JPH02241924A - Inertial supercharging type intake device in internal combustion system - Google Patents

Inertial supercharging type intake device in internal combustion system

Info

Publication number
JPH02241924A
JPH02241924A JP6162089A JP6162089A JPH02241924A JP H02241924 A JPH02241924 A JP H02241924A JP 6162089 A JP6162089 A JP 6162089A JP 6162089 A JP6162089 A JP 6162089A JP H02241924 A JPH02241924 A JP H02241924A
Authority
JP
Japan
Prior art keywords
speed
intake pipe
speed rotation
low
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6162089A
Other languages
Japanese (ja)
Inventor
Takahiro Iida
隆弘 飯田
Hisao Miyazaki
宮崎 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP6162089A priority Critical patent/JPH02241924A/en
Publication of JPH02241924A publication Critical patent/JPH02241924A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the output between high and low speed rotation regions by closing a first control valve in a low speed intake pipe path in a medium speed rotation region while opening a second control valve in a medium speed intake pipe path. CONSTITUTION:There are provided two intake pipe paths, a low speed intake pipe path 6a having the sectional area set smaller to match with inertial supercharging in the low speed rotation region of an internal combustion engine 1 and a medium speed intake pipe path 6b having the sectional area set larger to match with the inertial supercharging in the medium speed rotation region of the engine 1. A first controlling valve 8 opened in both the low speed rotation region and high speed rotation region exceeding the medium speed rotation region and closed in the medium speed rotation region is provided in each low speed intake pipe path 6a, and a second controlling valve 10 opened in both the medium and high speed rotation regions and closed in the low speed rotation region is provided in the medium speed intake pipe path 6b. Thus, the output between the high and low speed rotation regions can be improved by the inertial supercharging in the medium speed rotation region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エアクリーナより下流側に設けた脈動消去用
のサージタンクと、各気筒における燃焼室とを、各気筒
の各々について独立する吸気管路を介して接続すること
によって、慣性過給による吸気を行うようにした吸気装
置の改良に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a structure in which a surge tank for eliminating pulsation provided downstream from an air cleaner and a combustion chamber in each cylinder are connected to an independent intake pipe for each cylinder. The present invention relates to an improvement in an intake device that performs intake by inertial supercharging by connecting through a channel.

〔従来の技術〕[Conventional technology]

エアクリーナより下流側に設けた脈動消去用のサージタ
ンクと、各気筒における燃焼室とを、各気筒の各々につ
いて独立する吸気管路を介して接続することによって、
慣性過給による吸気を行うことは、良く知られている。
By connecting the surge tank for pulsation elimination provided downstream from the air cleaner and the combustion chamber in each cylinder via an independent intake pipe for each cylinder,
It is well known that air intake is performed by inertial supercharging.

この場合において、前記サージタンクと各気筒における
燃焼室とを各気筒の各々について独立して接続した吸気
管路内における圧力振動の固有振但し、この0式におい
て、aは音速、■はサージタンクの内容積、Sは吸気管
路の断面積、Lは吸気管路の長さ(実際には、サージタ
ンクから燃焼室までの長さ)である。
In this case, the natural oscillation of pressure vibration in the intake pipe which connects the surge tank and the combustion chamber of each cylinder independently for each cylinder. However, in this equation 0, a is the speed of sound, and ■ is the surge tank , S is the cross-sectional area of the intake pipe, and L is the length of the intake pipe (actually, the length from the surge tank to the combustion chamber).

によって求められ、圧力振動の固有振動数fが、内燃機
関における回転数の周波数に一致したときにおいて、吸
気慣性の効果を得ることができるものであるから、前記
各吸気管路における長さを長くするか、又は断面積を小
さくすることにより、低速回転域にマツチングした慣性
過給を得ることができる一方、前記吸気管路における長
さを短くするか、又は断面積を大きくすることにより、
高速回転域にマツチングした慣性過給を得ることができ
る。
When the natural frequency f of the pressure vibration matches the frequency of the rotational speed in the internal combustion engine, the effect of intake inertia can be obtained, so the length of each intake pipe is increased. By shortening the length of the intake pipe or by increasing the cross-sectional area, it is possible to obtain inertia supercharging that matches the low speed rotation range.
It is possible to obtain inertia supercharging that matches the high speed rotation range.

しかし、慣性過給の効果を得ることができるのは、前記
のように予め設定した長さ等に対応する特定の回転域に
限られ、それ以外の回転域では、慣性過給による吸気を
行うことができないばかりか、出力が寧ろ低下すると云
う現象が発生する。
However, the effect of inertial supercharging can only be obtained in a specific rotation range corresponding to a preset length as mentioned above, and in other rotation ranges, intake is performed by inertia supercharging. Not only is it impossible to do so, but a phenomenon occurs in which the output actually decreases.

そこで、先行技術としての特開昭57−110765号
公報は、その第3図及び第4図に、エアクリーナの下流
側に位置するサージタンクと各気筒における燃焼室との
間を、各気筒の各々について独立した吸気管路にて接続
したものにおいて、前記各吸気管路を、長さを長くした
低速用吸気管路と、長さを短くした高速用吸気管路との
二本によって構成し、高速用吸気管路内には、低速回転
域において閉じるようにした制御弁を設けて、低速回転
域では、低速用吸気管路のみを連通し、高速回転域では
、低速用吸気管路に加えて高速用吸気管路を連通ずるこ
とにより、慣性過給による吸気を行うことができる回転
域を低速回転域と高速回転域との二つの回転域に広げる
ことを提案している。
Therefore, Japanese Unexamined Patent Application Publication No. 110765/1983 as a prior art discloses the connection between the surge tank located downstream of the air cleaner and the combustion chamber of each cylinder in FIGS. 3 and 4. each of which is connected by independent intake pipes, each of the intake pipes being composed of two, a long-length low-speed intake pipe and a short-length high-speed intake pipe, A control valve that closes in the low-speed rotation range is installed in the high-speed intake pipe, so that only the low-speed intake pipe is connected in the low-speed rotation range, and in addition to the low-speed intake pipe in the high-speed rotation range. The proposal is to expand the rotational range in which intake can be performed by inertial supercharging into two rotational ranges: a low-speed rotational range and a high-speed rotational range, by connecting the high-speed intake pipe with the engine.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、この先行技術のものでは、慣性過給による吸
気を行うことができるのは、低速回転域と高速回転域と
の二つの回転域にのみ限られ、この二つの回転域の間に
は、慣性過給による吸気を行うことができない谷間が存
在し、この谷間において内燃機関の出力が大幅に低下す
るから、内燃機関におけるドライバービリティ−が著し
く悪化するのであり、しかも、このように長さの長い低
速用吸気管路と、長さの短い高速用吸気管路とによって
、慣性過給を低速回転域と高速回転域の両方について行
う場合、低速用吸気管路と、高速用吸気管路との間には
、長さに大きな差を有するように構成しなければならず
、換言すると、低速用吸気管路の長さを、高速用吸気管
路の長さよりも可成り長く構成しなければならないので
、吸気装置の構造が複雑で、且つ、大型化するのであっ
た。
However, with this prior art, intake by inertia supercharging can only be performed in two rotation ranges: a low speed rotation range and a high rotation speed range, and between these two rotation ranges, There is a valley where intake cannot be performed by inertial supercharging, and the output of the internal combustion engine is significantly reduced in this valley, so the drivability of the internal combustion engine is significantly deteriorated. When performing inertia supercharging in both the low-speed rotation range and the high-speed rotation range by using a long low-speed intake pipe line and a short high-speed intake pipe line, the low-speed intake pipe line and the high-speed intake pipe line In other words, the length of the low-speed intake pipe must be considerably longer than the length of the high-speed intake pipe. Therefore, the structure of the intake device becomes complicated and large.

本発明は、この先行技術の問題を解消した慣性過給式の
吸気装置を提供することを目的とするものである。
An object of the present invention is to provide an inertial supercharging type intake device that solves the problems of the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため本発明は、吸気経路のエアクリ
ーナより下流側に設けたサージタンクと、内燃機関にお
ける各気筒における燃焼室とを、各気筒の各々について
独立した吸気管路を介して接続し、該各吸気管路によっ
て慣性過給を行うようにした吸気装置において、前記各
吸気管路を、断面積を内燃機関の低速回転域における慣
性過給にマツチングするように小さく設定した低速用吸
気管路と、断面積を内燃機関の中速回転域における慣性
過給にマツチングするように大きく設定した中速用吸気
管路との二本に構成し、前記各低速用吸気管路内には、
前記低速回転域と、前記中速回転域を越える高速回転域
との両方の回転域において開き、中速回転域において閉
じるようにした第1制御弁を、前記各中速用吸気管路内
には、前記中速回転域と前記高速回転域との両方の回転
域において開き、前記低速回転域において閉じるように
した第2制御弁を各々設ける構成にした。
In order to achieve this object, the present invention connects a surge tank provided downstream of an air cleaner in an intake path and a combustion chamber in each cylinder of an internal combustion engine through an independent intake pipe for each cylinder. , in the intake system that performs inertia supercharging through each of the intake pipes, each of the intake pipes is configured to have a low-speed intake whose cross-sectional area is set to be small to match inertia supercharging in the low-speed rotation range of the internal combustion engine. The pipe is composed of two pipes, and a medium-speed intake pipe whose cross-sectional area is set large to match inertial supercharging in the medium-speed rotation range of the internal combustion engine, and each of the low-speed intake pipes has a ,
A first control valve that opens in both the low-speed rotation range and a high-speed rotation range exceeding the medium-speed rotation range and closes in the medium-speed rotation range is disposed in each of the medium-speed intake pipes. The second control valves are each provided with a second control valve that opens in both the medium-speed rotation range and the high-speed rotation range and closes in the low-speed rotation range.

〔発明の作用・効果〕[Action/effect of the invention]

この構成において、内燃機関の低速回転域では、中速用
吸気管路内における第2制御弁が閉じる一方、低速用吸
気管路内における第1制御弁が開くことにより、内燃機
関の各気筒における燃焼室への吸気は、前記断面積の小
さい低速用吸気管路を介して行なわれるから、低速回転
域にマツチングした慣性過給を得ることができる。
In this configuration, in the low-speed rotation range of the internal combustion engine, the second control valve in the medium-speed intake pipe closes, while the first control valve in the low-speed intake pipe opens, so that each cylinder of the internal combustion engine Since air is taken into the combustion chamber through the low-speed intake pipe having a small cross-sectional area, inertial supercharging that matches the low-speed rotation range can be obtained.

また、内燃機関の中速回転域では、低速用吸気管路内に
おける第1制御弁が閉じる一方、中速用吸気管路内にお
ける第2制御弁が開くことにより、内燃機関の各気筒に
おける燃焼室への吸気は、前記断面積の大きい中速用吸
気管路を介して行なわれるから、中速回転域にマツチン
グした慣性過給を得ることができる。
In addition, in the medium-speed rotation range of the internal combustion engine, the first control valve in the low-speed intake pipe closes, while the second control valve in the medium-speed intake pipe opens, causing combustion in each cylinder of the internal combustion engine. Since air is taken into the chamber through the medium-speed intake pipe having a large cross-sectional area, inertial supercharging that matches the medium-speed rotation range can be obtained.

そして、内燃機関の高速回転域では、低速用吸気管路内
における第1制御弁、及び中速用吸気管路内における第
2制御弁が共に開くことにより、内燃機関の各気筒にお
ける燃焼室への吸気は、前記低速用吸気管路及び中速用
吸気管路の両方を介して行なわれ、断面積が増大するか
ら、高速回転域にマツチングした慣性過給を得ることが
できる。
In the high-speed rotation range of the internal combustion engine, the first control valve in the low-speed intake pipe and the second control valve in the medium-speed intake pipe open together, allowing air to flow into the combustion chamber of each cylinder of the internal combustion engine. Since the intake air is carried out through both the low-speed intake pipe and the medium-speed intake pipe, and the cross-sectional area increases, it is possible to obtain inertial supercharging that matches the high-speed rotation range.

従って本発明によると、一つのサージタンクと、各気筒
における燃焼室の各々とを独立して接続する吸気管路を
、各々二本の吸気管路にしたものにおいて、慣性過給に
よる吸気を、低速回転域、中速回転域及び高速回転域の
三つの回転域について行うことができ、換言すると、低
速回転域における出力と、高速回転域の出力との間にお
ける出力を、中速回転域における慣性過給によって向上
することができるから、内燃機関におけるドライバービ
リティ−を向上できるのである。
Therefore, according to the present invention, in an intake pipe that independently connects one surge tank and each combustion chamber in each cylinder into two intake pipes, the intake air by inertial supercharging is It can be performed for three rotation ranges: low speed rotation range, medium speed rotation range, and high speed rotation range.In other words, the output between the output in the low speed rotation range and the output in the high speed rotation range is Since this can be improved by inertial supercharging, the drivability of an internal combustion engine can be improved.

この場合において本発明は、低速用吸気管路及び中速用
吸気管路における各回転域に対する慣性過給のマツチン
グを、低速用吸気管路及び中速用吸気管路における断面
積の設定によって行うもので、低速用吸気管路の長さと
中速用吸気管路の長さとの間に、前記先行技術のように
、大きい差を付ける必要がないから、吸気装置の構造の
簡単化と、小型化とを達成することができる。
In this case, the present invention performs matching of inertial supercharging for each rotation range in the low-speed intake pipe and the medium-speed intake pipe by setting the cross-sectional areas of the low-speed and medium-speed intake pipes. Since there is no need to make a large difference between the length of the low-speed intake pipe and the length of the medium-speed intake pipe as in the prior art, the structure of the intake system can be simplified and the size can be reduced. can be achieved.

〔実施例〕〔Example〕

以下、本発明の実施例を図面について説明すると、図に
おいて符号1は、第1気筒A1、第2気筒A2及び第3
気筒A3を有する多気筒内燃機関を、符号2は、サージ
タンクを各々示す、前記サージタンク2の一端には、ス
ロットル弁を内蔵したスロットルボデー3が接続され、
このスロットルボデー3には、エアクリーナ(図示せず
)からの吸気通路4が接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A multi-cylinder internal combustion engine has a cylinder A3, and reference numeral 2 indicates a surge tank. A throttle body 3 having a built-in throttle valve is connected to one end of the surge tank 2.
An intake passage 4 from an air cleaner (not shown) is connected to the throttle body 3.

前記サージタンク2と、前記内燃機関1の各気筒At、
A2.A3における燃焼室への吸気ボート5とを、各気
筒A1.A2.A3の各々について独立する吸気管路6
を介して接続するにおいて、これら各吸気管路6を、内
径を小径D1にした低速用吸気管路6aと、内径を大径
D2にした中速用吸気管路6bとの二本によって構成す
る。
the surge tank 2 and each cylinder At of the internal combustion engine 1;
A2. The intake boat 5 to the combustion chamber in A3 is connected to each cylinder A1. A2. Independent intake pipe line 6 for each of A3
Each of these intake pipes 6 is composed of two pipes: a low-speed intake pipe 6a with a small inner diameter D1, and a medium-speed intake pipe 6b with a large inner diameter D2. .

この場合、内径D1の低速用吸気管路6aにおける断面
積を、内燃機関1における回転数が例えば約300Or
pmの低速回転数において慣性過給による吸気が達成で
きるように設定する一方、内径D2の中速用吸気管路6
bにおける断面積を、内燃機関1における回転数が例え
ば約400Orpmの中速回転数において慣性過給によ
る吸気が達成できるように設定し、更に、前記低速用吸
気管路6aの断面積及び中速用吸気管路6bの断面積の
合計を、内燃機関lにおける回転数が例えば約5000
rpmの高速回転域において慣性過給による吸気が達成
できるように設定する。
In this case, the cross-sectional area of the low-speed intake pipe 6a with the inner diameter D1 is determined when the rotational speed of the internal combustion engine 1 is, for example, about 300 Or
The intake pipe line 6 for medium speeds has an inner diameter of D2 and is set so that intake air can be achieved by inertia supercharging at a low rotational speed of pm.
The cross-sectional area at b is set so that intake air can be achieved by inertial supercharging at a medium-speed rotational speed of the internal combustion engine 1, for example, about 400 Orpm, and the cross-sectional area of the low-speed intake pipe 6a and the medium-speed The total cross-sectional area of the intake pipe 6b for internal combustion engine l is, for example, approximately 5000
Settings are made so that intake air can be achieved by inertial supercharging in a high rpm range.

そして、前記各低速用吸気管路6a内には、前記内燃機
関1における回転数にアクチエータ7を介して関連し、
内燃機関1における回転数が前記低速回転数(約300
Orpm)と中速回転数(約4000rpm)との略中
間の回転数(約350Orpm)より以下の低速回転域
と、前記中速回転数(約400Orpm)と前記高速回
転数(約500Orpm)との略中間の回転数(約45
0Orpm)より以上の高速回転域との二つの回転域に
おいて開き、前記低速回転数(約3000rpm)と前
記中速回転数(約400Orpm)との略中間の回転数
(約350Orpm)から前記中速回転数(約400O
rpm)と前記高速回転数(約500Orpm)との略
中間の回転数(約450Orpm)までの中速回転域に
おいて閉じるようにした第1制御弁8を各々設ける一方
、前記各中速用吸気管路6b内には、同じく内燃機関1
における回転数にアクチエータ9を介して関連し、内燃
機関1における前記中速回転域(約350Or、pmか
ら4500rpm)と、前記高速回転域(約450Or
pm以上)との二つの回転域において開き、前記低速回
転域(約350Orpm以下)において閉じるようにし
た第2制御弁10を各々設ける構成にする。
In each of the low-speed intake pipes 6a, there is a motor connected to the rotation speed of the internal combustion engine 1 via an actuator 7,
The rotation speed of the internal combustion engine 1 is at the low speed rotation speed (approximately 300
a low speed rotation range below approximately the middle rotation speed (about 350 Orpm) between the medium speed rotation speed (about 400 Orpm) and the medium speed rotation speed (about 400 Orpm); Approximately middle rotation speed (approximately 45
0Orpm) and a high speed rotation range of more than 0Orpm), and the rotation speed is from approximately the middle rotation speed (about 350Orpm) between the low speed rotation speed (about 3000rpm) and the medium speed rotation speed (about 400Orpm) to the medium speed. Rotation speed (approx. 400O
Each of the first control valves 8 is provided with a first control valve 8 that closes in a mid-speed rotation range (approximately 450 Orpm) between the high-speed rotation speed (approximately 500 Orpm) and the high-speed rotation speed (approximately 500 Orpm). Also in the passage 6b is the internal combustion engine 1.
is related to the rotation speed in the internal combustion engine 1 through the actuator 9, and the medium speed rotation range (about 350 Or, pm to 4500 rpm) and the high speed rotation range (about 450 Or, pm to 4500 rpm) in the internal combustion engine 1.
The configuration is such that the second control valves 10 are each provided with a second control valve 10 that opens in two rotational speed ranges, i.e., above 350 rpm) and closes in the low speed rotational range (about 350 rpm or less).

この構成において、内燃機関1における回転数がζ約3
50Orpmより以下の低速回転域のとき、各中速用吸
気管路6b内における第2制御弁10が閉じる一方、各
低速用吸気管路6a内における第1制御弁8が開くこと
により、内燃機関1の各気筒At、A2.A3における
燃焼室への吸気は、前記断面積の小さい低速用吸気管路
6aを介して行なわれるから、回転数が350Orpm
以下の低速回転域にマツチングした慣性過給を得ること
ができる。
In this configuration, the rotational speed in the internal combustion engine 1 is about ζ
In the low-speed rotation range below 50 Orpm, the second control valve 10 in each medium-speed intake pipe 6b closes, while the first control valve 8 in each low-speed intake pipe 6a opens, so that the internal combustion engine 1, each cylinder At, A2. Since air is taken into the combustion chamber in A3 through the low-speed intake pipe 6a with a small cross-sectional area, the rotational speed is 350 rpm.
It is possible to obtain inertia supercharging that matches the following low speed rotation range.

また、内燃機関1における回転数が、約350Qrpm
から450Orpmまでの中速回転域のとき、各低速用
吸気管路6a内における第1制御弁8が閉じる一方、各
中速用吸気管路6b内における第2制御弁10が開くこ
とにより、内燃機関Yの各気筒Al、A、2.A3にお
ける燃焼室への吸気は、前記断面積の大きい中速用吸気
管路6bを介して行なわれるから、回転数が約350O
rpmから450Orpmまでの中速回転域にマツチン
グした慣性過給を得ることができる。
Further, the rotation speed in the internal combustion engine 1 is approximately 350 Qrpm.
to 450 Orpm, the first control valve 8 in each low-speed intake pipe 6a closes, while the second control valve 10 in each medium-speed intake pipe 6b opens, so that the internal combustion Each cylinder of engine Y: Al, A, 2. Since air is taken into the combustion chamber in A3 through the medium-speed intake pipe 6b having a large cross-sectional area, the rotational speed is approximately 350 O.
It is possible to obtain inertia supercharging that matches the medium speed rotation range from rpm to 450 rpm.

更にまた、内燃機関1における回転数が、約450Or
pmより以上の高速回転域のとき、各低速用吸気管路6
a内における第1制御弁8、及び各中速用吸気管路6b
内における第2制御弁10が共に開くことにより、内燃
機関1の各気筒Al。
Furthermore, the rotational speed of the internal combustion engine 1 is approximately 450 Or
In the high-speed rotation range above pm, each low-speed intake pipe 6
The first control valve 8 in a and each medium speed intake pipe 6b
By opening both the second control valves 10 in the internal combustion engine 1, each cylinder Al of the internal combustion engine 1.

A2.A3における燃焼室への吸気は、前記低速用吸気
管路6a及び中速用吸気管路6bの両方を介して行なわ
れ、断面積が増大するから、回転数が約450Orpm
より以上の高速回転域にマツチングした慣性過給を得る
ことができる。
A2. Air is taken into the combustion chamber in A3 through both the low-speed intake pipe 6a and the medium-speed intake pipe 6b, and the cross-sectional area increases, so the rotational speed is approximately 450 rpm.
It is possible to obtain inertia supercharging that matches the higher speed rotation range.

なお、内燃機関1に対する慣性過給による吸気を、前記
実施例のように、3000rpm、4000rpm及び
5000rpmの三つの等間隔の回転数にマツチングに
するように構成するに際しては、各低速用吸気管路6a
における断面積S1及び長さを、3000rpmの慣性
過給にマツチングするように設定する一方、各中速用吸
気管路6bにおける長さを前記低速用吸気管路6aの長
さと同じか略同じにした状態で、当該各中速用吸気管路
6bにおけるS2を、前記低速用吸気管路6aにおける
断面積S1の9分の16倍に構成すれば良いのである。
In addition, when configuring the intake air by inertia supercharging to the internal combustion engine 1 to be matched to three equally spaced rotational speeds of 3000 rpm, 4000 rpm, and 5000 rpm as in the above embodiment, each low-speed intake pipe 6a
The cross-sectional area S1 and length are set to match inertial supercharging of 3000 rpm, while the length of each medium-speed intake pipe 6b is set to be the same or approximately the same as the length of the low-speed intake pipe 6a. In this state, S2 in each medium-speed intake pipe 6b may be configured to be 16/9 times the cross-sectional area S1 in the low-speed intake pipe 6a.

すなわち、各吸気管路内における圧力振動の固有振動数
fは、前記0式のように、吸気管路の断面積に比例<r
cx5)する。回転数300Orpmにマツチングする
固有振動数をf3、回転数400Orpmにマツチング
する固有振動数をf4、回転数5000rpmにマツチ
ングする固有振動数をf5とすれば、回転数300Or
pm、4000rpm、5000rpmの三つの等間隔
の回転数にマツチングするこめには、f 4−f 3−
f5−f4の関係が成立し、これに前記s1と82とを
代入すると、 F74丁〒=、β1Tコ一丁7ゾ丁丁 ・・・・0式に
なるから、これよりS・2を求めると、また、前記実施
例は、低速用吸気管路6aと中速用吸気管路6bとを横
に並べることにより、その両方における長さを等しくし
た場合を示したが、第4図に示すように、低速用吸気管
路6aを、湾曲した中速用吸気管路6bに対して湾曲半
径の外側に配設することにより、低速用吸気管路6aに
おける長さを、中速用吸気管路6bの長さよりも適宜寸
法だけ長(構成するようにしても良いのである。
In other words, the natural frequency f of the pressure vibration in each intake pipe is proportional to the cross-sectional area of the intake pipe < r
cx5). If the natural frequency that matches the rotational speed of 300Orpm is f3, the natural frequency that matches the rotational speed of 400Orpm is f4, and the natural frequency that matches the rotational speed of 5000rpm is f5, then the rotational speed is 300Orpm.
To match the three equally spaced rotation speeds of pm, 4000 rpm, and 5000 rpm, f 4 - f 3 -
If the relationship f5-f4 is established and the above s1 and 82 are substituted into this, then we get F74 〒=, β1T ko 1 7 zo cho d... Since the formula is 0, we can calculate S・2 from this. Further, in the above embodiment, the low-speed intake pipe 6a and the medium-speed intake pipe 6b are arranged side by side so that the lengths of both are made equal, but as shown in FIG. By arranging the low-speed intake pipe 6a on the outside of the curved radius of the curved medium-speed intake pipe 6b, the length of the low-speed intake pipe 6a can be made shorter than that of the middle-speed intake pipe. It may be configured to have an appropriate length longer than the length of 6b.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は第1実施例の一
部切欠平面図、第2図は第1図のn−n浅凹面図、第3
図は第1図のm−m浅凹面図、第4図は第2実施例の断
面図である。 1・・・・内燃機関、AI、A2.A3・・・・気筒、
2・・・・サージタンク、3・・・・スロットルボデー
4・・・・エアクリーナからの吸気通路、5・・・・吸
気ポート、6・・・・吸気管路、6a・・・・低速用吸
気管路、6b・・・・中速用吸気管路、8・・・・第1
制御弁、10・・・・第2制御弁。
The drawings show embodiments of the present invention, and FIG. 1 is a partially cutaway plan view of the first embodiment, FIG. 2 is a shallow concave view along the line nn of FIG.
The figure is a mm-m shallow concave view of FIG. 1, and FIG. 4 is a sectional view of the second embodiment. 1... Internal combustion engine, AI, A2. A3...Cylinder,
2...Surge tank, 3...Throttle body 4...Intake passage from air cleaner, 5...Intake port, 6...Intake pipe line, 6a...For low speed Intake pipe line, 6b...Intake pipe line for medium speed, 8...1st
Control valve, 10...Second control valve.

Claims (1)

【特許請求の範囲】[Claims] (1)、吸気経路のエアクリーナより下流側に設けたサ
ージタンクと、内燃機関における各気筒における燃焼室
とを、各気筒の各々について独立した吸気管路を介して
接続し、該各吸気管路によって慣性過給を行うようにし
た吸気装置において、前記各吸気管路を、断面積を内燃
機関の低速回転域における慣性過給にマッチングするよ
うに小さく設定した低速用吸気管路と、断面積を内燃機
関の中速回転域における慣性過給にマッチングするよう
に大きく設定した中速用吸気管路との二本に構成し、前
記各低速用吸気管路内には、前記低速回転域と、前記中
速回転域を越える高速回転域との両方の回転域において
開き、中速回転域において閉じるようにした第1制御弁
を、前記各中速用吸気管路内には、前記中速回転域と前
記高速回転域との両方の回転域において開き、前記低速
回転域において閉じるようにした第2制御弁を各々設け
たことを特徴とする内燃機関における慣性過給式吸気装
置。
(1) The surge tank provided downstream of the air cleaner in the intake path and the combustion chamber in each cylinder of the internal combustion engine are connected via an independent intake pipe for each cylinder, and each intake pipe In an intake system that performs inertial supercharging, each of the intake pipes has a low-speed intake pipe whose cross-sectional area is set to be small to match inertial supercharging in a low-speed rotation range of an internal combustion engine, and a low-speed intake pipe whose cross-sectional area and a medium-speed intake pipe set large enough to match the inertia supercharging in the medium-speed rotation range of the internal combustion engine, and each low-speed intake pipe has a large intake pipe for the low-speed rotation range. , a first control valve that opens in both the medium speed rotation range and the high speed rotation range exceeding the medium speed rotation range, and closes in the medium speed rotation range; An inertial supercharging intake system for an internal combustion engine, characterized in that second control valves are provided, each of which opens in both a rotation range and the high speed rotation range, and closes in the low speed rotation range.
JP6162089A 1989-03-13 1989-03-13 Inertial supercharging type intake device in internal combustion system Pending JPH02241924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162089A JPH02241924A (en) 1989-03-13 1989-03-13 Inertial supercharging type intake device in internal combustion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162089A JPH02241924A (en) 1989-03-13 1989-03-13 Inertial supercharging type intake device in internal combustion system

Publications (1)

Publication Number Publication Date
JPH02241924A true JPH02241924A (en) 1990-09-26

Family

ID=13176404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162089A Pending JPH02241924A (en) 1989-03-13 1989-03-13 Inertial supercharging type intake device in internal combustion system

Country Status (1)

Country Link
JP (1) JPH02241924A (en)

Similar Documents

Publication Publication Date Title
US6591804B2 (en) Variable intake apparatus for a multi-cylinder internal combustion engine
JPS62228622A (en) Suction device for engine
JPS62210219A (en) Intake device of internal combustion engine
JPH0353452B2 (en)
JPS60164619A (en) Suction device for multicylinder internal-combustion engine
JPS6125916A (en) Intake-air device in engine
JPH02157420A (en) Exhaust device of internal combustion engine
JPH0439405Y2 (en)
JPH02241924A (en) Inertial supercharging type intake device in internal combustion system
JP2537076B2 (en) Internal combustion engine intake system
JPH04136420A (en) Intake device of engine
JPH07109170B2 (en) Exhaust system for multi-cylinder engine
JP2507971Y2 (en) Engine intake system
JPH0528338Y2 (en)
JPS60240822A (en) Suction system for engine
JPH0320497Y2 (en)
JPH0361006B2 (en)
JPS61212627A (en) Intake apparatus for 4-cycle engine
JPH03172533A (en) Intake system of engine
JPH0740658Y2 (en) Engine intake system
JPH0380966B2 (en)
JPH051545A (en) Intake system of internal combustion engine
JPH0635835B2 (en) Internal combustion engine intake system
JPH0361008B2 (en)
JPH0726543B2 (en) Engine intake system