JPH0224123A - Optical shaping method - Google Patents

Optical shaping method

Info

Publication number
JPH0224123A
JPH0224123A JP63172685A JP17268588A JPH0224123A JP H0224123 A JPH0224123 A JP H0224123A JP 63172685 A JP63172685 A JP 63172685A JP 17268588 A JP17268588 A JP 17268588A JP H0224123 A JPH0224123 A JP H0224123A
Authority
JP
Japan
Prior art keywords
cured
light
shrinkage stress
uncured
cure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63172685A
Other languages
Japanese (ja)
Other versions
JP2551110B2 (en
Inventor
Shigeru Nagamori
茂 永森
Katsumi Sato
勝美 佐藤
Yoshinao Hirano
平野 義直
Katsuhide Murata
勝英 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63172685A priority Critical patent/JP2551110B2/en
Publication of JPH0224123A publication Critical patent/JPH0224123A/en
Application granted granted Critical
Publication of JP2551110B2 publication Critical patent/JP2551110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To mitigate shrinkage stress at the time of cure by dividing a curing process into two stages. CONSTITUTION:Photosetting resin is cured by irradiation with light by intermitting scanning light flux 27 or imparting variety to strength so that uncured resin is left behind partly, in the first curing process. With this construction, shrinkage stress due to cure is dispersed, absorbed by an uncured part and becomes a cured solid where the shrinkage stress hardly occurs as a whole. In the second curing process, the photosetting resin remaining uncured is cured by applying light further to a primary cured body obtained in the first curing process. Even in the second curing process, the shrinkage stress hardly occurs so long as the uncured resin exists on the circumference at the time of spreading of cure in a sphere where the cure progresses. The shrinkage stress is generated in an extremely short period of time at the last stage of the cure and shrinkage stress itself becomes extremely little.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光硬化性樹脂に光を照射して目的形状の硬化体
を製造する光学的造形法に係り、特に硬化の工程を2段
階に分けることにより硬化時の収縮応力を緩和するよう
にした光学的造形法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical modeling method for producing a cured product in a desired shape by irradiating a photocurable resin with light, and in particular, it relates to an optical modeling method that produces a cured product in a desired shape by irradiating a photocurable resin with light. This invention relates to an optical modeling method in which shrinkage stress during curing is alleviated by separating the parts.

[従来の技術] 光硬化性樹脂等の光硬化性流動物質に光束を照射して、
該照射部分を硬化させ、この硬化部分を水平方向に連続
させると共に、さらにその上側に光硬化性流動物質を供
給して同様にして硬化させることにより上下方向にも硬
化体を連続させ、これを繰り返すことにより目的形状の
硬化体を製造する光学的造形法は特開昭60−2475
15号、62−35966号、62−101408号な
どにより公知である。また、目的形状の硬化体の一断面
に相当するスリットを有する造形用マスクを通して光を
照射して硬化させ、次に硬化層の上に未硬化の光硬化性
流動物質を存在させると共にこの造形用マスクを目的形
状の硬化体の高さ方向に隣接する一断面に相当するスリ
ットを有するものに交換し、再び光を照射する工程を繰
り返すことにより目的形状の硬化体を製造する光学的造
形法も公知である(例えば、上記特開昭62−3596
6号)。
[Prior art] A light beam is irradiated onto a photocurable fluid material such as a photocurable resin,
The irradiated part is cured, and this cured part is made to continue in the horizontal direction, and a photocurable fluid material is further supplied above it and cured in the same manner, thereby making the cured body continuous in the vertical direction. An optical modeling method for manufacturing a cured body of a desired shape by repeating the process is disclosed in Japanese Patent Application Laid-Open No. 60-2475.
No. 15, No. 62-35966, No. 62-101408, etc. In addition, light is irradiated through a modeling mask having a slit corresponding to one cross section of the cured product in the desired shape to cure the material, and then an uncured photocurable fluid material is placed on the cured layer and the material is used for modeling. There is also an optical modeling method in which a cured product of the desired shape is manufactured by replacing the mask with one that has a slit corresponding to one cross section adjacent to the height direction of the cured product of the desired shape, and repeating the process of irradiating light again. publicly known (for example, the above-mentioned Japanese Patent Application Laid-Open No. 62-3596)
No. 6).

[発明が解決しようとする課題] 光硬化性樹脂は、その硬化時に収縮を起こすので、この
収縮応力を小さくすることが造形体の精度向上及び亀裂
防止のために重要である。
[Problems to be Solved by the Invention] Since the photocurable resin undergoes contraction during its curing, it is important to reduce this shrinkage stress in order to improve the precision of the shaped object and prevent cracks.

[課題を解決するための手段] 本発明の光学的造形法は、光硬化性樹脂に光を照射し、
照光の照射された部分を部分的に未硬化の光硬化性樹脂
が残留するように硬化させると共に、該硬化物を積み重
ねてほぼ目的形状の立体とする第1の硬化工程と、該立
体に光を照射し、残留する未硬化の光硬化性樹脂を硬化
させる第2の硬化工程と、を備えることを特徴とする。
[Means for solving the problem] The optical modeling method of the present invention irradiates a photocurable resin with light,
A first curing step in which the portion irradiated with light is cured so that uncured photocurable resin remains partially, and the cured product is stacked to form a three-dimensional object approximately in the desired shape; and a second curing step of curing the remaining uncured photocurable resin.

[作 用] 本発明においては、第1の硬化工程において得られる立
体は、光の照射により、光硬化性樹脂を部分的に未硬化
の樹脂が残留するように硬化されたものである。このよ
うに部分的に未硬化の光硬化性樹脂が残留するように硬
化させると、硬化による収縮応力は分散されると共に、
未硬化の部分で吸収されるようになるため、第1の硬化
工程においては、全体として収縮応力は殆ど発生しない
硬化立体(以下、「1次硬化体」ということがある、)
となる。
[Function] In the present invention, the three-dimensional object obtained in the first curing step is obtained by curing the photocurable resin by irradiating light so that uncured resin remains partially. By curing the resin so that some uncured photocurable resin remains in this way, the shrinkage stress caused by curing is dispersed, and
Since the absorption occurs in the uncured parts, in the first curing process, almost no shrinkage stress occurs as a whole (hereinafter sometimes referred to as "primary cured product").
becomes.

第2の硬化工程においては、第1の硬化工程にて得られ
た1次硬化体に更に光を照射して残留する未硬化の光硬
化性樹脂を硬化させる。この第2の硬化工程を経ること
により強度の高い硬化立体が得られる。この第2の硬化
工程においても、硬化が伝播する際に、その周囲に未硬
化の光硬化性樹脂が存在している限り、硬化進行領域に
収縮応力は殆ど発生しない、このように、本発明方法に
よれば収縮応力が発生するのは硬化工程の末期の極めて
短い期間であり、収縮応力自体も極めて小さな値となる
In the second curing step, the primary cured product obtained in the first curing step is further irradiated with light to harden the remaining uncured photocurable resin. By going through this second curing step, a hardened solid with high strength can be obtained. Also in this second curing step, as long as there is uncured photocurable resin around the curing process, almost no shrinkage stress is generated in the curing area. According to this method, shrinkage stress occurs during an extremely short period at the end of the curing process, and the shrinkage stress itself has an extremely small value.

[実施例] 第1図〜第4図は各々本発明の第1の硬化工程を実施す
るための装置の一例を示す断面図である。
[Example] FIGS. 1 to 4 are cross-sectional views showing an example of an apparatus for carrying out the first curing step of the present invention.

第1図の装置においては、容器11内には光硬化性樹脂
12が収容されている。容器11の底面にはガラス等の
透光板よりなる透光窓13が設けられており、該透光窓
13に向けて光束14を照射するように、レンズを内蔵
した光出射部I5、光ファイバー16、光出射部15を
水平面内のX−Y方向(X、Yは直交する2方向)に移
動させるX−Y移動装置17、光源20等よりなる光学
系が設けられている。
In the apparatus shown in FIG. 1, a photocurable resin 12 is housed in a container 11. A light transmitting window 13 made of a light transmitting plate such as glass is provided on the bottom of the container 11, and a light emitting part I5 with a built-in lens and an optical fiber 16. An optical system including an X-Y moving device 17 for moving the light emitting section 15 in the X-Y direction (X and Y are two orthogonal directions) in a horizontal plane, a light source 20, etc. is provided.

容器11内にはベース21が設首され、該ベース21は
エレベータ22により昇降可能とされている。これらx
−y6動装置17、エレベータ22はコンピュータ23
により制御される。
A base 21 is installed inside the container 11, and the base 21 can be raised and lowered by an elevator 22. These x
-Y6 moving device 17, elevator 22 is computer 23
controlled by

上記装置により硬化体を製造する場合、まずベース21
を透光窓13よりもわずか上方に位置させ、光束14を
目的形状物の水平断面に倣って走査させる。この走査は
コンピュータ制御されたx −y B動装置17により
行なわれる。
When producing a cured body using the above device, first the base 21
is positioned slightly above the transparent window 13, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by a computer controlled x-y B motion device 17.

目的形状物の一つの水平断面(この場合は底面又は上面
に相当する部分)のすべてに光を照射した後、ベース2
1をわずかに上昇させ、硬化物24とベース21との間
に未硬化の光硬化性樹脂を流入させた後、上記と同様の
光照射を行う。この手順を繰り返すことにより、はぼ目
的形状の1次硬化体が多N積層体として得られる。
After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom or top surface), the base 2
1 is slightly raised to cause uncured photocurable resin to flow between the cured product 24 and the base 21, the same light irradiation as above is performed. By repeating this procedure, a primary cured body having a hollow shape can be obtained as a multi-N laminate.

上記実施例は、透光窓を容器底面に設け、光を容器の下
方から照射するようにしているが、本発明においては容
器11の側面に透光窓を設け、該容器11の側面から光
を照射するようにしても良い。この場合、ベースは成形
過程において徐々に、側方に移動させれば良い。
In the above embodiment, a transparent window is provided on the bottom of the container so that light is irradiated from below the container, but in the present invention, a transparent window is provided on the side of the container 11, and light is emitted from the side of the container 11. It is also possible to irradiate. In this case, the base may be gradually moved laterally during the molding process.

上記実施例では、光ファイバーをX−Y方向に移動させ
ることにより光を走査しているが、後述の第3図に示す
如く、光源からの光をミラーで反射させた後、レンズで
収束させて光硬化性樹脂に照射する光学系を採用しても
良い、この場合はミラーを回転させることにより光束を
走査できる。
In the above embodiment, the light is scanned by moving the optical fiber in the X-Y direction, but as shown in Figure 3 below, the light from the light source is reflected by a mirror and then converged by a lens. An optical system that irradiates the photocurable resin may be employed; in this case, the light beam can be scanned by rotating a mirror.

また、本発明を公知のマスク法に適用し、例えば第2図
に示す如く目的形状物の断面に相当するスリット25を
有したマスク26を用いても良い。符号27は平行光束
を示す。第2図のその他の符号は第1図と同一部材を示
している。
Further, the present invention may be applied to a known mask method, and a mask 26 having a slit 25 corresponding to the cross section of the target shape may be used, for example, as shown in FIG. Reference numeral 27 indicates a parallel light beam. Other symbols in FIG. 2 indicate the same members as in FIG. 1.

第1図及び第2図に示す装置は、容器の下方から光を照
射するように構成されているが、本発明においては、容
器の上部開口から光を照射するようにしても良い。第3
図及び第4図に示す装置は容器上方から光を照射する形
式の装置である。
Although the apparatus shown in FIGS. 1 and 2 is configured to irradiate light from below the container, in the present invention, light may be irradiated from the upper opening of the container. Third
The apparatus shown in the figures and FIG. 4 is of a type that irradiates light from above the container.

第3図の装置においては、光硬化性樹脂12の液面12
aに向けて光束14を照射するようにレンズ28、ミラ
ー29、ミラー回転駆動装置29a、光源20等よりな
る光学系が設けられている。容器11内にはベース21
が設置され、該ベース21はエレベータ22により昇降
可能とされている。これら駆動装置29a、エレベータ
22はコンピュータ23により制御される。
In the apparatus shown in FIG. 3, the liquid level 12 of the photocurable resin 12 is
An optical system including a lens 28, a mirror 29, a mirror rotation drive device 29a, a light source 20, etc. is provided so as to irradiate the light beam 14 toward the direction a. The base 21 is inside the container 11.
is installed, and the base 21 can be raised and lowered by an elevator 22. These drive device 29a and elevator 22 are controlled by a computer 23.

上記装置により1次硬化体を製造する場合、まずベース
21上の基板21aを液面12aよりもわずか下方に位
置させ、光束14を目的形状物の水平断面に倣つて走査
させる。この走査はコンピュータ制御されたミラー29
の回転により行われる。
When producing a primary cured body using the above-mentioned apparatus, first, the substrate 21a on the base 21 is positioned slightly below the liquid level 12a, and the light beam 14 is scanned along the horizontal cross section of the target shape. This scanning is performed using a computer-controlled mirror 29.
This is done by rotating the

目的形状物の一つの水平断面(この場合は底面に相当す
る部分)のすべてに光を照射した後、ベース21をわず
かに下降させ、硬化物24の上に未硬化の光硬化性樹脂
を流入させた後、上記と同様の光照射を行う、この手順
を繰り返すことにより、はぼ目的形状の1次硬化体が得
られる。
After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom surface), the base 21 is lowered slightly and uncured photocurable resin is poured onto the cured material 24. After that, by repeating this procedure of performing light irradiation in the same manner as above, a primary cured body having a desired shape can be obtained.

上記実施例では、ベース21を徐々に下降させているが
、逆に硬化性樹脂を注ぎ足すことにより、液面12aを
徐々に上昇させても良い。
In the above embodiment, the base 21 is gradually lowered, but the liquid level 12a may be gradually raised by pouring more curable resin.

第4図に示す装置は、目的形状物の断面に相当するスリ
ット25を有したマスク26を用いたものである。符号
27は平行光束を示す。第4図のその他の符号は第3図
と同一部材を示している。
The apparatus shown in FIG. 4 uses a mask 26 having a slit 25 corresponding to the cross section of the object. Reference numeral 27 indicates a parallel light beam. Other symbols in FIG. 4 indicate the same members as in FIG. 3.

本発明においては、このような第1の硬化工程において
、光の照射により硬化を行い、はぼ目的形状の1次硬化
体を製造する際、部分的に未硬化の光硬化性樹脂が残留
するように硬化させる。
In the present invention, in such a first curing step, curing is performed by irradiation with light, and when a primary cured product having the desired shape is produced, a partially uncured photocurable resin remains. Let it harden.

この部分的に未硬化の光硬化性樹脂が残留する状態とし
ては、硬化による収縮応力ができるだけ均一に分散する
ように、未硬化部が均一に分散した状態であることが好
ましい。
The state in which the partially uncured photocurable resin remains is preferably such that the uncured portions are uniformly dispersed so that the shrinkage stress due to curing is dispersed as uniformly as possible.

本発明においては、例えば次の■〜■のような硬化状態
となるように硬化させて、未硬化の光硬化性樹脂が均一
に分散して残留する1次硬化体とするのが好ましい。
In the present invention, it is preferable to cure the resin to the following cured states, for example, to obtain a primary cured product in which the uncured photocurable resin remains uniformly dispersed.

■ 立体の全体が均一な半硬化状態(即ち、光硬化性樹
脂の重合が完結していない状態)。
■ A semi-cured state in which the entire three-dimensional structure is uniform (that is, a state in which the polymerization of the photocurable resin is not completed).

■ 立体に硬化部(光硬化性樹脂の重合が完結した部分
)と未硬化部(光硬化性樹脂の重合が殆ど起っていない
部分)とが均一に分散している部分硬化状態。
■ A partially cured state in which the cured area (the area where the polymerization of the photocurable resin has been completed) and the uncured area (the area where almost no polymerization of the photocurable resin has occurred) are uniformly dispersed in three dimensions.

■ 立体に半硬化部と硬化部とが均一に分散している部
分硬化状態。
■ Partially cured state where semi-cured parts and hardened parts are evenly distributed in three dimensions.

■ 立体に硬化部、半硬化部及び未硬化部が均一に分散
している部分硬化状態。
■ Partially cured state in which cured, semi-cured and uncured areas are uniformly dispersed in three dimensions.

なお、上記■〜■の部分硬化状態としては、例えば硬化
部中に未硬化部が点在するような、所謂マダラに硬化し
たものとしても良く、また、格子状あるいは縞状の硬化
部の間に未硬化部が存在するようなものであっても良い
The partially cured states of ■ to ■ above may be, for example, a so-called unevenly cured state in which uncured parts are scattered among the cured parts, or a lattice-like or striped state between the cured parts. It is also possible to have an uncured portion in the surface.

■〜■のような硬化状態は、走査される光束を断続させ
たり、強弱の変化をつけたりすることにより形成できる
。また、光束の照射域同志の間に未照射域又は弱い照射
域を形成するように光束を走査することによっても組成
できる。さらに、スリットや小孔を有するマスク等を用
いて必要な箇所にのみ必要とする光量の光を照射するこ
とによっても形成できる。
The cured states shown in (1) to (2) can be formed by intermittent scanning of the light beam or by varying the intensity. The composition can also be formed by scanning the light beam so as to form an unirradiated area or a weakly irradiated area between the irradiated areas of the light beam. Furthermore, it can also be formed by using a mask having slits or small holes to irradiate only the necessary areas with the required amount of light.

なお、■〜■のいずれの形態においても、得られる1次
硬化体がその形状を保持できるような硬化状態であるこ
とが必要とされるため、光硬化性樹脂の物性や、立体の
形状、大きさ等を考慮して、硬化の程度や硬化部と未硬
化部との割合等を適宜決定する。
In addition, in any of the forms of ■ to ■, the primary cured product obtained must be in a cured state that can maintain its shape, so the physical properties of the photocurable resin, the three-dimensional shape, The degree of hardening, the ratio of hardened parts to unhardened parts, etc. are determined as appropriate, taking into consideration the size and the like.

このようにして第1の硬化工程においてほぼ目的形状の
1次硬化体を得た後は、これを装置から取り出し、第2
の硬化工程にて、1次硬化体の全体に光を照射して、残
留する未硬化の光硬化性樹脂を硬化させる。
After obtaining the primary cured product having almost the desired shape in the first curing step in this way, it is taken out of the device and the second cured product is removed.
In the curing step, the entire primary cured body is irradiated with light to cure the remaining uncured photocurable resin.

第5図は、第2の硬化工程の一例を示す断面図であり、
石英ガラス等の透光板30の上に第1の硬化工程で得ら
れた立体31を載置し、上方、下方、側方より光32を
同時に照射している。勿論、第2の硬化工程は、このよ
うに立体の全体に同時に光を照射する方法に限らず、移
動する1つの光源により、全体に光を照射するようなも
のであっても良い。また、一方向又は二方向からのみ光
を照射し、途中で立体の姿勢を転換するようにしても良
い。
FIG. 5 is a cross-sectional view showing an example of the second curing step,
The solid body 31 obtained in the first curing step is placed on a transparent plate 30 made of quartz glass or the like, and light 32 is irradiated simultaneously from above, below, and from the sides. Of course, the second curing step is not limited to the method of irradiating the entire three-dimensional object with light at the same time, but may also be a method of irradiating the entire object with light using a single moving light source. Alternatively, light may be irradiated from only one direction or two directions, and the posture of the three-dimensional object may be changed midway through.

第2の硬化工程により、硬化の終了した立体は、硬化収
縮応力が小さく、しかも収縮応力が立体の全体に均一に
分散したものとなっており、寸法安定性、形状安定性に
優れる。
As a result of the second curing step, the cured three-dimensional solid has a small curing shrinkage stress, and the shrinkage stress is evenly distributed throughout the solid, and has excellent dimensional stability and shape stability.

本発明において、前記光硬化性樹脂としては、光照射に
より硬化する種々の物質を用いることができ、例えば変
性ボリクレタンメタクリレート、オリゴエステルアクリ
レート、ウレタンアクリレート、エポキシアクリレート
、感光性ポリイミド、アミノアルキドを挙げることがで
きる。
In the present invention, various substances that are cured by light irradiation can be used as the photocurable resin, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. be able to.

前記光としては、使用する光硬化性樹脂に応じ、可視光
、紫外光等種々の光を用いることができる。照光は通常
の光としてもよいが、レーザ光とすることにより、エネ
ルギーレベルを高めて造形時間を短縮し、良好な集光性
を利用して造形精度を向上させ得るという利点を得るこ
とができる。なお、第1の硬化工程の光と第2の硬化工
程の光とは同一のものであっても、異なるものであって
も良い。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable resin used. The illumination may be regular light, but laser light has the advantage of increasing the energy level, shortening the molding time, and improving the molding accuracy by utilizing good light focusing. . Note that the light for the first curing step and the light for the second curing step may be the same or different.

[発明の効果] 以上の通り、本発明によれば、光学的造形法において硬
化体に発生する収縮応力を減少させると共に、収縮応力
を硬化体の全体に均一に分散させることができる。従っ
て、亀裂がなくしかも収縮による寸法の誤差も殆どない
高精度のモデルを製作できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to reduce the shrinkage stress generated in the cured body in the optical modeling method and to uniformly disperse the shrinkage stress throughout the cured body. Therefore, it is possible to produce a highly accurate model without cracks and with almost no dimensional errors due to shrinkage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は各々実施例方法に採用される装置
の縦断面図である。 12・・・光硬化性樹脂、   14・・・光束、16
・・・光ファイバー   20・・・光源、21・・・
ベース、      22・・・エレベータ。 代理人  弁理士  重 野  剛 第3図 第4図 七
1 to 5 are longitudinal cross-sectional views of the apparatus employed in the embodiment method, respectively. 12... Photocurable resin, 14... Luminous flux, 16
...Optical fiber 20...Light source, 21...
Base, 22...Elevator. Agent Patent Attorney Tsuyoshi Shigeno Figure 3 Figure 4 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)光硬化性樹脂に光を照射し、該光の照射された部
分を部分的に未硬化の光硬化性樹脂が残留するように硬
化させると共に、該硬化物を積み重ねてほぼ目的形状の
立体とする第1の硬化工程と、 該立体に光を照射し、残留する未硬化の光硬化性樹脂を
硬化させる第2の硬化工程と、 を備えることを特徴とする光学的造形法。
(1) The photocurable resin is irradiated with light, and the irradiated area is cured so that some uncured photocurable resin remains, and the cured resin is stacked to create approximately the desired shape. An optical modeling method comprising: a first curing step for forming a three-dimensional object; and a second curing step for irradiating the three-dimensional object with light to harden the remaining uncured photocurable resin.
JP63172685A 1988-07-13 1988-07-13 Optical modeling Expired - Lifetime JP2551110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172685A JP2551110B2 (en) 1988-07-13 1988-07-13 Optical modeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172685A JP2551110B2 (en) 1988-07-13 1988-07-13 Optical modeling

Publications (2)

Publication Number Publication Date
JPH0224123A true JPH0224123A (en) 1990-01-26
JP2551110B2 JP2551110B2 (en) 1996-11-06

Family

ID=15946462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172685A Expired - Lifetime JP2551110B2 (en) 1988-07-13 1988-07-13 Optical modeling

Country Status (1)

Country Link
JP (1) JP2551110B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011709A1 (en) * 1997-09-03 1999-03-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyester resin composition
US7789565B2 (en) 2004-03-16 2010-09-07 Ntn Corporation Fluid dynamic bearing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011709A1 (en) * 1997-09-03 1999-03-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyester resin composition
US6423814B1 (en) 1997-09-03 2002-07-23 Asahi Kasei Kabushiki Kaisha Polyester resin composition
US7789565B2 (en) 2004-03-16 2010-09-07 Ntn Corporation Fluid dynamic bearing apparatus

Also Published As

Publication number Publication date
JP2551110B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
US5217653A (en) Method and apparatus for producing a stepless 3-dimensional object by stereolithography
JPH0342233A (en) Optical shaping method
JPS6340650B2 (en)
JPH0757532B2 (en) Three-dimensional shape forming method
JPS61114818A (en) Apparatus for forming solid configuration
JPH04366617A (en) Optical shaping method
JPH0224127A (en) Optical shaping method
JP3095302B2 (en) Molding method for three-dimensional shaped objects
JP3782049B2 (en) Stereolithography method and apparatus therefor
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JPH0224121A (en) Optical shaping method
JPH0224122A (en) Treatment for making optical shaped body transparent
JPH0224123A (en) Optical shaping method
JPH0224124A (en) Optical shaping method
JPH058307A (en) Optically shaping method
JP2919982B2 (en) 3D shape forming method
JPH0493228A (en) Method for forming three-dimensional matter
JPH0514839Y2 (en)
JPH0596631A (en) Method and apparatus for optical shaping
JP2671534B2 (en) 3D shape forming method
JPH01232026A (en) Optical shaping method by porous mask
JPH01237121A (en) Optical shaping method by multispot-light sources
JPH01237122A (en) Optical shaping method for thick wall section
JPH05261830A (en) Optical shaping method
JP2586953Y2 (en) Stereolithography