JPH02240561A - Device for judging existence of hollow in watermelon - Google Patents

Device for judging existence of hollow in watermelon

Info

Publication number
JPH02240561A
JPH02240561A JP1063189A JP6318989A JPH02240561A JP H02240561 A JPH02240561 A JP H02240561A JP 1063189 A JP1063189 A JP 1063189A JP 6318989 A JP6318989 A JP 6318989A JP H02240561 A JPH02240561 A JP H02240561A
Authority
JP
Japan
Prior art keywords
pressure level
resonance point
watermelon
sound pressure
power spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1063189A
Other languages
Japanese (ja)
Inventor
Tokiaki Yamamoto
山本 常昭
Keiichi Higuchi
恵一 樋口
Takashi Miyake
隆司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP1063189A priority Critical patent/JPH02240561A/en
Publication of JPH02240561A publication Critical patent/JPH02240561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To automatically decide whether a hollow exists in a watermelon or not by deriving an acoustic pressure level difference of a first resonance point and a second resonance point in a power spectrum of an impulse response waveform. CONSTITUTION:With respect to a vertical line of a watermelon 1 placed on an installing base 20, a shock is applied by a ball 2 of an impulse shock generating device 6 along on a straight line which passes through its center part and intersects in the straight direction. Subsequently, a response waveform of its impulse shock is detected by an acoustic sensor 7 sucked to the opposed reverse side of the rubber ball 2, amplified 8 and brought to A/D conversion 9 and data of a prescribed time portion is inputted to a RAM 12, and a power spectrum is derived by an FFT method by a CPU 11. Next, the CPU 14 reads the power spectrum data of the RAM 12 through an interface 15, derives an acoustic pressure level of a first and a second resonance points, and when the acoustic pressure level of a first resonance point is higher than the acoustic pressure level of a second resonance point, it is decided as a normal fluid and displayed 19, and on the contrary, when the acoustic pressure level of a first resonance point is lower, it is decided as a hollow fruit and displayed 19.

Description

【発明の詳細な説明】 +8>産業上の利用分野 この発明は、西瓜の内部に生じる空洞(巣)の発生状態
を非破壊によって判定する西瓜の空洞有無判定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION +8>Field of Industrial Application The present invention relates to a watermelon cavity determination device that non-destructively determines the occurrence of cavities (nests) inside a watermelon.

(bl従来の技術 一般に、西瓜をはじめとする果実の大きさや重量による
階級の選別については、例えば特開昭57−19807
9号などに示されている方法によって自動選別されてい
る。
(bl Conventional technology In general, regarding classification of fruits such as watermelon by size and weight, for example, Japanese Patent Laid-Open No. 57-19807
They are automatically sorted by the method shown in No. 9.

しかし果実の熟度や空洞(巣)の発生状態などの品質判
定については自動化が困難であり専ら人手によって行わ
れている。
However, quality judgments such as fruit ripeness and the state of cavity (nest) formation are difficult to automate and are carried out exclusively by hand.

(C)発明が解決しようとする課題 このような人間の判断による品質検査では、検査員の熟
練度や個人差によって、また日や時間帯などによっても
ばらつきが生じ、信頼性の面で充分ではなかった。また
、作業効率と判定精度とは相反するため、一定時間内に
多量の果実について判定する場合には多数の検査員を必
要としていたこのような欠点を解消する目的で特に西瓜
の品質検査に有効なものとして、特開昭62−4466
0号および特開昭58−750号には西瓜に対して振動
や打撃を与え、その応答によって品質判定を行う方法が
示されている。特に後者に示されている方法はインパル
ス応答のバワースゝクトルに着目して品質判定を行うも
のであるため、検査結果の信顛性が高いことが予想され
る。しかし、その方法は複数のパラメータを個々に用い
るため複雑な判定処理が必要となる。
(C) Problems to be Solved by the Invention In such quality inspections based on human judgment, variations occur depending on the skill level and individual differences of the inspectors, as well as depending on the day and time of day, and the reliability is not sufficient. There wasn't. In addition, since work efficiency and judgment accuracy are contradictory, it is particularly effective for quality inspection of watermelons to eliminate the disadvantage of requiring a large number of inspectors to judge a large amount of fruit within a certain amount of time. As an example, Japanese Patent Application Laid-open No. 62-4466
No. 0 and Japanese Unexamined Patent Publication No. 58-750 disclose a method in which watermelon is subjected to vibrations or blows and its quality is determined based on the response. In particular, since the latter method evaluates quality by focusing on the power vector of the impulse response, it is expected that the reliability of the test results will be high. However, since this method uses multiple parameters individually, it requires complicated determination processing.

この発明の目的は、前述した従来の問題点を解消し、特
に西瓜の空洞有無について自動的に容易に判定できるよ
うにした装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus that solves the above-mentioned conventional problems and, in particular, can automatically and easily determine the presence or absence of cavities in a watermelon.

(d)課題を解決するための手段 この発明の西瓜の空洞有無判定装置は、外部から西瓜に
対して一定強度のインパルス衝撃を与えるインパルス衝
撃発生手段と、 西瓜の振動を検出する音響センサと、 この音響センサの検出信号を増幅するとともに、パワー
スペクトルを求めるパワースペクトル分析手段と、 パワースペクトル上で低域側に生じる第1共振点の音圧
レベルと、第1共振点より高域側に生じる第2共振点の
音圧レベルを抽出し、両音圧レベルの差によって、空洞
の有無を判定する音圧レベル差判定手段とから構成した
ことを特徴としている。
(d) Means for Solving the Problems The device for determining the presence or absence of cavities in watermelon according to the present invention comprises: impulse impact generating means that applies an impulse impact of a constant intensity to the watermelon from the outside; an acoustic sensor that detects vibrations of the watermelon; A power spectrum analysis means that amplifies the detection signal of this acoustic sensor and obtains a power spectrum, and a sound pressure level of a first resonance point that occurs on the low frequency side on the power spectrum, and a sound pressure level that occurs on the high frequency side of the first resonance point. It is characterized by comprising a sound pressure level difference determining means for extracting the sound pressure level at the second resonance point and determining the presence or absence of a cavity based on the difference between the two sound pressure levels.

(e)作用 発明者等の実験によれば、西瓜における空洞の有無によ
るインパルス応答特性の差異は、そのパワースペクトル
の第1共振点の音圧レヘルと第2共振点の音圧レベルと
の差に表れることが明らかとなった。すなわち、西瓜の
内部に空洞がなければ、第1共振点の音圧レベルが第2
共振点の音圧レヘルより高くなるが、空洞が存在すれば
そのレベル差が小さ(なり、空洞の程度に応じて第2共
振点の音圧レベルが第1共振点の音圧レベルより高くな
ることが明らかとなった。
(e) Effect According to experiments conducted by the inventors, the difference in impulse response characteristics due to the presence or absence of a cavity in a watermelon is the difference between the sound pressure level at the first resonance point and the sound pressure level at the second resonance point in its power spectrum. It has become clear that this appears. In other words, if there is no cavity inside the watermelon, the sound pressure level at the first resonance point will be lower than the second resonance point.
The sound pressure level at the resonance point will be higher than the sound pressure level at the resonance point, but if there is a cavity, the level difference will be small (and depending on the degree of the cavity, the sound pressure level at the second resonance point will be higher than the sound pressure level at the first resonance point. It became clear that

これは、西瓜の内部に空洞が生じていれば、その空洞部
分で振動系が分離されるため、基本共振周波数である第
一共振点の音圧レベルが低下するとともに、言わば分割
振動による第2共振点の音圧レベルが強くなるためであ
ると考えられる。
This is because if there is a cavity inside the watermelon, the vibration system is separated in the cavity, so the sound pressure level at the first resonance point, which is the fundamental resonance frequency, decreases, and the sound pressure level at the first resonance point, which is the fundamental resonance frequency, decreases. This is thought to be because the sound pressure level at the resonance point becomes stronger.

この発明の西瓜の空洞有無判定装置においては、インパ
ルス衝撃発生手段は外部から西瓜に対して一定強度のイ
ンパルス衝撃を与える。音響センサはそのインパルス応
答波形を検出し、パワースペクトル分析手段はそのイン
パルス応答波形のパワースペクトルを求める。さらに、
音圧レベル差判定手段はパワースペクトル上で低域側に
生じる第1共振点の音圧レベルと第1共振点より高域側
に生じる第2共振点の音圧レベルを抽出し、両音圧レベ
ルの差によって空洞の有無を判定する。従って音圧レヘ
ル差判定手段がこのレベル差によって空洞有無を判定す
ることができる。
In the apparatus for determining the presence or absence of cavities in a watermelon according to the present invention, the impulse impact generating means applies an impulse impact of a constant intensity to the watermelon from the outside. The acoustic sensor detects the impulse response waveform, and the power spectrum analysis means determines the power spectrum of the impulse response waveform. moreover,
The sound pressure level difference determination means extracts the sound pressure level of a first resonance point that occurs on the low frequency side on the power spectrum and the sound pressure level of a second resonance point that occurs on the high frequency side of the first resonance point, and The presence or absence of a cavity is determined based on the difference in level. Therefore, the sound pressure level difference determining means can determine the presence or absence of a cavity based on this level difference.

(f)実施例 第1図はこの発明の実施例である西瓜の空洞有無判定装
置のブロック図である。同図において6は西瓜に対して
一定強度のインパルス衝撃を与える装置であり、硬質ゴ
ム球2にロッド4を取り付け、ロッド4を支持台5に対
して水平方向に摺動自在に取り付けている。さらに支持
台5とゴム球2間にコイルバネ3を挿入して、このコイ
ルバネ3の反発力によってゴム球2が西瓜lの腹にイン
パルス衝撃を与えるように構成している。西瓜1は台か
らの振動音を受けないために、また西瓜の自重による振
動モードの変化を防ぐためにウレタンフオームなどの設
置台20上に設置する。前記硬質ゴム球2は西瓜1の中
心部を通り、且つ縦軸(茎とへそを結ぶ直線)に垂直方
向に交わる直線上に沿って衝撃が加えられる。ゴム球2
に対向する裏側には吸盤状の音響センサ7を密着させて
いる。従ってこの音響センサ7はゴム球2により与えら
れるインパルス衝撃に応答するインパルス応答波形を検
出する。増幅回路8は音響センサ7の検出信号を増幅し
、A−Dコンバータ9はこれをディジタルデータに変換
する。CPUI lはI10ボート10を介してこのデ
ータを入力しRAM12に順次書き込む。インパルス衝
撃が与えられてから一定時間分の応答波形のデータをR
AM 12に取り込んだのち、CPUIIはその内容を
FFT法によりパワースペクトルを求める。なおR0M
13には前述したCPUIIの処理手順が予め書き込ま
れている。CPU14はインタフェース15を介してR
AM12に求められたパワースペクトルデータを読み取
り、後述する所定の処理によって第1共振点の音圧レベ
ルと第2共振点の音圧レベルとの差から空洞有無の判定
を行い、■10ボー)1Bを介して表示器19に表示を
行う。ROM16にはCPtJ14の処理手順が予め書
き込まれていて、RAM17はワーキングエリアとして
用いられる。
(f) Embodiment FIG. 1 is a block diagram of an apparatus for determining the presence or absence of cavities in watermelon, which is an embodiment of the present invention. In the figure, 6 is a device that applies an impulse impact of a constant intensity to the watermelon, and a rod 4 is attached to a hard rubber ball 2, and the rod 4 is attached to a support base 5 so as to be slidable in the horizontal direction. Further, a coil spring 3 is inserted between the support base 5 and the rubber bulb 2, and the rubber bulb 2 is configured to give an impulse impact to the belly of the watermelon l by the repulsive force of the coil spring 3. The watermelon 1 is placed on an installation stand 20 made of urethane foam or the like in order to avoid vibration noise from the stand and to prevent changes in vibration mode due to the watermelon's own weight. An impact is applied to the hard rubber ball 2 along a straight line that passes through the center of the watermelon 1 and intersects perpendicularly with the vertical axis (the straight line connecting the stem and navel). rubber ball 2
A suction cup-shaped acoustic sensor 7 is brought into close contact with the back side facing the. Therefore, this acoustic sensor 7 detects an impulse response waveform in response to the impulse impact given by the rubber ball 2. The amplifier circuit 8 amplifies the detection signal of the acoustic sensor 7, and the A-D converter 9 converts this into digital data. The CPU I inputs this data via the I10 port 10 and sequentially writes it into the RAM 12. R
After importing the data into the AM 12, the CPU II calculates the power spectrum of the content using the FFT method. Furthermore, R0M
13, the processing procedure of the CPU II described above is written in advance. The CPU 14 uses the R via the interface 15.
The power spectrum data obtained from AM12 is read, and the presence or absence of a cavity is determined based on the difference between the sound pressure level at the first resonance point and the sound pressure level at the second resonance point through a predetermined process described later.■10 baud) 1B Display is performed on the display 19 via the. The processing procedure of the CPtJ14 is written in advance in the ROM 16, and the RAM 17 is used as a working area.

第2図は音響センサの構造を示している。音響センサは
西瓜の腹部分に吸着する吸盤部7aと、その内部に埋め
こんだ圧電素子7bから構成している。吸盤部7aは硬
度35°の軟質ウレタンゴムを球殻状に整形していて、
この音響センサが西瓜に吸着した状態で、圧電素子がウ
レタンゴムを介して直接振動をピックアンプする。従っ
て空気を介して振動音を収音する場合に比較して高周波
域での減衰がない。
FIG. 2 shows the structure of the acoustic sensor. The acoustic sensor consists of a suction cup part 7a that sticks to the belly part of the watermelon, and a piezoelectric element 7b embedded inside the suction cup part 7a. The suction cup part 7a is made of soft urethane rubber with a hardness of 35° and shaped into a spherical shell.
With this acoustic sensor attached to the watermelon, the piezoelectric element pick-amplifies vibrations directly through the urethane rubber. Therefore, there is no attenuation in the high frequency range compared to the case where vibration sound is collected through the air.

以上に示したインパルス衝撃発生装置と音響センサを用
い、音響センサの検出信号から求めたパワースペクトル
の例を第4図(A)、  (B)に示す。同図(A)の
例は、最も低域側に生じる第1共振点すの音圧レベルが
、この第1共振点すより高域側に生じる第2共振点Cの
音圧レベルより高い。このようなパワースペクトルを有
するインパルス衝撃応答を示す西瓜は空洞がない。これ
に対して同図(B)に示すように、第1共振点dの音圧
レベルが第2共振点eの音圧レベルより低い応答を示す
西瓜は内部に空洞が存在する。
Examples of power spectra obtained from the detection signal of the acoustic sensor using the impulse impact generator and acoustic sensor described above are shown in FIGS. 4(A) and 4(B). In the example shown in FIG. 5A, the sound pressure level of the first resonance point occurring on the lowest frequency side is higher than the sound pressure level of the second resonance point C occurring on the higher frequency side than this first resonance point. A watermelon exhibiting an impulse impact response with such a power spectrum has no cavities. On the other hand, as shown in FIG. 3B, a watermelon exhibiting a response in which the sound pressure level at the first resonance point d is lower than the sound pressure level at the second resonance point e has a cavity inside.

第1図に示したCPUI 4はRAM12に求めれらた
インパルス応答波形のパワースペクトルから上述の特性
を判定して空洞有無の判定を行う。
The CPU 4 shown in FIG. 1 determines the above characteristics from the power spectrum of the impulse response waveform obtained in the RAM 12 to determine the presence or absence of a cavity.

その処理手順を第3図に示す。先ずパワースペクトルデ
ータを読み込み、その包絡線を求めるとともに、包絡線
の差分を求めることなどによって極大となる周波数を低
周波側から順に抽出する。続いて100〜150Hz内
に存在する極大周波数の音圧レベルをAに求める。さら
に150〜200H2における極大周波数すなわち第2
共振点の音圧レベルをBに求める。その後、第2共振点
の音圧レベルBが第1共振点の音圧レベルAより低けれ
ば正果表示を行い、第1共振点の音圧レベルAが第2共
振点の音圧レベルBより低ければ空洞果の表示を行う。
The processing procedure is shown in FIG. First, power spectrum data is read, its envelope is determined, and the frequencies at which the maximum occurs are extracted in order from the low frequency side by determining the difference between the envelopes. Next, the sound pressure level of the maximum frequency existing within 100 to 150 Hz is determined as A. Furthermore, the maximum frequency at 150 to 200H2, that is, the second
Find the sound pressure level at the resonance point in B. After that, if the sound pressure level B at the second resonance point is lower than the sound pressure level A at the first resonance point, a correct result is displayed, and if the sound pressure level A at the first resonance point is lower than the sound pressure level B at the second resonance point, a correct result is displayed. If the hollow fruit is displayed.

なお、実施例では第1共振点および第2共振点の音圧レ
ベルが等しいときを空洞有無判定のしきい値としたが、
しきい値となる音圧レベル差は西瓜の大きさや品種など
に応じて適宜定めることができる。
In addition, in the example, the time when the sound pressure level of the first resonance point and the second resonance point are equal was set as the threshold value for determining the presence or absence of a cavity.
The sound pressure level difference serving as the threshold value can be determined as appropriate depending on the size and variety of the watermelon.

また、実施例では音響センサを西瓜に密着させて用いる
ようにしたが、その他の方法としてたとえばピックアッ
プ部をピン形状にし、ピン先端を西瓜に接触させる方法
や、ビン先端を刺立させる方法を採ることもできる。
In addition, in the embodiment, the acoustic sensor is used in close contact with the watermelon, but other methods include, for example, making the pickup part into a pin shape and having the tip of the pin contact the watermelon, or making the tip of the bottle pierce. You can also do that.

(g)発明の効果 以上のようにこの発明によれば、インパルス応答波形の
パワースペクトルにおける第1共振点と第2共振点の音
圧レベル差に着目して空洞有無を判定するようにしたた
め、多数のパラメータを用いた演算処理が不要となって
短時間に判定することができる。このため、限られた時
間内で多数の判定作業を行うことが可能となる。
(g) Effects of the Invention As described above, according to the present invention, the presence or absence of a cavity is determined by focusing on the sound pressure level difference between the first resonance point and the second resonance point in the power spectrum of the impulse response waveform. This eliminates the need for arithmetic processing using a large number of parameters, allowing determination to be made in a short time. Therefore, it is possible to perform a large number of determination tasks within a limited amount of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例である西瓜の空洞有無判定装
置のブロック図である。第2図は同装置に用いられる音
響センサの構成を示す図である。 第3図は同装置の主要部の処理手順を表すフローチャー
トである。第4図(A)、  (B)は同装置により求
められるパワースペクトルの例を示す図である。 l−西瓜、 6−インパルス衝撃発生装置、 7−音響センサ。
FIG. 1 is a block diagram of an apparatus for determining the presence or absence of cavities in watermelon, which is an embodiment of the present invention. FIG. 2 is a diagram showing the configuration of an acoustic sensor used in the device. FIG. 3 is a flowchart showing the processing procedure of the main parts of the device. FIGS. 4(A) and 4(B) are diagrams showing examples of power spectra obtained by the same apparatus. l-watermelon, 6-impulse impact generator, 7-acoustic sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)外部から西瓜に対して一定強度のインパルス衝撃
を与えるインパルス衝撃発生手段と、西瓜の振動を検出
する音響センサと、 この音響センサの検出信号を増幅するとともに、パワー
スペクトルを求めるパワースペクトル分析手段と、 パワースペクトル上で低域側に生じる第1共振点の音圧
レベルと、第1共振点より高域側に生じる第2共振点の
音圧レベルを抽出し、両音圧レベルの差によって、空洞
の有無を判定する音圧レベル差判定手段とからなる西瓜
の空洞有無判定装置
(1) Impulse impact generating means that applies an impulse impact of a constant intensity to the watermelon from the outside, an acoustic sensor that detects vibrations of the watermelon, and a power spectrum analysis that amplifies the detection signal of this acoustic sensor and calculates the power spectrum. extracting the sound pressure level of the first resonance point that occurs on the lower side of the power spectrum and the sound pressure level of the second resonance point that occurs on the higher side of the first resonance point, and extracting the difference between the two sound pressure levels. A device for determining the presence or absence of a cavity in a watermelon, comprising a sound pressure level difference determining means for determining the presence or absence of a cavity.
JP1063189A 1989-03-14 1989-03-14 Device for judging existence of hollow in watermelon Pending JPH02240561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063189A JPH02240561A (en) 1989-03-14 1989-03-14 Device for judging existence of hollow in watermelon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063189A JPH02240561A (en) 1989-03-14 1989-03-14 Device for judging existence of hollow in watermelon

Publications (1)

Publication Number Publication Date
JPH02240561A true JPH02240561A (en) 1990-09-25

Family

ID=13222034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063189A Pending JPH02240561A (en) 1989-03-14 1989-03-14 Device for judging existence of hollow in watermelon

Country Status (1)

Country Link
JP (1) JPH02240561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320958A (en) * 1991-04-19 1992-11-11 Nishi Nippon Computer Kk Method for inspecting product acoustically
ES2233140A1 (en) * 2002-10-23 2005-06-01 Universidad Politecnica De Madrid Acoustic sensor for detecting hollow part in seedless watermelon, is provided with acoustic sound transmission sensor element i.e. microphone
JP2007093278A (en) * 2005-09-27 2007-04-12 Hiroshima Univ Internal quality evaluation method for produce and its device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320958A (en) * 1991-04-19 1992-11-11 Nishi Nippon Computer Kk Method for inspecting product acoustically
ES2233140A1 (en) * 2002-10-23 2005-06-01 Universidad Politecnica De Madrid Acoustic sensor for detecting hollow part in seedless watermelon, is provided with acoustic sound transmission sensor element i.e. microphone
JP2007093278A (en) * 2005-09-27 2007-04-12 Hiroshima Univ Internal quality evaluation method for produce and its device
JP4696218B2 (en) * 2005-09-27 2011-06-08 国立大学法人広島大学 Method and apparatus for evaluating the internal quality of fruits and vegetables

Similar Documents

Publication Publication Date Title
CN104569154B (en) The detection method and device of quick nondestructive fruit quality
Delwiche et al. An impact force response fruit firmness sorter
CN106840375B (en) A kind of turbocharger extraordinary noise test method and its device
EP0403807B1 (en) Ultrasonic inspection device for detecting defects in solid objects
CN108313846B (en) System and method for measuring speed of elevator platform based on gyroscope
CN204359750U (en) A kind of pick-up unit of quick nondestructive fruit quality
JPH02240561A (en) Device for judging existence of hollow in watermelon
US4386526A (en) Method for quality control of processes and construction components
CN104833724B (en) A kind of bird egg crack detecting method
US10458954B2 (en) Structure evaluation system, structure evaluation apparatus, and structure evaluation method
CN205720100U (en) A kind of online the cannot-harm-detection device of fruit firmness
CN111639519B (en) Living body detection method and living body detection device
JP3927996B2 (en) Hardness measuring device
JP3880481B2 (en) Agricultural product internal quality inspection equipment
JPS59214721A (en) Vibration detecting set of portable vibrometer
JP2006145495A (en) Method and device for discriminating inspection object
Kongrattanaprasert et al. Nondestructive maturity determination of durian by force vibration and ultrasonic
JP2667760B2 (en) Machine operation noise inspection device
US20210018397A1 (en) Impact testing system and method for operating an impact testing system
JPH0312551A (en) Apparatus for deciding maturity degree of vegetable and fruit
CN108168868A (en) A kind of method for detecting the Steel section member natural frequency of vibration
JP2003014708A (en) Nondestructive inspection apparatus for plate
JP4949568B2 (en) Blow inspection device
JP2000186957A (en) Abnormal vibration inspecting device for equipment
Martins et al. Selection of fruits by multisensor systems