JPS61212627A - Intake apparatus for 4-cycle engine - Google Patents

Intake apparatus for 4-cycle engine

Info

Publication number
JPS61212627A
JPS61212627A JP60053339A JP5333985A JPS61212627A JP S61212627 A JPS61212627 A JP S61212627A JP 60053339 A JP60053339 A JP 60053339A JP 5333985 A JP5333985 A JP 5333985A JP S61212627 A JPS61212627 A JP S61212627A
Authority
JP
Japan
Prior art keywords
intake
intake passage
passage
speed rotation
opened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60053339A
Other languages
Japanese (ja)
Inventor
Takahiro Nagura
名倉 孝弘
Noriyuki Yamashita
典之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP60053339A priority Critical patent/JPS61212627A/en
Publication of JPS61212627A publication Critical patent/JPS61212627A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the inertial suction effect in all the operation range of an engine by allowing an intake passage which is equipped with two suction valves in each cylinder and always communicates and a suction passage which is opened in the intermediate-speed operation are allowed to communicate to each port and allowing said intake passages to communicate to an expansion chamber formed midway on the upstream of each intake passage in high-speed revolution. CONSTITUTION:In an engine equipped with two suction valves 3 in each cylinder, the independent intake passages 5a and 5b which communicate at a part 12 are allowed to communicate to each suction port, and the upstream sides are joined and connected to the first surge tank 6 in each cylinder. The second surge tank 9 is installed in the joint flow part through an opening and closing valve 10, and said second surge tank 9 communicates to the first surge tank 6 through a pipe 8a. When the engine is in low-speed revolution, the opening and closing valves 10 and 11 are closed, and the intake supplied to a cylinder passes through a long and slender intake passage ranging from the opened edge A of the intake passage 5 to a port B. In the intermediate speed revolution, the opening and closing valve 11 is opened, and a long and thick intake passage is formed. In high-speed operation, also the opening and closing valve 10 is opened, and a thick and short intake passage ranging from the opened edge C to the port B is formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は4サイクル機関の吸気装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an intake system for a four-stroke engine.

〔従来技術〕[Prior art]

4サイクル機関において、吸気慣性を利用して吸気充填
効率を向上しようとするとき、吸気通路を細く長くする
と、低速回転において吸気充填効率をアップさせてトル
クピークを出すことができ、また吸気通路を太く短くす
ると、高速回転において吸気充填効率をアップさせてト
ルクピークを出せることが知られている。
In a 4-cycle engine, when trying to improve the intake air filling efficiency by using the intake inertia, making the intake passage narrower and longer can increase the intake air filling efficiency at low speed rotation and produce a torque peak. It is known that making it thicker and shorter can increase intake air filling efficiency and produce torque peak at high speed rotation.

このように吸気充填効率をアップするための吸気通路の
構成条件は、低速回転時と高速回転時とでは全く逆にな
っており、そのため従来の4サイクル機関では、その機
関が主として低速用途であるか、高速用途であるかによ
って一方を犠牲にせざるを得なかった。
In this way, the configuration conditions of the intake passage to increase intake air filling efficiency are completely opposite between low speed rotation and high speed rotation, so in conventional 4-stroke engines, the engine is mainly used for low speed applications. One had to be sacrificed depending on whether it was a high-speed application or a high-speed application.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低速回転から高速回転に至る広範囲に
わたって吸気充填効率をアップさせることができ、それ
によってトルクピークを最大にすることができる4サイ
クル機関の吸気装置を提供することにある。
An object of the present invention is to provide an intake system for a four-cycle engine that can increase intake air filling efficiency over a wide range from low speed rotation to high speed rotation, thereby maximizing torque peak.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明は、スロットル弁から吸気ポ
ートに至る吸気通路の上流側に容積拡大部を設け、この
容積拡大部からバイパス通″   路を分岐させ、この
バイパス通路の下流側に第2の容積拡大部を設けて前記
吸気通路に再び接続し、この第2の容積拡大部の下流側
に低速回転時に閉弁し、高速回転時に開弁する制御弁を
設けたことを特徴とするものである。
The present invention achieves the above object by providing a volume expansion part on the upstream side of the intake passage leading from the throttle valve to the intake port, branching a bypass passage from this volume expansion part, and forming a second bypass passage on the downstream side of the bypass passage. A control valve is provided downstream of the second volume expansion part that closes during low speed rotation and opens during high speed rotation. It is.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例により説明する。 The present invention will be explained below with reference to embodiments shown in the drawings.

第1,2図に示す実施例において、1.1は4サイクル
機関のシリンダである。図では2気筒だけの図示である
が、それ以上の多気筒が設けられていてもよい。各シリ
ンダ1上部の燃焼室2には、2個ずつの吸気ポート3,
3と排気ポート4.4が、それらを開閉する吸気弁3a
In the embodiment shown in FIGS. 1 and 2, 1.1 is a cylinder of a four-stroke engine. Although only two cylinders are shown in the figure, more cylinders may be provided. The combustion chamber 2 at the top of each cylinder 1 has two intake ports 3,
3 and exhaust port 4.4 are connected to an intake valve 3a that opens and closes them.
.

3a、排気弁4a、4aと共に設けられている。3a and exhaust valves 4a, 4a.

各シリンダ1にはそれぞれ吸気通路5が接続され、複数
の吸気通路5 、−−−−−−−・5は一つの大きな容
積を有するサージタンク6に連結されている。
Each cylinder 1 is connected to an intake passage 5, and the plurality of intake passages 5, . . . 5 are connected to one surge tank 6 having a large volume.

このサージタンク6は、本発明における容積拡大部を構
成しており、その入口には一つのスロットル弁7が設け
られている。
This surge tank 6 constitutes a volume expansion section in the present invention, and one throttle valve 7 is provided at its inlet.

サージタンク6からはバイパス通路8aが分岐し、容積
の大きな連通路9とそこから各吸気通路5ごとに分岐し
たバイパス通路8bとを介して、それより下流側の吸気
通路5に再び連通している。上記連通路9は、本発明に
おける第2の容積拡大部を構成しており、その下流側に
分岐する各バイパス通路8bに第1の制御弁10がそれ
ぞれ設けられている。この制御弁10は、低速回転およ
び中速回転時は閉弁し、高速回転時に開弁するように制
御される。
A bypass passage 8a branches off from the surge tank 6, and communicates again with the intake passage 5 downstream from it via a large-volume communication passage 9 and a bypass passage 8b branched from there for each intake passage 5. There is. The communication passage 9 constitutes a second volume expansion part in the present invention, and a first control valve 10 is provided in each bypass passage 8b that branches downstream thereof. The control valve 10 is controlled to be closed during low-speed rotation and medium-speed rotation, and opened during high-speed rotation.

、バイパス通路8bの下流端が連結された位置から下流
側の各吸気通路5は、二つの通路5 a +5bに部分
され、それぞれ二つの吸気ポート3゜3と対応している
。その一方の通路5aには第2の制御弁11が設けられ
、低速回転時には閉弁し、中速回転および高速回転時に
開弁するように制御される。また、上記二つの通路5a
, each intake passage 5 on the downstream side from the position where the downstream end of the bypass passage 8b is connected is divided into two passages 5a + 5b, each corresponding to two intake ports 3°3. A second control valve 11 is provided in one of the passages 5a, and is controlled to close during low-speed rotation and open during medium-speed rotation and high-speed rotation. In addition, the above two passages 5a
.

5bは、上記制御弁11より下流側の位置において、連
通路12によって互いに連通し、かつその連通部分に燃
料噴射ノズル13を臨ませている。
5b communicate with each other through a communication passage 12 at a position downstream from the control valve 11, and a fuel injection nozzle 13 faces the communication part.

第3図は本発明の他の実施例を示すものである。図示し
てないがシリンダ1は多気筒を設けられている。この実
施例は、1気筒2バルブの機関を示し、燃焼室2には1
個ずつの吸気ポート3と排気ポート4、およびこれらを
開閉する吸気弁3 a +排気弁4aが設けられている
FIG. 3 shows another embodiment of the invention. Although not shown, the cylinder 1 is provided with multiple cylinders. This embodiment shows a one-cylinder, two-valve engine, with one cylinder in the combustion chamber 2.
Separate intake ports 3 and exhaust ports 4, and an intake valve 3a+exhaust valve 4a for opening and closing these ports are provided.

このため、吸気通路5は上記第1の実施例のように部分
されていない。その他の構成は上記実施例と同様になっ
ている。そして、連通路9(第2の容積拡大部)から各
吸気通路5に分岐したバイパス通路8bに設けた制御弁
10は、低速回転時は閉弁し、高速回転時に開弁するよ
うに制御される。
Therefore, the intake passage 5 is not divided into sections as in the first embodiment. Other configurations are similar to those of the above embodiment. The control valve 10 provided in the bypass passage 8b branching from the communication passage 9 (second volume expansion part) to each intake passage 5 is controlled to close during low speed rotation and open during high speed rotation. Ru.

さて、いま上述した第11.2図の実施例において、サ
ージタンク6(容積拡大部)に対する吸気通路5の連結
端をA、吸気ポート3の開口端をB、連通路9(第2の
容積拡大部)に対する下流側のバイパス通路8bの連結
端をCとし、また部分された吸気通路5a、5bの面積
をそれぞれSt、Szで、部分されていない吸気通路5
の部分の面積をS+  (=Sz +33 )とする。
Now, in the embodiment shown in FIG. 11.2 described above, the connecting end of the intake passage 5 to the surge tank 6 (volume expansion part) is A, the open end of the intake port 3 is B, and the connecting end of the intake passage 9 (second volume expansion part) is connected to the surge tank 6 (volume expansion part). The connection end of the bypass passage 8b on the downstream side with respect to the enlarged portion) is denoted by C, the areas of the divided intake passages 5a and 5b are respectively St and Sz, and the undivided intake passage 5
Let the area of the portion be S+ (=Sz +33).

低速回転時は第1.第2の制御弁10.11の両方とも
閉じているため、吸気通路5の吸気長はAからBまでの
長い条件となり、かつ面積は部分された一方の通路5b
だけの狭いS3になる。そのため、このときの吸気通路
5は長くて細い構成条件となり、その結果、この低速回
転時での吸気充填効率をアンプし、第4図に示すトルク
曲線りのようになって低速回転時にトルクピークが形成
される。
1st when rotating at low speed. Since both of the second control valves 10 and 11 are closed, the intake length of the intake passage 5 is long from A to B, and the area of the one passage 5b is divided.
It becomes a narrow S3. Therefore, the intake passage 5 at this time has a long and narrow configuration condition, and as a result, the intake air filling efficiency at low speed rotation is amplified, resulting in a torque curve like the one shown in Fig. 4, and the torque peaks at low speed rotation. is formed.

中速回転時は第1の制御弁10が閉じ、第2の制御弁1
1が開いている。そのため吸気通路5の吸気長は低速回
転時と同じAからBまでとなるが、面積が全長にわたり
広いS+  (−3t+83)となるため、この中速回
転時での吸気充填効率が向上し、第4図に示すトルク曲
線Mのようなになって中速回転時にトルクビークが形成
される。
During medium speed rotation, the first control valve 10 is closed, and the second control valve 1 is closed.
1 is open. Therefore, the intake length of the intake passage 5 is from A to B, which is the same as during low-speed rotation, but the area is wide S+ (-3t+83) over the entire length, so the intake air filling efficiency is improved during this medium-speed rotation, and the The torque curve M shown in FIG. 4 forms, and a torque peak is formed during medium speed rotation.

また、高速回転時は第1.第2の両制御弁10.11と
も開くため、吸気通路5の吸気長はCからBまでと短く
なり、かつ面積は全長にわたり広いS+  (=32 
+S3 )となる。そのため、吸気通路5は短く太い構
成条件となり、高速回転時の吸気充填効率を向上し、第
4図に示すトルク曲線Hのようになって高速回転時にト
ルクピークが形成される。
Also, when rotating at high speed, the first Since both second control valves 10 and 11 are open, the intake length of the intake passage 5 is shortened from C to B, and the area is wide S+ (=32
+S3). Therefore, the intake passage 5 is configured to be short and thick, improving the intake air filling efficiency during high speed rotation, and a torque peak is formed during high speed rotation as shown in the torque curve H shown in FIG. 4.

したがって、上記吸気装置を設けた4サイクル機関は、
低速から高速の広範囲にわたり吸気充填効率を向上し、
高いトルクを出すことができる。
Therefore, the four-cycle engine equipped with the above-mentioned intake device is
Improves intake air filling efficiency over a wide range of speeds from low to high speeds,
Can produce high torque.

第3図の実施例の場合は、低速回転時には制御弁10が
閉じているため、吸気通路5の吸気長はサージタンク6
 (容積拡大部)から吸気ポート3までの長い構成条件
となる。そのため、この低速回転時の吸気充填効率が向
上し、第5図に示すトルク曲線L′のように低速回転時
にトルクピークが形成される。
In the case of the embodiment shown in FIG. 3, since the control valve 10 is closed during low speed rotation, the intake length of the intake passage 5 is
This results in a long configuration from the (volume expansion part) to the intake port 3. Therefore, the intake air filling efficiency during low speed rotation is improved, and a torque peak is formed during low speed rotation as shown in the torque curve L' shown in FIG.

また、高速回転時には制御弁10が開くため、吸気通路
5の吸気長は連通路9(第2の容積拡大部)から吸気ポ
ート3までの短い条件となる。
Furthermore, since the control valve 10 opens during high-speed rotation, the intake length of the intake passage 5 from the communication passage 9 (second volume expansion part) to the intake port 3 is short.

そのため、この高速回転時の吸気充填効率が向上し、第
5図に示すトルク曲線H゛のように高速回転時にトルク
ピークが形成される。
Therefore, the intake air filling efficiency during high-speed rotation is improved, and a torque peak is formed during high-speed rotation as shown in the torque curve H' shown in FIG.

したがって、上記実施例同様に、低速から高速の広範囲
にわたり吸気充填効率を向上し、高いトルクを出すこと
ができる。
Therefore, similarly to the above embodiment, the intake air filling efficiency can be improved over a wide range from low speeds to high speeds, and high torque can be produced.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明は、スロットル弁から吸気ポート
に至る吸気通路の上流側に容積拡大部を設け、この容積
拡大部からバイパス通路を分岐させ、このバイパス通路
の下流側に第2の容積拡大部を設けて前記吸気通路に再
び接続し、この第2の容積拡大部の下流側に低速回転時
に閉弁し、高速回転時に開弁する制御弁を設けたので、
低速回転時には吸気長を長くして、その時の吸気充填効
率をアップし、また高速回転時には吸気長を短くして、
その時の吸気充填効率をアップする。そのため、低速回
転から高速回転の広範囲にわたりトルクを増大すること
ができる。
As described above, the present invention provides a volume expansion part on the upstream side of the intake passage leading from the throttle valve to the intake port, branches a bypass passage from this volume expansion part, and provides a second volume expansion part on the downstream side of this bypass passage. A control valve is provided on the downstream side of the second volume expansion part to close at low speed rotation and open at high speed rotation.
At low speeds, the intake length is lengthened to increase intake air filling efficiency, and at high speeds, the intake length is shortened.
Increase the intake air filling efficiency at that time. Therefore, torque can be increased over a wide range from low speed rotation to high speed rotation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による吸気装置の概略側面図、
第2図は第1図の装置の展開平面図、第3図は他の実施
例による吸気装置の概略側面図、第4図は第1,2図の
吸気装置による場合のトルク曲線図、第5図は第3図の
吸気装置による場合のトルク曲線図である。 1・−シリンダ、 2−燃焼室、 3・−吸気ポート、
  5−吸気通路、  6−・サージタンク(容積拡大
部)、 7−・−スロットル弁、 3a。 8b−バイパス通路、 9・・一連通路(第2の容積拡
大部)、 IO・・・制御弁。
FIG. 1 is a schematic side view of an intake device according to an embodiment of the present invention;
2 is a developed plan view of the device shown in FIG. 1, FIG. 3 is a schematic side view of an intake device according to another embodiment, FIG. 4 is a torque curve diagram for the intake device shown in FIGS. 1 and 2, and FIG. FIG. 5 is a torque curve diagram using the intake system shown in FIG. 3. 1.-cylinder, 2.-combustion chamber, 3.-intake port,
5-Intake passage, 6-Surge tank (volume expansion part), 7-Throttle valve, 3a. 8b-bypass passage, 9... continuous passage (second volume expansion part), IO... control valve.

Claims (1)

【特許請求の範囲】[Claims] スロットル弁から吸気ポートに至る吸気通路の上流側に
容積拡大部を設け、この容積拡大部からバイパス通路を
分岐させ、このバイパス通路の下流側に第2の容積拡大
部を設けて前記吸気通路に再び接続し、この第2の容積
拡大部の下流側に低速回転時に閉弁し、高速回転時に開
弁する制御弁を設けたことを特徴とする4サイクル機関
の吸気装置。
A volume expansion part is provided on the upstream side of the intake passage leading from the throttle valve to the intake port, a bypass passage is branched from this volume expansion part, and a second volume expansion part is provided on the downstream side of the bypass passage to connect the intake passage to the intake passage. An intake system for a four-cycle engine, characterized in that a control valve is provided downstream of the second volume expansion part, which is connected again and is closed at low speed rotation and opened at high speed rotation.
JP60053339A 1985-03-19 1985-03-19 Intake apparatus for 4-cycle engine Pending JPS61212627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053339A JPS61212627A (en) 1985-03-19 1985-03-19 Intake apparatus for 4-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053339A JPS61212627A (en) 1985-03-19 1985-03-19 Intake apparatus for 4-cycle engine

Publications (1)

Publication Number Publication Date
JPS61212627A true JPS61212627A (en) 1986-09-20

Family

ID=12939998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053339A Pending JPS61212627A (en) 1985-03-19 1985-03-19 Intake apparatus for 4-cycle engine

Country Status (1)

Country Link
JP (1) JPS61212627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0370515A2 (en) * 1988-11-25 1990-05-30 Yamaha Hatsudoki Kabushiki Kaisha V-type multi-cylinder engine air intake system
EP0633397A1 (en) * 1993-07-08 1995-01-11 Ab Volvo Intake system for multiple cylinder combustion engines
KR100222521B1 (en) * 1994-09-01 1999-10-01 정몽규 Intake system and its control method for internal combustion engines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0370515A2 (en) * 1988-11-25 1990-05-30 Yamaha Hatsudoki Kabushiki Kaisha V-type multi-cylinder engine air intake system
EP0370515B1 (en) * 1988-11-25 1995-02-01 Yamaha Hatsudoki Kabushiki Kaisha V-type multi-cylinder engine air intake system
EP0633397A1 (en) * 1993-07-08 1995-01-11 Ab Volvo Intake system for multiple cylinder combustion engines
KR100222521B1 (en) * 1994-09-01 1999-10-01 정몽규 Intake system and its control method for internal combustion engines

Similar Documents

Publication Publication Date Title
JPH0742861B2 (en) Internal combustion engine intake system
JP2639721B2 (en) Combustion chamber of internal combustion engine
JPS62210218A (en) Intake device of multi-cylinder internal combustion engine
JPH0337324A (en) Intake device for engine
JPH0259290B2 (en)
JPS61212627A (en) Intake apparatus for 4-cycle engine
JPH01106922A (en) Intake apparatus of v-shaped engine
JP2639720B2 (en) Intake control device for internal combustion engine
JPS60233314A (en) Aspiration control device for internal-combustion engine
JP2537076B2 (en) Internal combustion engine intake system
JPS60147536A (en) Intake and exhaust apparatus for four-cycle internal-combustion engine
JPS6062655A (en) Intake device of v-type engine
JP3318357B2 (en) Engine intake control device
JPH0738660Y2 (en) Engine intake system
JPH0262687B2 (en)
JPH018660Y2 (en)
JPS61171826A (en) Intake apparatus for internal-combustion engine
JPH033922A (en) Exhaust device for multi-cylinder internal combustion engine
JP2507971Y2 (en) Engine intake system
JP2756157B2 (en) 4 cycle engine
JPH0629559B2 (en) Multi-cylinder engine intake system
JPS6224768Y2 (en)
JPH0635835B2 (en) Internal combustion engine intake system
JPH0783011A (en) Rotary valve for engine
JPH06117260A (en) Engine suction device