection section and the interferometer section may be provided movably.

更に、上述した実施例においては検出部をX。Furthermore, in the embodiment described above, the detection section is X.

y、  zの3方向に移動可能に設けたが、x+Yの2
方向のみに移動可能にしても良い。
Although it is designed to be movable in three directions (y and z), it can be moved in two directions (x+Y).
It may be possible to move only in the direction.

[発明の効果コ 以上の説明から明らかなように、本発明によれば、干渉
計部に対して検出部を相対的にX方向に移動させるため
のX移動機構とX方向に移動させるためのX移動機構と
、試料部をX方向及びX方向に移動させるための機構を
設けると共に、前記干渉計部からのX方向に沿って進行
する光をX方向に垂直な方向に反射させて前記試料部に
導くための第1の放物面鏡と前記試料部よりの光をX方
向に反射させて前記検出部に導くための第2の放物面鏡
を配置し、前記第1の放物面鏡に入射した平行光が前記
試料部を介して前記第2の放物面鏡から平行光として出
射するように前記第1.第2の放物面鏡を配置する際の
位置を可変とするための機構を設け且つ該第1.第2の
放物面鏡の焦点距離を第1の放物面鏡から試料部を介し
て第2の放物面鏡に至る光路長に応じて選ぶことにより
、従来のように試料室内に反射鏡を設けて入射光軸と出
射光軸を一致させる必要がなく、簡単な集光光学系でS
/Nの良いフーリエ変換赤外分光光度針を実現すること
ができる。また、従来のように試料室内に数多くの反射
鏡を設ける必要がないので、大形の試料も任意に試料室
にセットすることができる。更に、試料の形状やA11
l定方法に応じて任意の試料室を設けた場合でも、検出
部及び放物鏡を移動させるだけで簡単に所望の光学系を
得ることができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, an X moving mechanism for moving the detection unit in the X direction relative to the interferometer unit and a An X moving mechanism and a mechanism for moving the sample section in the X direction and the X direction are provided, and the light traveling along the X direction from the interferometer section is reflected in a direction perpendicular to the a first parabolic mirror for guiding the light from the sample section to the detection section; and a second parabolic mirror for reflecting the light from the sample section in the X direction and guiding it to the detection section; The first parabolic mirror is configured such that the parallel light incident on the plane mirror is output as parallel light from the second parabolic mirror via the sample section. A mechanism for making the position of the second parabolic mirror variable is provided, and the second parabolic mirror is arranged at a variable position. By selecting the focal length of the second parabolic mirror according to the optical path length from the first parabolic mirror to the second parabolic mirror via the sample section, the light is reflected into the sample chamber as in the conventional method. There is no need to install a mirror to align the incident optical axis and the output optical axis, and the S
/N can be realized. Further, since there is no need to provide a large number of reflecting mirrors in the sample chamber as in the conventional case, a large sample can also be arbitrarily set in the sample chamber. Furthermore, the shape of the sample and A11
Even if an arbitrary sample chamber is provided depending on the method of determination, a desired optical system can be easily obtained by simply moving the detection section and the parabolic mirror.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための装置構成図
、第2図は動作を説明するための図、第3図乃至第5図
は従来例を説明するための図である。 20:基盤        21:干渉計部22:試料
室       23:検出部24:光?fA    
    25:コリメータ26.27:放物面鏡 28:試料台       29:集光鏡30:検出器 31 : 32 : 33 = 34 二 35 二 36 : X方向移動ステージ X方向移動用ガイドレール X方向移動ステージ X方向移動用ガイドレール 検出部支持ステージ 2方向移動用ガイドレール
FIG. 1 is an apparatus configuration diagram for explaining an embodiment of the present invention, FIG. 2 is a diagram for explaining the operation, and FIGS. 3 to 5 are diagrams for explaining a conventional example. 20: Base 21: Interferometer section 22: Sample chamber 23: Detection section 24: Light? fA
25: Collimator 26. 27: Parabolic mirror 28: Sample stage 29: Condensing mirror 30: Detector 31: 32: 33 = 34 235 236: X direction movement stage Guide rail for X direction movement X direction movement stage Guide rail for X-direction movement Detector support stage Guide rail for 2-direction movement

Claims (2)

【特許請求の範囲】[Claims] (1)基盤と、該基盤上に配置された干渉計部と、該干
渉計部から出射した光線が導入される試料部と、該試料
部から出射した光線を検出するため前記基盤上に配置さ
れた検出部を備えたフーリエ変換赤外分光光度計におい
て、前記基盤に平行な平面内においてx方向と該x方向
に垂直なy方向を考え、前記干渉計部に対して前記検出
部を相対的にx方向に移動させるためのx移動機構を設
け、前記干渉計部に対して前記検出部を相対的にy方向
に移動させるためのy移動機構を設け、前記試料部をx
方向及びy方向に移動させるための機構を設け、前記干
渉計部からのx方向に沿って進行する光をx方向に垂直
な方向に反射させて前記試料部に導くための第1の放物
面鏡を配置し、前記試料部よりの光をx方向に反射させ
て前記検出部に導くための第2の放物面鏡を配置し、前
記第1の放物面鏡に入射した平行光が前記試料部を介し
て前記第2の放物面鏡から平行光として出射するように
前記第1、第2の放物面鏡を配置する際の位置を可変と
するための機構を設け且つ該第1、第2の放物面鏡の焦
点距離が第1の放物面鏡から試料部を介して第2の放物
面鏡に至る光路長に応じて選ばれていることを特徴とす
るフーリエ変換赤外分光光度計。
(1) A base, an interferometer section placed on the base, a sample section into which the light beam emitted from the interferometer section is introduced, and a sample section placed on the base for detecting the light beam emitted from the sample section. In a Fourier transform infrared spectrophotometer equipped with a detection section, consider an x direction and a y direction perpendicular to the x direction in a plane parallel to the base, and set the detection section relative to the interferometer section. an x-movement mechanism for moving the sample section in the x-direction; a y-movement mechanism for moving the detection section in the y-direction relative to the interferometer section;
a first paraboloid provided with a mechanism for moving in the direction and the y direction, and for reflecting the light traveling along the x direction from the interferometer section in a direction perpendicular to the x direction and guiding it to the sample section. A plane mirror is arranged, and a second parabolic mirror is arranged to reflect the light from the sample section in the x direction and guide it to the detection section, and the parallel light incident on the first parabolic mirror is is provided with a mechanism for making the positions of the first and second parabolic mirrors variable such that parallel light is emitted from the second parabolic mirror via the sample portion; The focal length of the first and second parabolic mirrors is selected according to the optical path length from the first parabolic mirror to the second parabolic mirror via the sample section. Fourier transform infrared spectrophotometer.
(2)基盤と、該基盤上に配置された干渉計部と、該干
渉計部から出射した光線が導入される試料部と、該試料
部から出射した光線を検出するため前記基盤上に配置さ
れた検出部を備えたフーリエ変換赤外分光光度計におい
て、前記基盤に平行な平面内においてx方向と該x方向
に垂直なy方向及び該平面に垂直なz方向を考え、前記
干渉計部に対して前記検出部を相対的にy方向に移動さ
せるためのy移動機構を設け、前記干渉計部に対して前
記検出部を相対的にz方向に移動させるためのz移動機
構を設け、前記試料部をy方向及びz方向に移動させる
ための機構を設け、前記干渉計部からのx方向に沿って
進行する光をx方向に垂直な方向に反射させて前記試料
部に導くための第1の放物面鏡を配置し、前記試料部よ
りの光をx方向に反射させて前記検出部に導くための第
2の放物面鏡を配置し、前記第1の放物面鏡に入射した
平行光が前記試料部を介して前記第2の放物面鏡から平
行光として出射するように前記第1、第2の放物面鏡を
配置する際の位置及び向きを可変とするための機構を設
け且つ該第1、第2の放物面鏡の焦点距離が第1の放物
面鏡から試料部を介して第2の放物面鏡に至る光路長に
応じて選ばれていることを特徴とするフーリエ変換赤外
分光光度計。
(2) A base, an interferometer section placed on the base, a sample section into which the light beam emitted from the interferometer section is introduced, and a sample section placed on the base for detecting the light beam emitted from the sample section. In a Fourier transform infrared spectrophotometer equipped with a detection section, considering an x direction, a y direction perpendicular to the x direction, and a z direction perpendicular to the plane in a plane parallel to the base, the interferometer section a y-moving mechanism for moving the detection unit in the y-direction relative to the interferometer unit, and a z-moving mechanism for moving the detection unit in the z-direction relative to the interferometer unit; A mechanism for moving the sample section in the y direction and the z direction is provided, and the light traveling along the x direction from the interferometer section is reflected in a direction perpendicular to the x direction and guided to the sample section. A first parabolic mirror is arranged, a second parabolic mirror is arranged to reflect light from the sample section in the x direction and guide it to the detection section, and the first parabolic mirror The positions and orientations of the first and second parabolic mirrors are variable so that the parallel light incident on the sample part passes through the sample section and exits from the second parabolic mirror as parallel light. and the focal length of the first and second parabolic mirrors is selected according to the optical path length from the first parabolic mirror to the second parabolic mirror via the sample section. A Fourier transform infrared spectrophotometer characterized by:
JP6523289A 1989-03-17 1989-03-17 Fourier transform infrared spectrophotometer Pending JPH02243929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6523289A JPH02243929A (en) 1989-03-17 1989-03-17 Fourier transform infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6523289A JPH02243929A (en) 1989-03-17 1989-03-17 Fourier transform infrared spectrophotometer

Publications (1)

Publication Number Publication Date
JPH02243929A true JPH02243929A (en) 1990-09-28

Family

ID=13280961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6523289A Pending JPH02243929A (en) 1989-03-17 1989-03-17 Fourier transform infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JPH02243929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871816A (en) * 2010-06-03 2010-10-27 北京航空航天大学 Modularized split Sagnac interferometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871816A (en) * 2010-06-03 2010-10-27 北京航空航天大学 Modularized split Sagnac interferometer

Similar Documents

Publication Publication Date Title
US6878916B2 (en) Method for focus detection for optically detecting deviation of the image plane of a projection lens from the upper surface of a substrate, and an imaging system with a focus-detection system
JP3631766B2 (en) Method and apparatus for repeatedly projecting a mask pattern onto a substrate using time-saving height measurement
JP2000509826A (en) Optical scanning device
JPH10510365A (en) Infrared microspectrometer accessory
CA2033194A1 (en) Wavelength detecting apparatus
JPS6333093B2 (en)
US5150172A (en) Interferometer spectrometer having tiltable reflector assembly and reflector assembly therefor
EP0213790A2 (en) Optical analytical instrument
JPH04504762A (en) Method and apparatus for inspecting optical elements or systems
JPS59164945A (en) Optical analyzing meter
US4591266A (en) Parabolic focusing apparatus for optical spectroscopy
JPH02243929A (en) Fourier transform infrared spectrophotometer
US4693604A (en) Interference method and interferometer for testing the surface precision of a parabolic mirror
US6486942B1 (en) Method and system for measurement of a characteristic of lens
JP4120050B2 (en) Optical property detector
JP3607055B2 (en) Microscopic Fourier transform infrared spectrophotometer
EP0721577B1 (en) Device for examining optical waveguides
JPH04297810A (en) Optical tester
US2684011A (en) Method and apparatus for measuring angles between reflecting surfaces
JPH11142241A (en) Measuring apparatus for spectral transmittance
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
US2679183A (en) Differential interferometer
JPH087331B2 (en) Infrared absorption spectrum measurement microscope device
JP2766735B2 (en) Optical system using reflective objective lens
JP2943236B2 (en) Total reflection absorption spectrum measurement device