JPH02241962A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPH02241962A
JPH02241962A JP6138189A JP6138189A JPH02241962A JP H02241962 A JPH02241962 A JP H02241962A JP 6138189 A JP6138189 A JP 6138189A JP 6138189 A JP6138189 A JP 6138189A JP H02241962 A JPH02241962 A JP H02241962A
Authority
JP
Japan
Prior art keywords
valve
valve seat
valve body
flow control
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6138189A
Other languages
Japanese (ja)
Inventor
Makoto Ishii
誠 石井
Akihiro Iwasaki
明裕 岩崎
Hideo Obara
英夫 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6138189A priority Critical patent/JPH02241962A/en
Publication of JPH02241962A publication Critical patent/JPH02241962A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the structure of the secondary air passage by providing a valve element which is connected to an actuator and changed in its position along a designated axis and a valve seat which is connected to a temperature sensitive member and changed in its position along the axis common to the designated axis. CONSTITUTION:The close position of a valve element 3 at the cold time is mechanically regulated, and a temperature sensitive member 12 is contracted. Accordingly, a valve seat is displaced downward by a coiled spring 22, and the valve seat 2 is separated from an annular lip 13 of a valve element, so that a passage 4 is opened for the displacement of the valve seat 2 to increase an air flow and supply same. Secondly, a member 21 is deformed by a rise of water temperature to push up the valve seat 2, so that on the completion of warm-up, the lip 13 and the valve seat 2 are brought into close contact with each other to cut off the communication of the passage 4. At the time of stabilizing and keeping an engine speed to load fluctuation during idling, or at the time of conducting air-fuel ratio control in the engine brake state, according to each condition, a designated pulse signal is given to the starter coil 24 of a stepping motor 6 to rotate a rotor 14, whereby a required quantity of air is supplied by valve lift corresponding to the lead angle of a screw.

Description

【発明の詳細な説明】 [発明の目的] 〈産業上の利用分野〉 本発明は、流量制御弁に関し、特に電子制御式燃料噴射
エンジンに於ける二次空気の流量制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] <Industrial Application Field> The present invention relates to a flow control valve, and particularly to a flow control valve for secondary air in an electronically controlled fuel injection engine.

〈従来の技術〉 電子制御式燃料噴射エンジン(EFIエンジン)に於い
ては、必要燃料噴射量が吸気マニホールド内圧に略比例
することを利用し、圧力センサにて検出した吸気マニホ
ールド内圧とエンジン回転速度とに対応して燃料噴射量
を制御している。また、EFIエンジンの場合、スロッ
トル弁開度センサにより常に一定の電気信号を得て、そ
の信号により減速時の燃料カットを行なうようにしてい
る。
<Prior art> In an electronically controlled fuel injection engine (EFI engine), the required fuel injection amount is approximately proportional to the intake manifold internal pressure, and the intake manifold internal pressure and engine rotation speed detected by a pressure sensor are used. The fuel injection amount is controlled accordingly. Further, in the case of an EFI engine, a constant electric signal is always obtained by a throttle valve opening sensor, and the fuel is cut off during deceleration based on this signal.

そのため、アイドリング回転速度の調整をスロットル弁
にて行なうと、経時変化に対応してスロットル弁開度セ
ンサのキャリブレーションを行なわねばならず、スロッ
トル弁開度信号の精度維持が厄介になりがちである。そ
のため、アイドリング制御は、スロットル弁を閉状態に
した上でスロットル弁をバイパスする通路の空気流量(
二次空気)を調節することにより行なうことが通例であ
る。
Therefore, if the idling speed is adjusted using the throttle valve, the throttle valve opening sensor must be calibrated in response to changes over time, which tends to make it difficult to maintain the accuracy of the throttle valve opening signal. . Therefore, idling control is performed by closing the throttle valve and then the air flow rate in the passage that bypasses the throttle valve (
This is usually done by adjusting the secondary air.

このようなバイパス通路の空気流量制御弁としては、水
温に応動して低水温時にのみ開くことにより冷機時のア
イドリング回転速度を高めるための感温バルブ、空調装
置の作動や電気的負荷の増減に対応してアイドリング回
転速度を常に適正に保つように空燃比を調節するための
ソレノイドバルブ、吸気負圧に応動してクランキング時
の空気流量を補償するためのダイヤフラムバルブなどが
ある。
Air flow control valves for such bypass passages include temperature-sensitive valves that respond to the water temperature and open only when the water temperature is low to increase the idling rotation speed when the engine is cold, and valves that open only when the water temperature is low to increase or decrease the idling speed of the engine when the engine is cold, and the valve that opens only when the water temperature is low. Correspondingly, there are solenoid valves that adjust the air-fuel ratio to keep the idling speed at an appropriate level, and diaphragm valves that compensate for air flow during cranking in response to negative intake pressure.

〈発明が解決しようとする課題〉 しかるに、これらの各制御弁は、それぞれの機能及び調
節すべき流量範囲が異なるため、互いに共用することは
困難である。そのため、各制御弁を個別に設けねばなら
ず、吸気系統の複雑化、あるいはスロットルボディ回り
の大型化を招く不都合がある。
<Problems to be Solved by the Invention> However, since these control valves have different functions and different flow rate ranges to be adjusted, it is difficult to share them with each other. Therefore, each control valve must be provided individually, which leads to the inconvenience of complicating the intake system or increasing the size of the area around the throttle body.

本発明は、このような不都合を改善すべくなされたもの
であり、その主な目的は、二次空気通路の構成を単純化
することが可能な流量制御弁を提供することにある。
The present invention has been made in order to improve such inconveniences, and its main purpose is to provide a flow control valve that can simplify the configuration of the secondary air passage.

[発明の構成コ 〈課題を解決するための手段〉 このような目的は、本発明によれば、電子制御式燃料噴
射エンジンに於けるスロットル弁をバイパスして吸気ポ
ートへ二次空気を導入するための通路に設けられる流量
制御弁であって、アクチュエータに連結されて所定の軸
線に沿ってその位置を可変し得る弁体と、感温部材に連
結されて前記軸線と共通の軸線に沿ってその位置を可変
し得る弁座とを有することを特徴とする流量制御弁を提
供することにより達成される。
[Structure of the Invention (Means for Solving the Problem) According to the present invention, the purpose is to bypass the throttle valve in an electronically controlled fuel injection engine and introduce secondary air into the intake port. A flow control valve is provided in a passageway for a flow control valve, the valve body being connected to an actuator and capable of varying its position along a predetermined axis, and the valve body being connected to a temperature-sensitive member and arranged along an axis common to the axis. This is achieved by providing a flow control valve characterized by having a valve seat whose position can be varied.

〈作用〉 このようにすれば、例えば電気的な信号に応じてその開
度を変化させる電子制御弁と、温度変化に直接反応して
その開度を変化させる感温弁とを一体化することができ
る。従って、複数の異なる情報に基づく弁開度制御を、
単一の制御弁にて行なうことができる。
<Function> In this way, for example, an electronic control valve that changes its opening degree in response to an electrical signal and a temperature-sensitive valve that changes its opening degree in direct response to temperature changes can be integrated. I can do it. Therefore, valve opening control based on multiple different pieces of information,
This can be done with a single control valve.

〈実施例〉 以下に添附の図面を参照して本発明の好適実施例につい
て詳細に説明する。
<Embodiments> Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明に基づき構成された流量制御弁の構造
を模式的に示している。この流量制御弁1は、弁座2と
これに密接する弁体3にてその連通が断続される流体通
路4を内設してなる弁箱5と、弁体3を開閉駆動するた
めのアクチュエータとしてのステッピングモータ6とか
らなり、第2図に示すように、エアクリーナAとエンジ
ンEの吸気ポートとの間のスロットル弁Tをバイパスす
る二次空気通路Sの中間部に設けられている。
FIG. 1 schematically shows the structure of a flow control valve constructed based on the present invention. The flow rate control valve 1 includes a valve box 5 which includes a fluid passage 4 whose communication is interrupted by a valve seat 2 and a valve body 3 in close contact with the valve seat 2, and an actuator for driving the valve body 3 to open and close. As shown in FIG. 2, it is provided in the middle of a secondary air passage S that bypasses the throttle valve T between the air cleaner A and the intake port of the engine E.

流体通路4は、その軸線が互いに直交する向きに形成さ
れた流入ポート11と吐出ポート12とを有しており、
前記した弁体3は、これら両ポートの中間部にて吐出ポ
ート12の軸線に沿って変位可能なように設けられてい
る。また、弁体3の外周部には、弁座2に密接するよう
に環状リップ13が形成されている。
The fluid passage 4 has an inflow port 11 and a discharge port 12 whose axes are perpendicular to each other.
The above-mentioned valve body 3 is provided so as to be displaceable along the axis of the discharge port 12 at an intermediate portion between these two ports. Further, an annular lip 13 is formed on the outer circumference of the valve body 3 so as to be in close contact with the valve seat 2.

それ自体は公知形式であるステッピングモータ6のロー
タ14の中心には、弁軸15がねじ結合している。弁軸
15は、回り止めされたうえで往復直線運動自在なよう
に弁箱5に支持されており、その遊端にリテーナ16を
介して弁体3が取付けられている。また弁体3は、弁軸
15を囲繞して設けられたコイルばね17により、常時
閉弁付勢されている。
A valve shaft 15 is screwed into the center of a rotor 14 of a stepping motor 6, which is of a known type per se. The valve shaft 15 is supported by the valve body 5 so as to be prevented from rotating and capable of reciprocating linear movement, and the valve body 3 is attached to its free end via a retainer 16. Further, the valve body 3 is normally biased to close by a coil spring 17 provided surrounding the valve shaft 15.

これら弁体3、リテーナ16、及びコイルばね17を受
容するための空室18と流体通路4との間は、ダイヤフ
ラム19により気密に隔絶されている。その一方、弁体
3に於ける吐出ポート12側の端面と空室18内とは、
弁体3及び弁軸15に形成されたリーク通路20を介し
て互いに連通している。
A diaphragm 19 hermetically isolates a cavity 18 for receiving the valve body 3, the retainer 16, and the coil spring 17 from the fluid passage 4. On the other hand, the end surface of the valve body 3 on the discharge port 12 side and the inside of the empty chamber 18 are as follows.
They communicate with each other via a leak passage 20 formed in the valve body 3 and the valve shaft 15.

他方、弁座2は、弁体3に形成された環状リップ13が
密接して流体通路4の連通を断つように、吐出ボート1
2の最上流端に形成されている。この弁座2は、平面弁
座をなし、温度変化に応じてその形状が変化するバイメ
タルなどからなる感温部材21を介して弁箱5に支持さ
れており、吐出ボート12の軸線に沿って幾分か変位可
能なようにされている。と同時に弁座2は、上記感温部
材21の変形による変位方向に対抗する向きにコイルば
ね22をもって押圧付勢されている。また、感温部材2
1の周囲には、冷却水が流通する温水通路23が形成さ
れている。
On the other hand, the valve seat 2 is attached to the discharge boat 1 such that the annular lip 13 formed on the valve body 3 comes in close contact with the fluid passage 4 to cut off communication.
It is formed at the most upstream end of 2. This valve seat 2 is a flat valve seat, and is supported by a valve body 5 via a temperature-sensitive member 21 made of bimetal or the like whose shape changes according to temperature changes. It is made to be somewhat movable. At the same time, the valve seat 2 is urged by the coil spring 22 in a direction opposite to the direction of displacement due to the deformation of the temperature sensing member 21. In addition, the temperature sensing member 2
A hot water passage 23 through which cooling water flows is formed around the hot water passage 1 .

次に上記実施例の作動要領について説明する。Next, the operation procedure of the above embodiment will be explained.

ステッピングモータ6は、ステータコイル24に加えら
れるパルス入力に応じてロータ14を所定角度回動させ
る。そしてロータ14の回動に応じてこのロータ14に
ねじ結合した弁軸15が直線往復運動を行なって弁体3
を駆動する。
The stepping motor 6 rotates the rotor 14 by a predetermined angle in response to a pulse input applied to the stator coil 24. In response to the rotation of the rotor 14, the valve shaft 15 screwed to the rotor 14 performs a linear reciprocating motion, and the valve body 3
to drive.

一方、冷機時に於ける弁体3の閉位置は機械的に規定さ
れており、他方、この状態では感温部材21は収縮して
いる。従って、コイルばね22の押圧力にて第1図に於
ける下方へ弁座が変位し、弁体3の環状リップ13から
弁座2が離間している。これにより、弁座2の変位分だ
け流体通路4が開かれ、冷機時の空気流量が増量されて
エンジンに供給される。
On the other hand, the closed position of the valve body 3 when the machine is cold is mechanically defined, and on the other hand, the temperature sensing member 21 is contracted in this state. Therefore, the valve seat 2 is displaced downward in FIG. 1 by the pressing force of the coil spring 22, and the valve seat 2 is separated from the annular lip 13 of the valve body 3. As a result, the fluid passage 4 is opened by the displacement of the valve seat 2, and the air flow rate when the engine is cold is increased and supplied to the engine.

水温が上昇すると感温部材21が変形し、コイルばね2
2に抗して弁座2を押し上げる。これにより、暖機が完
了すると環状リップ13と弁座2とが密接し、流体通路
4の連通が断たれる。
When the water temperature rises, the temperature sensing member 21 deforms and the coil spring 2
2 and push up the valve seat 2. As a result, when warm-up is completed, the annular lip 13 and the valve seat 2 come into close contact with each other, and the fluid passage 4 is disconnected from the valve seat 2.

他方、電気的な負荷の変動、空調機の作動、停車時に於
ける自動変速機のレンジ切換えなど、アイドリング時の
負荷変動に対してエンジン速度を安定に維持する際に、
あるいは、スロットル弁急閉時、即ち、エンジンブレー
キ状態に於ける空燃比制御を行なう際には、上記各条件
に応じてステッピングモータ6のステータコイル24に
所定のパルス信号を加え、ロータ14を回動させる。こ
れにより、ねじのリード角に対応した弁リフトが得られ
、所要量の空気がエンジンに供給される。
On the other hand, when maintaining a stable engine speed in response to load fluctuations during idling, such as electrical load fluctuations, air conditioner operation, and automatic transmission range switching when stopped,
Alternatively, when controlling the air-fuel ratio when the throttle valve is suddenly closed, that is, when the engine is braking, a predetermined pulse signal is applied to the stator coil 24 of the stepping motor 6 according to the above conditions to rotate the rotor 14. make it move. As a result, a valve lift corresponding to the lead angle of the screw is obtained, and the required amount of air is supplied to the engine.

ところで、例えば、ステッピングモータ6に不具合があ
った場合に弁が開き放しにならないようにするために、
弁体3をコイルばね17にて常時閉弁方向にばね付勢し
、かつ弁座2に対する当接面を吸気の流線の下流側へ向
けると共に、ステッピングモータ6の駆動力が消失する
と、弁体3がコイルばね17の付勢力によって自動的に
閉弁するように、ねじのリード角を定めである。従って
、ステッピングモータ6への通電が断たれた際には、自
動的に吸気流量が絞られ、エンジン回転速度が減少する
By the way, for example, in order to prevent the valve from remaining open if there is a problem with the stepping motor 6,
When the valve body 3 is always biased in the valve-closing direction by the coil spring 17 and the contact surface against the valve seat 2 is directed downstream of the intake flow line, and the driving force of the stepping motor 6 disappears, the valve closes. The lead angle of the screw is determined so that the body 3 automatically closes due to the biasing force of the coil spring 17. Therefore, when the stepping motor 6 is de-energized, the intake flow rate is automatically throttled and the engine rotational speed is reduced.

また、リーク通路20をもってダイヤフラム19の内側
が吸気下流側に連通しているので、弁体3が変位しても
空室18内の圧力が変動せず、弁体3の運動を阻害する
不都合が生ずることがない。
Furthermore, since the inside of the diaphragm 19 communicates with the downstream side of the intake air through the leak passage 20, the pressure inside the chamber 18 does not fluctuate even if the valve body 3 is displaced, which prevents the inconvenience of inhibiting the movement of the valve body 3. It never occurs.

従って、弁体3を駆動するためのトルクが低減され、ス
テッピングモータの小形化を企図し得る。
Therefore, the torque for driving the valve body 3 is reduced, and the stepping motor can be made smaller.

[発明の効果] このように本発明によれば、複数の異なる情報に基づく
弁の開度制御が行なえるうえ、微少流量の制御と、大流
量の制御とを単一の制御弁にて行なうことが可能となる
。従って、二次空気供給経路が単純化されると同時に、
部品点数が削減され、製造コストを低減するうえに大き
な効果がある。
[Effects of the Invention] As described above, according to the present invention, the opening degree of the valve can be controlled based on a plurality of different pieces of information, and a single control valve can control a small flow rate and a large flow rate. becomes possible. Therefore, the secondary air supply path is simplified, and at the same time
The number of parts is reduced, which has a significant effect on reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置を模式的に示す断面図であり、第
2図は、本発明装置が用いられる吸気系統図である。 1・・・流量制御弁   2・・・弁座3・・・弁体 
     4・・・流体通路5・・・弁箱      
6・・・ステッピングモータ11・・・流入ボート  
12・・・吐出ボート13・・・環状リップ  14・
・・ロータ15・・・弁軸     16・・・リテー
ナ17・・・コイルばね  18・・・空室19・・・
ダイヤフラム 20・・・リーク通路21・・・感温部
材   22・・・コイルばね23・・・温水通路 特 許 出 願 人 本田技研工業株式会社 代 理 人
FIG. 1 is a cross-sectional view schematically showing the device of the present invention, and FIG. 2 is an intake system diagram in which the device of the present invention is used. 1...Flow rate control valve 2...Valve seat 3...Valve body
4...Fluid passage 5...Valve box
6...Stepping motor 11...Inflow boat
12...Discharge boat 13...Annular lip 14.
...Rotor 15...Valve stem 16...Retainer 17...Coil spring 18...Vacancy 19...
Diaphragm 20...Leak passage 21...Temperature sensing member 22...Coil spring 23...Hot water passage Patent applicant Honda Motor Co., Ltd. Agent

Claims (4)

【特許請求の範囲】[Claims] (1)電子制御式燃料噴射エンジンに於けるスロットル
弁をバイパスして吸気ポートへ二次空気を導入するため
の通路に設けられる流量制御弁であって、 アクチュエータに連結されて所定の軸線に沿ってその位
置を可変し得る弁体と、 感温部材に連結されて前記軸線と共通の軸線に沿ってそ
の位置を可変し得る弁座とを有することを特徴とする流
量制御弁。
(1) A flow control valve installed in a passage for introducing secondary air into an intake port bypassing a throttle valve in an electronically controlled fuel injection engine, which is connected to an actuator and moves along a predetermined axis. 1. A flow control valve comprising: a valve body whose position can be varied along a temperature-sensitive member; and a valve seat which is connected to a temperature-sensitive member and whose position can be varied along an axis common to the axis.
(2)前記弁体と該弁体を変位自在に受容すべく弁箱に
形成された孔との間にシール用のダイヤフラムが介設さ
れると共に、前記弁体に於ける前記弁座との当接面側と
前記ダイヤフラムの内面が接する空間との間が互いに連
通していることを特徴とする第1請求項に記載の流量制
御弁。
(2) A sealing diaphragm is interposed between the valve body and a hole formed in the valve box to displaceably receive the valve body, and a sealing diaphragm is interposed between the valve body and the valve seat. The flow control valve according to claim 1, wherein a contact surface side and a space in contact with the inner surface of the diaphragm communicate with each other.
(3)前記弁体が、前記弁座に向けて常時ばね付勢され
ると共に、前記弁体の前記弁座との当接面側が吸気流線
の下流側を向いていることを特徴とする第1若しくは第
2請求項に記載の流量制御弁。
(3) The valve body is always biased by a spring toward the valve seat, and the contact surface side of the valve body with the valve seat faces downstream of the intake flow line. The flow control valve according to claim 1 or 2.
(4)前記弁座が、前記弁体から離間する向きに常時ば
ね付勢されると共に、該ばね付勢力に拮抗する保持力を
発生し得るバイメタル手段を介して弁箱に支持されるこ
とを特徴とする第1請求項に記載の流量制御弁。
(4) The valve seat is always biased by a spring in a direction away from the valve body, and is supported by the valve body via bimetal means capable of generating a holding force that counteracts the spring biasing force. The flow control valve according to claim 1, characterized in that:
JP6138189A 1989-03-14 1989-03-14 Flow control valve Pending JPH02241962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6138189A JPH02241962A (en) 1989-03-14 1989-03-14 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6138189A JPH02241962A (en) 1989-03-14 1989-03-14 Flow control valve

Publications (1)

Publication Number Publication Date
JPH02241962A true JPH02241962A (en) 1990-09-26

Family

ID=13169541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6138189A Pending JPH02241962A (en) 1989-03-14 1989-03-14 Flow control valve

Country Status (1)

Country Link
JP (1) JPH02241962A (en)

Similar Documents

Publication Publication Date Title
US4356802A (en) Valve system for regulating the idling speed of Otto engines, particularly automobile engines
JPH0232468B2 (en)
US6647956B1 (en) Sound attenuating system for a marine engine
US3729132A (en) Thermal control valve
US4102315A (en) Proportional controller for controlling air flow to an engine
US4175524A (en) Inlet air temperature control for automobile engine
JPH02241962A (en) Flow control valve
US5012789A (en) Cold start by-pass valve
JPH04258529A (en) Liquid clutch
JP2974705B2 (en) Fuel injection pump for internal combustion engines
JPH02554B2 (en)
JPH0575894B2 (en)
US3963042A (en) Internal combustion engine control system and improved pneumatically operated temperature controlled valve construction therefor or the like
US4016853A (en) Control system and improved pneumatically operated temperature controlled valve construction therefor or the like
US4126110A (en) Inlet air temperature control for an I.C. engine
JPH0523829Y2 (en)
US4873955A (en) Idle air flow shutoff valve
JP2586232Y2 (en) Temperature sensing flow control valve
JPH01247728A (en) Control device for idling revolution number of internal combustion engine
JPH0240295Y2 (en)
JPS6015034Y2 (en) temperature sensing valve device
JPH0422143Y2 (en)
US4572147A (en) Air filtration
JPH0631178Y2 (en) Auxiliary air control device for internal combustion engine
JP2863360B2 (en) Idle speed control device