JPH0224299A - Radiating cooler - Google Patents

Radiating cooler

Info

Publication number
JPH0224299A
JPH0224299A JP63172965A JP17296588A JPH0224299A JP H0224299 A JPH0224299 A JP H0224299A JP 63172965 A JP63172965 A JP 63172965A JP 17296588 A JP17296588 A JP 17296588A JP H0224299 A JPH0224299 A JP H0224299A
Authority
JP
Japan
Prior art keywords
cover
temperature
shield
heater
transformation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63172965A
Other languages
Japanese (ja)
Inventor
Mitsuo Nakatani
中谷 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63172965A priority Critical patent/JPH0224299A/en
Publication of JPH0224299A publication Critical patent/JPH0224299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To carry out the opening/closing of the opening face of a shield as necessary with a simple structure by joining a cover to the shield via a linking member formed with a shape memory alloy while providing a heater for heating the linking member to a temperature higher than a transformation temperature. CONSTITUTION:Until an artificial satellite is orbited, a linking member 7 is kept at a temperature higher than a transformation temperature by means of the atmospheric temperature on the ground or a heater 8 to keep a cover 4 in a closed condition whereas, after the artificial satellite is orbited, the action of the heater 8 is stopped, allowing the linking member 7 to be naturally cooled to a temperature lower than the transformation temperature to keep the cover 4 in an open condition. Also, at the time of baking, the linking member 7 is heated to a temperature higher than the transformation temperature by means of the heater 8 to keep the cover 4 in a closed condition, thereby shutting off the radiation of heat from cooling boards 2, 3, etc. to space by means of the cover 4 to carry out baking in a short time. In an engaging means 9, the shape memory member 9a thereof becomes an engaging condition for closing the cover 4 at the temperature higher than the transformation temperature at the time of launching whereas it becomes a releasing condition in the space.

Description

【発明の詳細な説明】 〔概要〕 赤外線センサ等の被冷却体を冷却するための放射冷却器
に関し、 簡単な構成で必要に応じてシールドの開放面をカバーで
開閉することができるようにすることを目的とし、 一面が開放されたシールドの中心部に被冷却体を配置し
た放射冷却器において、カバーを形状記憶部材からなる
連結部材を介してシールドに結合するとともに、この連
結部材を変態温度より高温に加熱し得るヒータを設け、
連結部材がヒータによって変態温度より高温に加熱され
た時にカバーがシールドの開放面を閉じる状態とし、連
結部材が変態温度より低温に冷却された時にはカバーが
上記開放面を開いた状態となるように構成し、更に、必
要に応じて、上記連結部材とは別に、変態温度よりも高
温でシールドの開放面を閉した状態のカバーを係止し、
変態温度よりも低温で上記係止機能が解除する係止手段
を設ける構成とした。
[Detailed Description of the Invention] [Summary] To enable a radiation cooler for cooling objects to be cooled, such as infrared sensors, to open and close the open surface of the shield with a cover as necessary with a simple configuration. In a radiation cooler in which the object to be cooled is placed in the center of a shield with one side open, the cover is connected to the shield via a connecting member made of a shape memory material, and this connecting member is connected to the transformation temperature. Install a heater that can heat to a higher temperature,
When the connecting member is heated to a temperature higher than the transformation temperature by the heater, the cover closes the open surface of the shield, and when the connecting member is cooled to a temperature lower than the transformation temperature, the cover opens the open surface. and further, if necessary, locking a cover with the open surface of the shield closed at a temperature higher than the transformation temperature, separately from the connecting member,
A locking means is provided that releases the locking function at a temperature lower than the transformation temperature.

〔産業上の利用分野〕[Industrial application field]

本発明は、放射冷却器に関し、特に、簡単な構成で必要
に応じてシールドの開放面をカバーで開閉し得る放射冷
却器に関するものである。
The present invention relates to a radiation cooler, and particularly to a radiation cooler that has a simple configuration and allows the open surface of a shield to be opened and closed with a cover as necessary.

〔従来の技術〕[Conventional technology]

放射冷却器は、例えば、人工衛星に搭載された赤外線検
知装置に用いられる赤外線センサを冷却するために使用
される。
A radiation cooler is used, for example, to cool an infrared sensor used in an infrared detection device mounted on an artificial satellite.

従来の放射冷却器は、例えば第4図に示すように、一方
に開放されたシールド1の底部中央に赤外線センサDが
配置されるとともに、該赤外線センサDの周辺に宇宙に
熱を放射する冷却板2・3が配置された構成となってい
る。上記シールド1、あるいは冷却板2・3は人工衛星
が定められた軌道に乗って正常に作動しているとき、赤
外線センサDが地球あるいは太陽からの熱の影響を受け
ない角度に調整されまた、その表面も鏡状あるいは白色
、黒色等の塗装がされて、熱放射が効率的に行われるよ
うになっている。
In a conventional radiation cooler, for example, as shown in FIG. 4, an infrared sensor D is placed at the center of the bottom of a shield 1 that is open on one side, and a cooling system that radiates heat into space is installed around the infrared sensor D. It has a configuration in which plates 2 and 3 are arranged. The shield 1 or the cooling plates 2 and 3 are adjusted to an angle where the infrared sensor D is not affected by heat from the earth or the sun when the artificial satellite is in a fixed orbit and is operating normally, and Its surface is also mirror-like or painted white, black, etc., so that heat can be radiated efficiently.

ところで、宇宙空間では上記赤外線センサDは約−18
0℃、シールド1は約−70℃、冷却板2は約−120
℃、冷却板3は約−180℃に冷却されるところから、
上記シールド1の内壁面、冷却板2・3等に人工衛生本
体及び宇宙の塵等の異物が吸着し、放熱効果を妨げると
ともに赤外線センサDの特性を著しく低下させる。そこ
で、上記構成に加えて、シールド1、冷却板2・3の放
射面の内側に沿って図示しないヒータが配設され、定期
的に該ヒータによって冷却vi、2・3及びシールド1
等を加熱し、その表面に付着した異物を取り除く、いわ
ゆるベーキングが行われていた。
By the way, in space, the infrared sensor D has a temperature of about -18
0℃, shield 1 about -70℃, cooling plate 2 about -120℃
℃, since the cooling plate 3 is cooled to about -180℃,
Foreign matter such as dust from the artificial sanitary body and space is adsorbed on the inner wall surface of the shield 1, the cooling plates 2 and 3, etc., impeding the heat dissipation effect and significantly degrading the characteristics of the infrared sensor D. Therefore, in addition to the above configuration, a heater (not shown) is provided along the inside of the radiation surface of the shield 1 and the cooling plates 2 and 3, and the heater periodically cools the shields vi, 2 and 3 and the shield 1.
So-called baking is a process in which foreign matter adhering to the surface of a material is removed by heating it.

このような構成及び機能を有する放射冷却器のシールド
の開放面は宇宙空間で自然冷却されている間はカバーが
不要であるところから、従来はカバー機構を設けない構
成のものを用いている場合が多かった。
Since the open surface of the shield of a radiation cooler with such a configuration and function does not require a cover while it is being naturally cooled in space, conventionally a configuration without a cover mechanism was used. There were many.

また打上げ時あるいは打上げ後、人工衛星が軌道に乗る
までのは衛星の向きによっては太陽光あるいは地球から
の放射光を赤外線センサに受けるおそれがあるところか
ら、カバー機構を設けているものもある。
In addition, some satellites are equipped with a cover mechanism to prevent infrared sensors from being exposed to sunlight or radiation from the earth depending on the orientation of the satellite during or after launch until the satellite enters orbit.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

カバー機構を設けない放射冷却器を人工衛星に搭載した
場合は、赤外線センサに太陽光あるいは地球からの放射
光が直接入射しないように姿勢制御をしなければならな
い難点がある。また、ベーキング時にはシールド1、冷
却板2・3を加熱する一方で、冷却板2・3から宇宙に
多量の熱が放射されることになり、加熱効率が悪く、大
きな容量のヒータを用いなければ付着物を除去できない
欠点があった。
When a radiation cooler without a cover mechanism is mounted on an artificial satellite, there is a problem in that the attitude must be controlled so that sunlight or radiation from the earth does not directly enter the infrared sensor. Also, during baking, while heating the shield 1 and cooling plates 2 and 3, a large amount of heat is radiated into space from the cooling plates 2 and 3, resulting in poor heating efficiency and the need to use a large-capacity heater. There was a drawback that deposits could not be removed.

上記カバー機構を有するものは、打上げられてから静止
軌道に乗るまでの上記欠点は解消できるが、その構成は
複雑で、かつ、−旦蓋が開くと再び閉じることができな
い構成となっていためベーキング時に大きな容量のヒー
タが必要な点は、カバーのないものと同様である。
A device with the above-mentioned cover mechanism can solve the above-mentioned drawbacks from the time it is launched until it enters a geostationary orbit, but its structure is complicated, and - once the cover is opened, it cannot be closed again, so it cannot be baked. Similar to the one without a cover, a heater with a large capacity is sometimes required.

本発明は、上記の事情を考慮してなされたものであって
、簡単な構成でシールドの開放面を必要に応じて開閉で
きるカバーを設けた放射冷却器を提供することを目的と
するものである。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to provide a radiation cooler with a simple configuration and a cover that allows the open surface of the shield to be opened and closed as necessary. be.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するために以下のような手段
を採用している。即ち、第1図、第2図に示すように、
一面が開放されたシールド1の中心部に赤外線センサー
D等の被冷却体を配置した放射冷却器において、カバー
4を形状記憶部材からなる連結部材7を介してシールド
1に結合するとともに、この連結部材7を変態温度より
高温に加熱し得るヒータ8を設け、連結部材7がヒータ
8によって変態温度より高温に加熱された時にカバー4
がシールド1の開放面を閉じる状態とし、連結部材7が
変態温度より低温に冷却された時にはカバー4が上記開
放面を開いた状態となるように構成したものである。
This invention employs the following means to achieve the above object. That is, as shown in FIGS. 1 and 2,
In a radiation cooler in which an object to be cooled, such as an infrared sensor D, is arranged in the center of a shield 1 with one side open, the cover 4 is coupled to the shield 1 via a coupling member 7 made of a shape memory member, and this coupling A heater 8 capable of heating the member 7 to a temperature higher than the transformation temperature is provided, and when the connecting member 7 is heated to a higher temperature than the transformation temperature by the heater 8, the cover 4
is in a state in which the open surface of the shield 1 is closed, and the cover 4 is in a state in which the open surface is in an open state when the connecting member 7 is cooled to a temperature lower than the transformation temperature.

また、上記連結部材7とは別に、変態温度よりも高温で
カバー4でシールド1の開放面を閉じた状態で係止し、
変態温度よりも低温で上記係止機能が解除する形状記憶
部材よりなる係止手段9を必要に応じて設けることがで
きる。
In addition to the above-mentioned connecting member 7, the open surface of the shield 1 is locked in a closed state with the cover 4 at a temperature higher than the transformation temperature,
A locking means 9 made of a shape memory member whose locking function is released at a temperature lower than the transformation temperature may be provided as necessary.

〔作用〕[Effect]

本発明の放射冷却器においては、人工衛星を軌道に乗せ
るまでは、連結部材7を地上の大気温度又はヒータ8に
よって変態温度より高温に維持することによりカバー4
を閉じた状態に保持することができ、人工衛星を軌道に
乗せた後には、ヒータ8の作動を停止させて連結部材7
を変態温度より低温に自然冷却することにより、カバー
4を開いた状態にすることができる。
In the radiation cooler of the present invention, the cover 4 is maintained at a temperature higher than the transformation temperature by the atmospheric temperature on the ground or by the heater 8 until the satellite is placed in orbit.
After the satellite is placed in orbit, the operation of the heater 8 is stopped and the connecting member 7 is closed.
The cover 4 can be placed in an open state by naturally cooling it to a temperature lower than the transformation temperature.

また、ベーキング時に、連結部材7をヒータ8で変態温
度より高温に加熱してカバー4を閉じた状態にすること
により、冷却板2・3等から宇宙への放熱をカバー4に
よって遮断し、短時間内にベーキングを実行することが
できる。
In addition, during baking, by heating the connecting member 7 to a temperature higher than the transformation temperature with the heater 8 and closing the cover 4, the heat radiation from the cooling plates 2, 3, etc. to space is blocked by the cover 4. Can perform baking in time.

連結部材7とは別に設けられる係止手段9は、打上げ時
の常温、(i変態温度よりも高温)では、形状記憶部材
9aがカバー4を閉じた状態で係止する係止状態となり
、宇宙空間(変態温度よりも低温)では係止機能が解除
される解除状態になる。
The locking means 9, which is provided separately from the connecting member 7, is in a locking state in which the shape memory member 9a locks the cover 4 in the closed state at room temperature at the time of launch (higher temperature than the i-transformation temperature), and the In space (lower temperature than the transformation temperature), the locking function is released and the locking function is released.

これによって連結手段7が打上げ時の衝撃に耐えてカバ
ー4を支持することができるとともに、軌道に乗ってか
ら後のカバー4の連結部材7の開閉動作をさまたげない
ことになる。
This allows the connecting means 7 to withstand the impact during launch and support the cover 4, and does not interfere with the opening/closing operation of the connecting member 7 of the cover 4 after entering the orbit.

〔実施例〕〔Example〕

第1図、第2図は本発明に係る放射冷却器の一実施例断
面図であって、それぞれ異なった作動状態を表す図であ
る。また第3図は上記実施例に係る放射冷却器を人工衛
星に搭載した状態の構成図である。
FIGS. 1 and 2 are cross-sectional views of one embodiment of the radiation cooler according to the present invention, each showing a different operating state. Further, FIG. 3 is a configuration diagram of the radiation cooler according to the above embodiment mounted on an artificial satellite.

第3図に示すように、この放射冷却器RCは、人工衛星
Sに搭載された赤外線センサDを冷却するために設けら
れ、人工衛星Sは、センサが地球への表面から鉛直方向
に反射される赤外線をミラーMを介して赤外線センサD
に導くように姿勢制御されながら、所定の軌道を周回す
るようになっている。
As shown in FIG. 3, this radiation cooler RC is provided to cool an infrared sensor D mounted on an artificial satellite S. The infrared rays transmitted through the mirror M are sent to the infrared sensor D.
It orbits in a predetermined orbit while its attitude is controlled to guide it.

第1図、第2図に示すように、放射冷却器RCは、下記
シールドlの底部中心に配置される赤外線センサDから
伝導される熱を放射する第1及び第2冷却仮2.3と、
上記赤外線センサD、第1、第2の冷却板2・3を太陽
光線及び地球放射熱から遮蔽するシールド1と、該シー
ルド1の開放面を開閉するカバー4とを備えており、シ
ールドlと人工衛生、及びカバー4と連結部材7はそれ
ぞれ図示しない断熱材で断熱された構造となっている。
As shown in FIGS. 1 and 2, the radiation cooler RC includes first and second cooling elements 2.3 that radiate heat conducted from an infrared sensor D placed at the center of the bottom of the shield l below. ,
The infrared sensor D includes a shield 1 that shields the first and second cooling plates 2 and 3 from sunlight and earth radiant heat, and a cover 4 that opens and closes the open surface of the shield 1. The artificial hygiene, cover 4, and connecting member 7 each have a structure insulated with a heat insulating material (not shown).

上記カバー4は形状記憶合金からなる連結部材7を介し
てシールド1の下周壁1aの開放端側に連結される。こ
の連結部材7は常温よりは低い変態温度を有しており、
該変態温度より高温では「■」字状となって第1図ある
いは第3図に示すように、カバー4でシールド1の開放
面を閉じた状態となる。また、変態温度より低温では平
板状となって第2図に示すようにカバー4がシールド1
の開放面を開いた状態となる。
The cover 4 is connected to the open end side of the lower peripheral wall 1a of the shield 1 via a connecting member 7 made of a shape memory alloy. This connecting member 7 has a transformation temperature lower than room temperature,
At temperatures higher than the transformation temperature, the shield 1 takes on a "■" shape, and the open surface of the shield 1 is closed by the cover 4, as shown in FIG. 1 or FIG. Further, at a temperature lower than the transformation temperature, the cover 4 becomes a flat plate as shown in FIG.
The open side of is in an open state.

また、この連結部材7にはこれを変態温度より高温に加
熱できるヒータ8が張り付けられている。
Further, a heater 8 is attached to the connecting member 7 to heat it to a temperature higher than the transformation temperature.

シールド1の下周壁1bの開放端側には、カバー4を閉
状態に係止する係止手段9が取付けられる。この係止手
段9も、形状記憶部材9aよりなり、変態温度よりも高
温では形状記憶部材9aが逆rVJ字状となってカバー
4を閉じた状態に係止し、変態温度よりも低温では形状
記憶部材9aが平板状あるいは「<」字状となって上記
係止機能が解除される。
A locking means 9 for locking the cover 4 in the closed state is attached to the open end side of the lower peripheral wall 1b of the shield 1. This locking means 9 is also made of a shape memory member 9a, and when the temperature is higher than the transformation temperature, the shape memory member 9a takes an inverted rVJ shape and locks the cover 4 in the closed state, and when the temperature is lower than the transformation temperature, the shape memory member 9a retains the shape. The memory member 9a takes on a flat plate shape or a "<" shape, and the locking function is released.

尚、シールド1の内周面は鏡状となっており、また、第
1冷却板2は特に太陽光の波長の光線を反射する白色塗
料で塗装され、第2冷却板3は放熱効果が高い黒色塗料
で塗装されている。また、第2冷却板3あるいは赤外線
センサDには直接太陽光が入射しないようにシールド1
の角度調整がなされ、また、姿勢制御される。
The inner circumferential surface of the shield 1 is mirror-shaped, the first cooling plate 2 is painted with white paint that particularly reflects sunlight wavelength rays, and the second cooling plate 3 has a high heat dissipation effect. Painted with black paint. In addition, a shield 1 is provided to prevent direct sunlight from entering the second cooling plate 3 or the infrared sensor D.
The angle is adjusted and the attitude is controlled.

この放射冷却器RCにおいては、人工衛星Sが打ち上げ
られてから軌道に乗るまでの間は、第1図及び第3図に
示すように、連結部材7のヒータ8を作動させることに
より形状記憶部材8をrVJ字状にしてカバー4を閉状
態に保っておく。また、係止手段9の形状記憶部材9a
は人工衛星Sの打ち上げ時(常温時)には逆rVJ字に
なってカバー4の連結部材7に対向する位置を係止し、
打ち上げの衝撃によってカバー4がはずれるのを防止し
ている。人工衛星が宇宙空間に出ると上記形状記憶部材
9aは平板状あるいは「<」字状になってカバー4の係
止が解かれるが、この時点では大きな衝撃が衛星にかか
らないのでさしつかえない。
In this radiation cooler RC, as shown in FIGS. 1 and 3, from the time the artificial satellite S is launched until it enters the orbit, the shape memory member is operated by activating the heater 8 of the connecting member 7. 8 into an rVJ shape and keep the cover 4 closed. Moreover, the shape memory member 9a of the locking means 9
When the satellite S is launched (at room temperature), it forms a reverse rVJ shape and locks the cover 4 at a position facing the connecting member 7,
This prevents the cover 4 from coming off due to the impact of the launch. When the satellite goes out into space, the shape memory member 9a becomes flat or in the shape of a "<" character and the cover 4 is unlocked, but this is not a problem at this point because no large impact will be applied to the satellite.

そして、人工衛星Sが軌道に乗った後にヒータ8の作動
を停止し、第2図に示すように、自然冷却により連結部
材7を変態温度より低温に冷却して平板状にしカバー4
を開いた状態にする。
After the satellite S enters the orbit, the operation of the heater 8 is stopped, and as shown in FIG.
leave it open.

以上のように、人工衛星Sが軌道に乗るまでカバー4で
シールドlの開放面を閉じておくと、太陽光線や地球か
らの放射光が赤外線センサD、第1冷却板2および第2
冷却板3に入射することを防止でき、太陽熱や地球の放
射熱よる赤外線センサDの温度上昇及び温度上昇による
赤外線センサDの故障の発生を防止でき、また、姿勢制
御が容易になる。また第3図に示すようにカバー4はシ
ールドlの下周壁1aの開放端を軸に地球側に開くので
、地球からの放射が第1冷却板2及び第2冷却仮3に入
射することを一層確実に防止でき、放射冷却効果を一層
高めることができる。
As described above, if the open surface of the shield l is closed with the cover 4 until the satellite S enters orbit, sunlight and radiation from the earth will be transmitted to the infrared sensor D, the first cooling plate 2 and the second cooling plate.
It is possible to prevent the infrared rays from entering the cooling plate 3, prevent the temperature of the infrared sensor D from rising due to solar heat or radiant heat from the earth, and prevent the infrared sensor D from malfunctioning due to the temperature rise, and posture control becomes easier. Furthermore, as shown in FIG. 3, the cover 4 opens toward the earth around the open end of the lower peripheral wall 1a of the shield l, so that radiation from the earth is prevented from entering the first cooling plate 2 and the second cooling plate 3. This can be prevented more reliably and the radiation cooling effect can be further enhanced.

上記のような状態で赤外線センサDを作動させるのであ
るが、宇宙空間では赤外線センサDは約−180℃、シ
ールド1は約−70℃、冷却板2は約−120℃、冷却
板3は約−180°Cに冷却されるので、人工衛生本体
及び宇宙空間の塵等の異物が周囲から付着することは避
けられない。
The infrared sensor D is operated under the above conditions. In space, the infrared sensor D is at about -180°C, the shield 1 is at about -70°C, the cooling plate 2 is at about -120°C, and the cooling plate 3 is at about -180°C. Since it is cooled to -180°C, it is inevitable that foreign matter such as dust from the artificial sanitary body and outer space will adhere to it from the surroundings.

そこで、冷却性能が第1冷却仮2や第2冷却板3に付着
した異物によって低下した時、あるいは、定期的にシー
ルドl、あるいは第1冷却板2及び第2冷却板3を周囲
の温度よりも高温になるまで加熱し、上記付着物を放出
させるベーキングが実行される。このベーキングを実行
する時に、連結部材7をヒータ8で変態温度より高温に
加熱してカバー4でシールド1の開放面を閉じた状態に
することにより、シールド1、冷却板2・3から宇宙へ
の放熱を遮断し、その後シールド4あるいは第1、第2
の冷却板を図示しないベーキング用のヒータを加熱する
ことによってシールド1、冷却板2・3を高温(例えば
40℃前後)にする。これによってシールドl、冷却板
2・3に付着した異物は低温(例えば−50℃前後)の
カバー4の内面に吸着しベーキングは完了するが、この
とき、カバー4でシールド1は蓋されているので、短時
間に効率よくベーキングすることができる。
Therefore, when the cooling performance decreases due to foreign matter adhering to the first cooling plate 2 or the second cooling plate 3, or if the shield 1 or the first cooling plate 2 and the second cooling plate 3 are periodically A baking process is performed in which the material is heated to a high temperature to release the deposits. When performing this baking, the connecting member 7 is heated to a temperature higher than the transformation temperature with the heater 8 and the open surface of the shield 1 is closed with the cover 4, so that the shield 1 and the cooling plates 2 and 3 are exposed to space. shield 4 or the first and second shields.
By heating the cooling plate with a baking heater (not shown), the shield 1 and the cooling plates 2 and 3 are heated to a high temperature (for example, around 40° C.). As a result, foreign matter adhering to the shield 1 and the cooling plates 2 and 3 are adsorbed to the inner surface of the cover 4 which is at a low temperature (for example, around -50°C), and baking is completed, but at this time, the shield 1 is covered with the cover 4. Therefore, baking can be done efficiently in a short time.

ベーキングが終了すると、ヒータ8の作動が停止され、
自然冷却によって連結部材7が変態温度より低温に冷却
されて、カバー4が開かれ、放射冷却が再開される。
When baking is completed, the operation of the heater 8 is stopped,
The connecting member 7 is cooled to a temperature lower than the transformation temperature by natural cooling, the cover 4 is opened, and the radiative cooling is restarted.

尚、上記形状記憶部材としては、上記の形状記憶合金の
他に、ポリノルボルネン、トランスイソプロピレン等の
形状記憶樹脂を使用することが可能である。
In addition to the shape memory alloy described above, shape memory resins such as polynorbornene and transisopropylene can be used as the shape memory member.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の放射冷却器によれば、
ベーキング時にヒータで連結部材を変態温度より高温に
加熱することによりカバーを閉じることができるので、
カバーを閉じることによって冷却板から宇宙への放熱を
減少させ、短時間にベーキングを行うことができ、冷却
性能を回復できることになる。また、形状記憶部材から
なる連結部材の変形によりカバーを開閉させるの、構成
が簡単であり、安価に実施することができる。
As explained above, according to the radiation cooler of the present invention,
During baking, the cover can be closed by heating the connecting member to a temperature higher than the transformation temperature using a heater.
By closing the cover, heat radiation from the cooling plate to space is reduced, baking can be performed in a short time, and cooling performance can be restored. Further, the structure of opening and closing the cover by deforming the connecting member made of a shape memory member is simple and can be implemented at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカバーを閉じた実施例の縦断面図、第2図はカ
バーを開いた実施例の縦断面図、第3図は実施例に係る
放射冷却器人工衛星に搭載した場合の構成図、第4図は
従来例の縦断面図である。 図中、 1・・・シールド、  2・・・第1冷却板、3・・・
第2冷却板、 4・・・カバー 7・・・連結部材、 8・・・ヒータ。 第 図
Fig. 1 is a vertical cross-sectional view of the embodiment with the cover closed, Fig. 2 is a longitudinal cross-sectional view of the embodiment with the cover open, and Fig. 3 is a configuration diagram of the radiant cooler according to the embodiment when installed on an artificial satellite. , FIG. 4 is a longitudinal sectional view of a conventional example. In the figure, 1... Shield, 2... First cooling plate, 3...
2nd cooling plate, 4...Cover 7...Connection member, 8...Heater. Diagram

Claims (1)

【特許請求の範囲】 〔1〕一面が開放されたシールド(1)の中心部に被冷
却体を配置した放射冷却器において、カバー(4)を形
状記憶部材からなる連結部材(7)を介してシールド(
1)に結合するとともに、この連結部材(7)を変態温
度より高温に加熱し得るヒータ(8)を設け、連結部材
(7)がヒータ(8)によって変態温度より高温に加熱
された時にカバー(4)がシールド(1)の開放面を閉
じる状態とし、連結部材(7)が変態温度より低温に冷
却された時にはカバー(4)が上記開放面を開いた状態
となるように構成したことを特徴とする放射冷却器。 〔2〕上記連結部材(7)とは別に、変態温度よりも高
温でシールド(1)の開放面を閉じた状態のカバー(4
)を係止し、変態温度よりも低温で上記係止機能が解除
する形状記憶部材よりなる係止手段(9)を設けた請求
項1に記載の放射冷却器。
[Claims] [1] In a radiation cooler in which the object to be cooled is arranged in the center of a shield (1) with one side open, the cover (4) is connected via a connecting member (7) made of a shape memory member. shield (
1) and is provided with a heater (8) capable of heating the connecting member (7) to a temperature higher than the transformation temperature, and when the connecting member (7) is heated to a higher temperature than the transformation temperature by the heater (8), the cover (4) closes the open surface of the shield (1), and when the connecting member (7) is cooled to a temperature below the transformation temperature, the cover (4) is configured to open the open surface. A radiation cooler featuring: [2] Separately from the connecting member (7), a cover (4) is provided with the open surface of the shield (1) closed at a temperature higher than the transformation temperature.
2. The radiation cooler according to claim 1, further comprising a locking means (9) made of a shape memory member that locks the locking member (9) and releases the locking function at a temperature lower than the transformation temperature.
JP63172965A 1988-07-11 1988-07-11 Radiating cooler Pending JPH0224299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172965A JPH0224299A (en) 1988-07-11 1988-07-11 Radiating cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172965A JPH0224299A (en) 1988-07-11 1988-07-11 Radiating cooler

Publications (1)

Publication Number Publication Date
JPH0224299A true JPH0224299A (en) 1990-01-26

Family

ID=15951642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172965A Pending JPH0224299A (en) 1988-07-11 1988-07-11 Radiating cooler

Country Status (1)

Country Link
JP (1) JPH0224299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103863581A (en) * 2014-03-27 2014-06-18 北京空间机电研究所 Indirect thermal control device for high resolution optical remote sensor precision temperature control
CN104210673A (en) * 2014-09-19 2014-12-17 航天东方红卫星有限公司 Thermal control method for star sensor assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103863581A (en) * 2014-03-27 2014-06-18 北京空间机电研究所 Indirect thermal control device for high resolution optical remote sensor precision temperature control
CN104210673A (en) * 2014-09-19 2014-12-17 航天东方红卫星有限公司 Thermal control method for star sensor assembly

Similar Documents

Publication Publication Date Title
US9352855B2 (en) Heat generating transfer orbit shield
Steinfeld et al. Optimum aperture size and operating temperature of a solar cavity-receiver
US4847506A (en) Hardening of spacecraft structures against momentary high level radiation exposure using a radiation shield
CA1262890A (en) Shading device for use in a geostatic satellite
JPH0224299A (en) Radiating cooler
US3899674A (en) Cryogenic radiators for radiometers, and more particularly for satellite-supported radiometers
US5148860A (en) Thermal control apparatus for satellites and other spacecraft
US6098931A (en) Satellite with improved heat sinkage
JPH0428318Y2 (en)
JPH11171100A (en) Passive temperature control device for artificial satellite-mounted equipment
KR102647005B1 (en) Blackbody system and satellite body including the same
Kerslake et al. High-flux, high-temperature thermal vacuum qualification testing of a solar receiver aperture shield
Lee et al. Design and development of the SIRTF cryogenic telescope assembly (CTA)
JP2625821B2 (en) Satellite thermal control device
JP2017185861A (en) Instrument loading device for satellite
Stramaccioni et al. XMM-NEWTON thermal design and in-orbit performance
Walker et al. The impact of the lunar thermal environment on the design of telescopes for lunar surface operation
JPH042879Y2 (en)
Ohnishi et al. Thermal Design of the MUSES-B Spacecraft
JPH06255598A (en) Heat control panel for space use
Tsuyuki et al. Mars exploration rover: Thermal design is a system engineering activity
JPS6328800A (en) Heat insulator for artificial satellite
Naumann Space ultra-vacuum facility and method of operation
Choi Solution for Direct Solar Impingement Problem on Landsat-7 ETM+ Cooler Door During Cooler Outgas in Flight
JPS6241920B2 (en)