JPH02240230A - High strength copper alloy - Google Patents

High strength copper alloy

Info

Publication number
JPH02240230A
JPH02240230A JP6075289A JP6075289A JPH02240230A JP H02240230 A JPH02240230 A JP H02240230A JP 6075289 A JP6075289 A JP 6075289A JP 6075289 A JP6075289 A JP 6075289A JP H02240230 A JPH02240230 A JP H02240230A
Authority
JP
Japan
Prior art keywords
molybdenum
alloy
copper
steel
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6075289A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Matsumoto
辰彦 松本
Tatsuyoshi Aisaka
逢坂 達吉
Keizo Shimamura
慶三 島村
Kagetaka Amano
天野 景隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6075289A priority Critical patent/JPH02240230A/en
Publication of JPH02240230A publication Critical patent/JPH02240230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To combinedly provide the copper alloy with high electrical conductivity and high mechanical strength by dispersing specified amt. of Mo fibers having specified average diameter and aspect ratio into a copper matrix. CONSTITUTION:By volume, 0.5 to 30% Mo fibers having <=2mum average diameter and >=25 aspect ratio are dispersed into a matrix constituted of copper. Or, Mo alloy fibers contg. one or more kinds of elements having <=0.5wt.% maximum solid soln. degree into copper are dispersed thereto. Since Mo materials hardly enter a solid soln. into copper, the deterioration of the electric conductivity of the copper alloy dispersedly incorporated into the matrix is extremely less and, on the other hand, the strength of the copper alloy can be increased.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高い強さと高い導′1@とl&−兼ね備えた銅
合会に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a copper alloy having high strength and high conductivity.

(従来の技術) 近年、高い機械的な強さと高い導電性とを兼ね備えた材
料に対するf!望は、エネルギー 半導体など種々の分
野でますます強まりて来ている。特にある程度以上の高
い導電性を有する材料を得るためにはw4をペースにす
る必要があり、この要望に対しては、従来より析出強化
機鋼合金1公散強化型鋼合金などの開発が進められてき
た。最近、こうした高い導電性と高い強さとを備えた材
料として鋼−ニオブ系合金1w4−バナジウム系どの開
発が進められて来ている.これらの合金は。
(Prior Art) In recent years, f! Demand is increasing in various fields such as energy and semiconductors. In particular, in order to obtain materials with high electrical conductivity above a certain level, it is necessary to keep pace with W4, and to meet this demand, development of precipitation-strengthened steel alloys 1 and dispersion-strengthened steel alloys has been progressing. It's here. Recently, progress has been made in the development of steel-niobium alloys such as 1w4-vanadium as materials with such high conductivity and high strength. These alloys are.

銅−ニオブ会合あるいは銅−バナジウム合金インゴvト
をアーク溶解などの方法tこよって溶解して製造し,そ
のインゴットに押出し1,隙引き、圧延などの加工手段
によりて強度の加工をカロえることによ?,他Ovc素
を殆んど固溶していないWIQマトリ+yクス中に加工
方向に長く伸びたニオブあるいはバナジウムの細い繊維
が分散した組織を持つ鋼−二オブ会金あるいは鋼−バナ
ジウム合金の極細4IもしくはrII仮の形で得られる
.この合金の極細線もしくは薄板はマトリックスがほぼ
純粋な銅から成りて−るのでその導電性は極めて高く、
−刀そのマトリックス中に分散している繊維は強度■加
工を受けたニオブあるいはバナジウムであり。
Producing a copper-niobium association or copper-vanadium alloy ingot by melting it by a method such as arc melting, and then applying strength processing to the ingot by processing means such as extrusion, slotting, and rolling. Yo? , ultra-fine steel-niobium alloy or steel-vanadium alloy that has a structure in which fine fibers of niobium or vanadium extended in the processing direction are dispersed in the WIQ matrix + yx, which has almost no solid solution of other Ovc elements. 4I or rII provisional form. The matrix of the ultrafine wires or thin plates of this alloy is made of almost pure copper, so their conductivity is extremely high.
- The fibers dispersed in the matrix are niobium or vanadium, which has been treated for strength.

高い強さを有している.そのため、それらの複合体であ
るこれらの合金の極細憧もしくは薄板は高い機械的強さ
と高い導電性と¥:葦ね備えることになる。しつ1しな
がら、これらの合金の強化9素であるニオブあるいはバ
ナジウムは強度の加工11r−加えてもその強さが極備
)こ高(なるわけではないため(こ、これらの合金の極
細線もしくは*fiは光分1こ高い強さを示すわけでは
ないという欠点を有していたー (1明が嵯決しようとする縄[) 本亀明は、従来Of金では機械的な強さが光分に高くし
かも同時lこ高い導yt性l&−有するものが潜られな
いという上記間値点を鱗決し、高い導電性と高Vh機械
的な強さとを共に兼ね備えた材料を提供することを目的
とする。
It has high strength. Therefore, ultrafine sheets or thin sheets of these alloys, which are composites of them, have high mechanical strength and high electrical conductivity. However, niobium or vanadium, which is the reinforcing element in these alloys, has extremely high strength even after being processed for strength. The wire or *fi had the disadvantage that it did not show a higher strength by one light minute. To provide a material that has both high electrical conductivity and high Vh mechanical strength by determining the above-mentioned point that a material having high conductivity l&- that is high in terms of light and at the same time cannot be penetrated. The purpose is to

〔宅明の構成〕[Composition of Takumei]

(J埴¥r−4決するためυ手段2よび作用)本殆明者
らは、従来の合金では機械的な・道さが光分(こ高く同
時に、高い導電性を有するものが得られなりという関電
点を/%決するため、4々O実、*と4祭とを行fiり
た。
(J 埴¥r-4 υ Means 2 and Effects for Determination) The present inventors have concluded that with conventional alloys, it is not possible to obtain a material that has high mechanical properties and high electrical conductivity. In order to decide on the Kanden point, four festivals were held.

まず合金の強化要素となるべき繊維を構成する元素はマ
) 1ツクスを構成する桐への固溶度ができる限り低い
ものでなければならない。具体的にはその元素に3ける
鋼中への最大の固解度が0.5重量%を越えると、銅マ
トリツクス自体の導電性が害され、その結果、得られる
合金としての導成率が低くなりてしまうのである。しか
も、合金の強1ヒ要素となるこの繊維を構成する元素は
、その製造の際に溶解インゴνトもしくは暁結ビレット
の銅マトリツクス中に比較的組人な形状で存在する状態
から1強度の加工によって微細な繊維式とされるために
、加工性が良好なものでなければならない、このような
条件を満たし、同時に強度■加工によりて非常に機械的
に強い状態)こし得る材料について種々の実験と考察と
によりて検討した結果、モリブデンもしくはモリブデン
を主成分とする合金を繊維の材料として使用すれば、こ
れらの諸条件を満たして1機械的な強さが充分に高く、
しかも同時暑ζ高い導電性を有する銅合金を得ることが
できるとのことを見出した。
First of all, the elements constituting the fibers that are to serve as reinforcing elements of the alloy must have as low a solid solubility as possible in paulownia, which constitutes the matrix. Specifically, if the maximum solid solubility of the element in steel exceeds 0.5% by weight, the conductivity of the copper matrix itself is impaired, and as a result, the conductivity of the resulting alloy decreases. It becomes lower. Moreover, the elements constituting the fibers, which are the main strength elements of the alloy, are present in a relatively compact shape in the copper matrix of melted ingots or solidified billets during production. In order to be made into fine fibers by processing, it must have good workability. As a result of experiments and considerations, we have found that if molybdenum or an alloy containing molybdenum as the main component is used as the fiber material, it will satisfy these conditions and have sufficiently high mechanical strength.
Moreover, it has been found that a copper alloy having high conductivity can be obtained at the same time.

すなわち本発明は鋼よりなるマトリックス中に、平均の
直径2μm以下でアスペクト比25以上のモリブデン繊
維、もしくは鋼中への最大の固溶度が0.5重を俤以下
である元素の1種類以上を含有するモリブデン会合繊維
を、0.5〜30体積チ分牧してなることを特徴とする
高強度鋼合金である。
That is, the present invention includes molybdenum fibers having an average diameter of 2 μm or less and an aspect ratio of 25 or more, or one or more elements having a maximum solid solubility in the steel of 0.5 weight or less. It is a high-strength steel alloy characterized by being made by dividing molybdenum associated fibers containing 0.5 to 30 volumes.

本発明で用いられるそリブデンは、鋼の融点以下の温度
で鋼中への最大の固溶度が0.5重量%以下であり、鋼
とともにtW11!、熱処理などを行なっても、f!4
マトリックス中に多量に固溶して鋼マトリツクス自体の
導′成性を害するようなことがほとんどない1.さら駈
こモリブデンは適度の加工性を有し、、Ii切な加工法
によれば強度の加工を施して極+YtB 4や薄板にす
ることができる。しかもこうして得られた甑細噸や4阪
は高い機械的な強さを有する。この/Jlll工を施し
た極細線や薄板の強さをさらに上げるため曇こは、モリ
ブデンに合金元素を添7IOしてモリブデン合金とした
ものを繊維曇こ用いれば良い、モリブデンにさら)こ1
m 710する元素としては、やはり鋼中への固溶度が
0.5重量−以下でないと鋼とともに溶解、熱処理など
を行なうときに鋼マトリックス中にその元素が多重に固
溶して鋼マトリックスの導電性を害することになる。よ
りてこうした鋼中への固溶が少ない元素としてはタング
ステン、ニオフ、タンタル、バナジウム、ルテニウム、
レニウム%炭素詔よび硼素などが挙げられる。これらの
元素はあまり一仁多量に添加するとモリブデンの加工性
を害し、極細線や薄板への加工が困難となる。モリブデ
ンにこれらの元素を添7JOしてなる合金が粒子などの
形状で銅マトリックス中夛こ分散してなる銅合金を加工
したときに、銅合金V3!lSに分散しているそのモリ
ブデン合金粒子が充分に変形して繊維や薄板の形状にま
で加工されるためには、これら■元素のa重量憂こは上
限がある。それを越えた篩別元素量では、モリブデン合
金粒子が光分に変形して繊維や薄板の形状にまではりロ
エされず、したがうてvf4貧金■彊化に充分寄与しな
い、こうした重加TC素の許容される電は以会、繊維を
構成する少材料であるモリブデン(こ対して、各々zo
tt*以下のタングステン、5電歇チ以下のニオブ、7
重を慢以下のタンタル、 10重重量風下バナジウム、
5重軟俤以下のレニウム。
The solybdenum used in the present invention has a maximum solid solubility in steel of 0.5% by weight or less at a temperature below the melting point of steel, and has a tW of 11! , even after heat treatment, f! 4
1. There is almost no chance of a large amount of solid solution in the matrix impairing the conductivity of the steel matrix itself. Sarasakeko molybdenum has moderate workability, and can be processed into YtB 4 or thin plates using the most advanced processing methods. In addition, the koshiki-saban and shizaka obtained in this way have high mechanical strength. In order to further increase the strength of ultra-fine wires and thin plates processed with this process, a molybdenum alloy made by adding an alloying element to molybdenum (7IO) can be used as a fiber coating.
As for elements that cause m 710, unless the solid solubility in the steel is less than 0.5 wt. This will impair conductivity. Therefore, tungsten, nioff, tantalum, vanadium, ruthenium,
Examples include rhenium% carbon and boron. If these elements are added in too large a quantity, they will impair the processability of molybdenum, making it difficult to process it into ultrafine wires or thin plates. When processing a copper alloy in which an alloy made by adding these elements to molybdenum is dispersed in the form of particles in a copper matrix, copper alloy V3! In order for the molybdenum alloy particles dispersed in IS to be sufficiently deformed and processed into the shape of fibers or thin plates, there is an upper limit to the a weight of these elements. If the sieving element content exceeds this, the molybdenum alloy particles will be deformed into light particles and will not be formed into fibers or thin plates, and therefore will not contribute sufficiently to vf4 poor metal conversion. The permissible electricity of molybdenum (in contrast, each
Tungsten below tt*, niobium below 5 electric centimeters, 7
Tantalum with a weight of less than 10 kg, vanadium with a weight of 10 kg or less,
Rhenium less than 5 layers soft.

6重階チ以下のルテニウム、0.3重陽チ以下の炭素、
0.1重Fi1−tfb以下の硼素の範囲である。塘た
二am以上の元素2モリブデンに添加してモリブデン合
金とする場合には、各添加元素の敬が各々前記の上限値
以下であることに加えて、それら添加元素の会計教が、
含有される各添加元素の上述した個々の上限値の内の最
大の値以下であることが必要である。これは、これらの
歇を越える元素を七11ブデンに添加すると、銅マトリ
ックス中音こ分散しているモリブデン合金粒子の加工性
が悪くなr)、@e金の銅マトリツクス中に繊維状もし
くは薄板状のモリブデン合金が分散した光分発達した組
織が得らnず、したがりて光分蚤こ高い強さの銅合金が
得られなくなるからである。
Ruthenium with 6 or less cations, carbon with 0.3 or less cations,
Boron is in the range of 0.1 fold Fi1-tfb or less. When making a molybdenum alloy by adding element 2 molybdenum of 2 am or more, in addition to the values of each added element being below the above upper limit, the accounting values of those added elements are:
It is necessary that the content be equal to or less than the maximum value of the above-mentioned individual upper limit values of each additional element contained. This is because if more elements than these are added to 7-11 butenium, the workability of the molybdenum alloy particles dispersed in the copper matrix deteriorates, and the processability of the molybdenum alloy particles dispersed in the copper matrix deteriorates. This is because an optically developed structure in which the molybdenum alloy is dispersed cannot be obtained, and therefore a copper alloy with high strength cannot be obtained.

また、こうしたモリブデンもしくはモリブデン合金の鋼
合金への添加きには杆容範囲があり、それは、モリブデ
ンもしくはモリブデン合金及び銅マトリックスよりなる
銅合金全体に対する比で0、5〜30体積チである。モ
リブデンもしくはモリブデン合金の鋼合金への添刀口欧
が0.5体積チ未満であると鋼合金中のモリブデンもし
くはモリブデン合金が強度の加工を受けて極細線や薄板
になりて鋼マトリツクス中に分散しても、その強化作用
は不充分であり、したがうて光分に高い強さの鋼合金が
得られない。また、添加歌が30体体積上越えると、鋼
合金の加工が困雉となり、、鋼合金の内部に分散してい
るモリブデンもしくはモリブデン合金の粒子が光分な加
工と受けて極細線や薄板になることがな(、やは9光分
に高い強さの銅合金が得られない。
There is also a volume range for the addition of molybdenum or molybdenum alloys to steel alloys, which ranges from 0.5 to 30 volumes relative to the entire copper alloy consisting of molybdenum or molybdenum alloys and a copper matrix. If the amount of molybdenum or molybdenum alloy added to the steel alloy is less than 0.5 volume, the molybdenum or molybdenum alloy in the steel alloy will undergo intense processing and become fine wires or thin plates and dispersed in the steel matrix. However, the strengthening effect is insufficient, and therefore a steel alloy with high optical strength cannot be obtained. In addition, when the added volume exceeds 30 volumes, it becomes difficult to process the steel alloy, and the molybdenum or molybdenum alloy particles dispersed inside the steel alloy are processed by light and are made into ultra-fine wires and thin plates. (No, a copper alloy with a high strength of 9 rays cannot be obtained.)

本発明の鋼合金の鋼マトリツクス中に分布するモリブデ
ン繊維もしくはモリブデン合金繊維の形状は、その直径
が2μm以下でなければならない。
The shape of the molybdenum fibers or molybdenum alloy fibers distributed in the steel matrix of the steel alloy of the present invention must have a diameter of 2 μm or less.

またこの繊維は薄板状のものでも良く、その@合は薄板
の厚さ¥t2μm以下とする。これは、こうした直径も
しくは厚さが2μmを越えると、(!曾材料としてO強
化作用は示すものの1分散が粗大に過ぎて、鋼マトリV
クス中の転位の運動を妨げる分散強化作用が少なくなり
、したかりて機械的強さの高い合金が得られないからで
ある。
Further, this fiber may be in the form of a thin plate, in which case the thickness of the thin plate is 2 μm or less. This is because when the diameter or thickness exceeds 2 μm, the 1 dispersion becomes too coarse and the steel matrix V
This is because the dispersion strengthening effect that impedes the movement of dislocations in the mass is reduced, and therefore an alloy with high mechanical strength cannot be obtained.

つぎに1本発明の鋼合金の好適な製造方法について述べ
る。
Next, a preferred method for manufacturing the steel alloy of the present invention will be described.

本発明の鋼合金の加工素材のインゴvトは溶解法によっ
て実速される。すなわち、!p!の溶湯中にモリブデン
もしくはモリブデンおよびモリブデンへの添加元素を加
えて溶解する。モリブデンは尋融状態の鋼中にも溶は難
いので添加に際しては鋼の溶湯の1度を融点より500
m程度以上過熱することが望ましい、また、モリブデン
はなるべ(118mしやすいようにあらかじめ微粉末の
形1こして添加することが望ましい、tた。モリブデン
に添加する合金元素はモリブデンとは別に鋼の溶湯中に
添加しても良いが、添加元素の均一な溶解を行うために
あらかじめモリブデン1こ添加する合金元素とモリブデ
ンとの合金を咋うた後にその台金を銅の溶湯中に添加し
ても良い。あるいは、消耗電極式のアークm鱗を行りて
も良い、レビテーシ1ン溶解はるつぼとの反応なく任意
の高強度に溶湯を過熱できるのでこの合金の溶解憂こは
適した方法である。
The ingot of the processed material of the steel alloy of the present invention is actually melted by a melting method. In other words! p! Molybdenum or molybdenum and elements added to molybdenum are added and dissolved in the molten metal. Molybdenum is difficult to melt even in steel in a low melting state, so when adding it, the temperature of the molten steel should be 500 degrees below the melting point.
It is preferable to heat the molybdenum to about 118 m or more.Moreover, it is preferable to add molybdenum in the form of a fine powder in advance to make it easier to heat the steel. It may be added to the molten copper, but in order to uniformly dissolve the added element, add one molybdenum in advance. After forming the alloy of the alloying element and molybdenum, add the base metal to the molten copper. Alternatively, consumable electrode type arc melting may be used. Levitation melting is a suitable method for melting this alloy because it can heat the molten metal to a desired high strength without any reaction with the crucible. be.

また1本発明の鋼合金の加工素材を作るには粉末焼結法
によりても良い、粉末焼結法を用いるとき憂こ銅合金の
強化9!素としてモリブデン合金を用いる場合には、あ
らかじめモリブデンとモリブデンへ添加する元素との合
金粉末を作りて粉末焼結の原料とする公安がある。そし
て、銅粉末とモリブデン粉末もしくはモリブデン台金粉
末との混合。
In addition, the processed material of the steel alloy of the present invention may be produced by a powder sintering method, and when the powder sintering method is used, it is difficult to strengthen the copper alloy 9! When using a molybdenum alloy as the base material, there is a public safety practice in which an alloy powder of molybdenum and an element to be added to molybdenum is prepared in advance and used as a raw material for powder sintering. Then, a mixture of copper powder and molybdenum powder or molybdenum base metal powder.

粉砕して圧粉後、°不活性もしくは還元性雰囲気で鋼の
融点以下の温度で焼結して、この合金の加工素材である
ビレットを製造する。この際通常Q圧粉、焼結のプロセ
スの代わり)こホブドブレスプロセスや静水圧プレスプ
ロセス曇こよりてビレットを製造しても良い、な2.粉
末焼結法によりて本発明の麟加工素材を作る場合fこは
、含有させるモリブデンもしくはモリブデン合金の材料
として通常の粉末でなく、ファイバー状や吊片状のもの
を用いても曳い、また、この粉末焼結法によりてこの合
金のDロエ素材であるビレシトを製造する場合に。
After crushing and compacting, it is sintered in an inert or reducing atmosphere at a temperature below the melting point of steel to produce billets, which are processed materials of this alloy. At this time, instead of the usual Q powder compaction and sintering processes, billets may be produced by hobbed pressing process or isostatic pressing process.2. When producing the processed material of the present invention by the powder sintering method, it is possible to use fiber-like or hanging-like materials instead of ordinary powder as the material for the molybdenum or molybdenum alloy to be contained. This powder sintering method is used to manufacture birecito, which is a D-loe material of this alloy.

粉末の混合tこ先立りてモリブデンもしくはモリブデン
合金の粉末もしくはそのファイバーもしくは箔片の茂面
に、焼結工程での鋼マトリVクスとの密層性と良くし。
Before mixing the powder, the molybdenum or molybdenum alloy powder, its fibers, or foil pieces are coated on the surface of the powder to improve the closeness with the steel matrix Vx during the sintering process.

さら1こモリブデンもしくはモリブデン合金の粉末など
の銅マトリ菅りス中での相互の接触を透けてその分散状
態を改善するために、鋼の被INをしても良い。この被
1は電気メンキ。
In addition, the steel may be injected with powders of molybdenum or molybdenum alloys to improve their dispersion through mutual contact in the copper matrix tube. This one is Denki Menki.

m’4mi v’P、 真’l蒸、ii、 スi4 v
 ター  CV D 5PVD%溶射などの通常O方法
で行うことができる。
m'4mi v'P, true steaming, ii, sui4 v
It can be carried out by a normal O method such as thermal spraying with 5% PVD.

つぎ優こ、このaS法もしくは粉末焼結法で製造された
この発明の@合金の加工素材であるインゴットあるいは
ビレ菅トを加工して銅マトリVクス中に長く伸びたモリ
ブデンもしくはモリブデン合金の細い繊維もしくは薄板
が均一に分散した組織を得る。この加工は押出し、鍛造
、引抜き、圧延などの通常のカロエ方法によりて行うこ
とができる。
Next, Yuko, the processed material of the @alloy of this invention manufactured by this aS method or powder sintering method is an ingot or a billet tube, which is processed into a thin strip of molybdenum or molybdenum alloy that is elongated into a copper matrix V-x. Obtain a structure in which fibers or thin plates are uniformly dispersed. This processing can be carried out by conventional methods such as extrusion, forging, drawing, and rolling.

また、粉末焼結法により製造する場合には圧粉。Also, when manufactured by the powder sintering method, it is a compressed powder.

虜結。−次加工を一つのプロセスで行う熱間の押出しプ
ロセスもしくは熱間の静水圧押出しプロセスなど番こよ
り行うことができる。この時には、混合した原料粉末も
しくは混合、圧粉した原料粉末を銅もしくは鋼盆金製の
容器に封入した後に熱間の押出し、もしくは熱間の静水
圧押出しを行う。
Captive knot. - A hot extrusion process or a hot isostatic extrusion process in which the subsequent processing is carried out in one process can be carried out. At this time, hot extrusion or hot isostatic extrusion is performed after the mixed raw material powder or the mixed and pressed raw material powder is sealed in a container made of copper or steel.

インゴットあるいはビレシトの一次加工は熱間もしくは
1間で行りても良いが、それ以後の加工はなるべく!!
温に近い温度での冷間加工もしくは1八間加工によりて
行う方が好ましい、とくに最終加工工程に近い工程は、
冷間加工費こよりて行うことが望ましい、これは、あま
り加工温度が高いと鋼とモリブデンもしくはモリブデン
合金との変形抵抗に差があり過ぎるために2.銅マトリ
Vクスのみが変形してモリブデンもしくはモリブデン合
金の変形が少な(なt)、 iqマトリVクス中に長く
伸びたモリブデンもしくはモリブデン合金の細い繊維も
しくは薄板が均一に分散した組織が得られず。
The primary processing of the ingot or fillet can be done hot or for one time, but the subsequent processing should be done as much as possible! !
It is preferable to perform cold working at a temperature close to warm or 18-hour working, especially for processes close to the final processing step.
It is desirable to perform cold working due to the cost.This is because if the working temperature is too high, there will be too much difference in deformation resistance between steel and molybdenum or molybdenum alloy. Only the copper matrix Vx is deformed, and the molybdenum or molybdenum alloy is not deformed (t), and a structure in which elongated molybdenum or molybdenum alloy thin fibers or thin plates are uniformly dispersed in the iq matrix Vx cannot be obtained. .

したがりて高い強さを持つ合金が得られなくなるからで
ある。
This is because an alloy with high strength cannot be obtained.

本発明による合金曇こ2いて、さらに加工度を上げて細
い繊維もしくは薄板の分散した組織を発達させるためE
ζは、棒材の場合には正六角形の断面1ζ加工した後、
そO棒材多数を束ねて必要ならば鋼製のパイプにつめて
さらに減面加工を行う、あるいは板材の場合には板材の
多、数枚を重ねてさらφこ圧延加工を行うても良い。
The alloy according to the present invention can be further processed to develop a dispersed structure of thin fibers or thin plates.
In the case of a bar, ζ is a regular hexagonal cross section after processing 1ζ,
If necessary, a large number of bars may be bundled and packed in a steel pipe for further surface reduction processing, or in the case of plates, many or several plates may be piled up and further rolled. .

また本発明膠こおける銅合金の銅マトリVクス中には、
モリブデンもしくはモリブデン合金の繊維もしくは薄板
の他にさらにA ’IOs @ S i O1停の酸化
物、sic、’ric、wc等の炭化物、TIN、Nb
N等の窒化物の粉末を0.1体積チル5体積饅程度を分
散させても良い。
In addition, in the copper matrix V of the copper alloy in the glue of the present invention,
In addition to molybdenum or molybdenum alloy fibers or thin plates, A'IOs @ S i O1 oxides, carbides such as sic, 'ric, and wc, TIN, Nb
A powder of nitride such as N may be dispersed in an amount of about 0.1 volume chilled or 5 volumes chilled.

こうした物質は鋼中曝ζはほとんど固溶しないため、こ
れらをマトリシクス中に分散含有した銅合金の導を率の
低下は極めて少なく、その−力で銅合金の強度をより高
めることができる。な21本発明Q鋼合金のマドIJ 
Vクスである鋼中奢こはこうしたアルミナ等の、他1こ
不可避的不純物としての鉄。
Since these substances hardly dissolve in solid solution when exposed to steel, the conductivity of a copper alloy in which these substances are dispersed in a matrix decreases very little, and the strength of the copper alloy can be further increased by this strength. 21 Invention IJ made of Q steel alloy
In addition to alumina, iron is an unavoidable impurity in the steel that is V-based.

アルミ、シリコン、リン、イオウ、酸素等がiまれる場
合もあるが、こうした不純物及び本発明に用いたモリブ
デンやモリブデン合金の構成元素■鋼マドi vジス中
への固m看の総量は、やはり導電率の著しい低下を引き
起さないためにも、鋼マトリvクスに対してその0.5
重電、俤以下に制限される。これはこの範囲をこえると
その明マトリシクス自体の導電率が85%lAC3未満
の低いものとなりてしまうからである。
Aluminum, silicon, phosphorus, sulfur, oxygen, etc. may be included in some cases, but the total amount of these impurities and the constituent elements of molybdenum and molybdenum alloys used in the present invention is as follows: In order not to cause a significant decrease in conductivity, the steel matrix should be 0.5
Heavy electricity, limited to less than 俤. This is because, beyond this range, the conductivity of the bright matrix itself becomes as low as less than 85% lAC3.

以下にこの発明の銅合金2よびそのm遣方法のさらに詳
し一!l襟を実施例によりて説明する。
Further details of the copper alloy 2 of the present invention and its method of use are given below! The collar will be explained using examples.

(実施例) 実施例1 匝xmm■モリブデン線と匝5 m m GD @ @
とを体積化でモリブデンが20%になるよう昏ζ東ねて
消耗成極とし、低圧アルゴン雰囲気のアーク酵解により
匝53mmのインゴットを製造した。こ■インゴ、トの
表面と皮むきした後、厚さ5rnmの銅を用いてなるカ
ンに入れ真空引きし、その後カンを溶接して密封し、6
00℃にて8;lの刀ロ工率で押出し加工を行りた。こ
の押出し加工後、850’C,30分間の熱処理を行い
、丸棒の表面の鋼カンを取り除き、250℃の加工呂度
で引抜き刀ロエを行りて匝2mmの線材とした。その後
室@昏こおける機引き加工fこより &0.25 mm
ol材を得た。この線材の室温に8ける引gkg強さ、
導電率3よぴ銅マトリックス中音こ分散しているモリブ
デン繊維の平均直径と1fr−表に示す。
(Example) Example 1 Box x mm ■Molybdenum wire and box 5 mm GD @ @
The ingots were heated until the molybdenum content was 20% by volume and subjected to consummation polarization, and an ingot of 53 mm in size was produced by arc fermentation in a low-pressure argon atmosphere. After peeling the surface of the ingo and to, it is placed in a can made of copper with a thickness of 5 nm and vacuumed, and then the can is welded and sealed.
Extrusion processing was carried out at 00° C. and a throughput of 8:1. After this extrusion process, a heat treatment was performed at 850'C for 30 minutes to remove the steel ring on the surface of the round bar, and a drawing knife roe was performed at a processing temperature of 250°C to obtain a wire rod with a 2 mm diameter. Machine processing in the rear chamber @Kokooi &0.25 mm
An ol material was obtained. The tensile gkg strength of this wire at room temperature is
The average diameter of molybdenum fibers dispersed in a copper matrix with a conductivity of 3 and 1fr is shown in the table.

Jm%J2 匝1mrnのモリブデン線と径5mmの銅棒とを体積比
でモリブデンが5儂になるように東ねて消耗電極とし実
施例1と同様ξこしてVh O,25m mの線材とし
た。ただし1本実施例においては押出し〃ロエ後の熱処
理は行わなかりた。この線材の室温における引張ジ強さ
、導電率8よぴ鋼マ) リvクス中に分散しているモリ
ブデン繊維の平均直径とを表に示す。
Jm%J2 A molybdenum wire of 1 mrn and a copper rod of diameter 5 mm were laid together so that the volume ratio of molybdenum was 5 mm to make a consumable electrode, and the same as in Example 1 was strained to make a wire of Vh O, 25 mm. . However, in this example, no heat treatment was performed after extrusion. The tensile strength of this wire at room temperature and the average diameter of the molybdenum fibers dispersed in the wire are shown in the table.

実施例3 11mmのモリブデン−1O重t−−タンゲステン合金
砿と’f45 rn m O@俸とを体積比でモリブデ
ンが20%になるように束ねて+6耗電極とし実施例1
と同様にして匝0.25mm(D線材とした。ただし1
本実施例に8いては押出し加工後の熱処理条件は930
℃、1時間とした。この線材の室温lこ2ける引張り強
さ、導電率および鋼マトリVクス中に分散しているモリ
ブデン合金繊維の平均直径とを表に示す。
Example 3 11 mm molybdenum-1O heavy t--tungsten alloy rod and 'f45 rn m O @ metal were bundled so that the volume ratio of molybdenum was 20% to form a +6 wear electrode Example 1
In the same manner as above, the diameter was 0.25 mm (D wire material was used. However, 1
In this example, the heat treatment conditions after extrusion were 930
℃ for 1 hour. The tensile strength and electrical conductivity of this wire at room temperature and the average diameter of the molybdenum alloy fibers dispersed in the steel matrix are shown in the table.

実施例4 宙1mrnのモリブデン−3重量帰ニオブ曾金線と45
 m rn (D銅棒とを体積比でモリブデンが20−
になるように東ねて消耗′1極とし実施例1と同様にし
て径0.25mmの線材とした。ただし、本実施例に3
いては押出し加工後の熱処理条件は930’C,1時間
とした。この線材の室@]こおける引張り強さ、導電率
および鋼マ) +1ツクス中に分散しているモリブデン
背金繊維の平均直径とを民に示す。
Example 4 1 mrn molybdenum-3 weight niobium wire and 45
m rn (The volume ratio of molybdenum to D copper rod is 20-
A wire rod with a diameter of 0.25 mm was made in the same manner as in Example 1, and the wire rod was laid out so that the consumable wire had one pole. However, in this example, 3
The heat treatment conditions after extrusion were 930'C and 1 hour. The tensile strength, electrical conductivity, and average diameter of the molybdenum backing fibers dispersed in the wire are shown to the public.

実施例5 龜1mmのモリブデ;/ −2,5はi1%ニオブ−0
、05−4臆声炭素合金線と匝5mmの銅棒と6本積比
でモリブデンが20声齋ζなるよう暑こ束ねて消耗電極
とし′44施例1と同様Eこして匝0.25mrnの線
材とした。ただし1本実施例に2いては押出し加工後の
熱処理条件は930℃、1時間とした。
Example 5 Molybdenum with a diameter of 1 mm; / -2,5 is i1% niobium-0
, 05-4 thin carbon alloy wire, 5 mm copper rod, and 6 pieces were bundled together so that the molybdenum content was 20 mm, and used as a consumable electrode. It was made into a wire rod. However, in Example 1 and Example 2, the heat treatment conditions after extrusion were 930° C. for 1 hour.

この線材の室@督こおける引張り強さ、導電率および鋼
マトリツクス中1こ分散しているモリブデン合金繊維の
平均直lと2表(ζ示す。
The tensile strength and electrical conductivity of this wire are shown in Table 2 and the average tensile strength and electrical conductivity of the molybdenum alloy fibers dispersed in the steel matrix.

実施列6 平均粒匝25μmの銅粉末と体積比で20%の平均粒匝
5μmのモリブデン粉末とを混合、圧粉した後に、−気
圧の水素気流中で950℃、2時間の熱処理を行りて焼
結し、ビレvトを製造した。
Implementation row 6 Copper powder with an average grain size of 25 μm and molybdenum powder with an average grain size of 5 μm at a volume ratio of 20% were mixed and pressed, and then heat treated at 950° C. for 2 hours in a hydrogen stream at −atmosphere. and sintered to produce a billet.

ビンットを実施例1と同様1こ銅製のカンに射入した後
、押出し加工カンの除去、熱処理、引抜き、線引きφこ
よV匝Q、25mmfiJl材とした。cの線材■意@
(こおける引張り強さ、導電率8よび銅マトリvクス中
に分散しているモリブデン繊維0平均yX色とを茨に示
す。
After the bottle was injected into a single copper can as in Example 1, the extruded can was removed, heat treated, drawn, and wire was drawn to obtain a 25 mm fi Jl material. c wire rod ■ meaning @
(The thorns indicate the tensile strength, conductivity 8, and 0 average yX color of molybdenum fibers dispersed in the copper matrix.

比較例1 市販のアークm購によりて製造された銅−ニオブ付会に
オブ20体積%含有)のI!fA50rnm■インゴy
ト1こスェージ鍛造、引抜き加工および線引き加工¥:
yaシて匝0.25mm0@材とした。この線材の室@
tcおける引張り強さ、導電率および鋼マトリVクス中
に分散しているニオブ纜維の平均直径とを表に示す。
Comparative Example 1 I! of copper-niobium (containing 20% by volume) produced by commercially available arc m! fA50rnm ■ Ingo y
To1 swage forging, drawing and wire drawing ¥:
It was made into a 0.25 mm material. This wire room @
The table shows the tensile strength at tc, the electrical conductivity, and the average diameter of the niobium fibers dispersed in the steel matrix Vx.

比較例2 実施例1と同様にして20体積斧のモリブデンを含有す
る鋼−モリブデン合金のアークsf!4インゴvトに熱
間の押出し加工、熱処理を施した後。
Comparative Example 2 Arc sf of steel-molybdenum alloy containing molybdenum of 20 volume axes in the same manner as in Example 1! 4 After hot extrusion and heat treatment on the ingot.

切削加工によりfl+2mmの九−1を製造した。ざら
屹冷関の線引き加工により径0.25 m mの線材と
した。この線材Q室県昏ζ2ける引張り道さ、導電lc
2よび−マトリVクス中に分散しているモリブデン繊維
の平均直径とを表Eこ示す。
9-1 with fl+2 mm was manufactured by cutting. A wire rod with a diameter of 0.25 mm was obtained by a wire drawing process using a zarahane reiseki process. The tension path through this wire Q2 is conductive lc
2 and - the average diameter of the molybdenum fibers dispersed in the Matrix Vx are shown in Table E.

比較ガ3 実施例1と同様にしてモリブデン35体積%を含有する
鋼−モリブデン合金をアークm解によりて製造した。イ
ンゴvトを熱間押出しおよび引抜き督こよりて加工した
ところ加工中にクラVりを生じ、線材とすることが出来
なかうた。
Comparative Ga 3 A steel-molybdenum alloy containing 35% by volume of molybdenum was produced in the same manner as in Example 1 by arc m-solution. When the ingot was processed by hot extrusion and drawing, warping occurred during processing, and the wire could not be made into a wire rod.

比較例4 実施例1と同様−こして鋼中にモリブデン−1O重1i
s=オブ合金を20体積′4き有する銅合金を了−り酵
解によりて製造した。インゴFトを熱間押出しおよび引
抜きによって加工したところ加工中にクラVりを生じ%
線材とすることが出来なかりた。
Comparative Example 4 Same as Example 1 - Molybdenum-1O weight 1i in strained steel
A copper alloy containing 20 volumes of s=obium alloy was prepared by fermentation. When the ingot F was processed by hot extrusion and drawing, cracks occurred during processing.
It was not possible to make it into wire rod.

比較例5 径1mm■鉄−0.45重量−炭素合金線と匝5mm0
鋼棒とを体積比で鉄合金が20斧になるように東ねて消
耗電極とし、低圧アルゴン雰囲気中07−ク尋解により
匝53mm■イ/ゴVトを製造した。インゴットのi面
を皮むきした後、厚さ5mmのカンに入れ真空引きし、
カンを宕接して密封し、600℃にて8:10加工率で
押出し加工を行りた。押出し加工後、850℃、30分
間■熱処理を行い、丸棒の表面の鋼カンと取9除き。
Comparative Example 5 Diameter 1mm ■ Iron - 0.45 Weight - Carbon alloy wire and bowl 5mm0
A consumable electrode was prepared by disposing a steel rod so that the volume ratio of the iron alloy was 20 mm, and a 53 mm diameter I/G V was produced by melting in a low-pressure argon atmosphere. After peeling the i-side of the ingot, it is placed in a 5mm thick can and vacuumed.
The can was sealed and extruded at 600° C. with a processing ratio of 8:10. After the extrusion process, heat treatment was performed at 850°C for 30 minutes to remove the steel ring and holes on the surface of the round bar.

250℃の加工昌度で引抜き力ロエを行りて匝2mrn
の線材とした。その後室温における線引き加工により匝
0.25mmの線材を得た。ccll材の室屯に2ける
引張り強さ、導電率および鋼マトリツクス中に分散して
いる鉄合金CD平均直径とを畏昏こ示す。
The pulling force is 2mrn at 250℃ machining temperature.
It was made into a wire rod. Thereafter, a wire rod with a size of 0.25 mm was obtained by drawing at room temperature. The tensile strength, electrical conductivity and average CD diameter of the iron alloy dispersed in the steel matrix are shown in the graph of the CCLL material.

茨 〔発明O効果〕 上述の実施例および比較例から分かるように。thorns [Invention O effect] As can be seen from the above examples and comparative examples.

この発明の鋼合金は極めて高い機械的強さと高い導電性
とを兼ね備えているのでその工業的価値は極めて大であ
る。
Since the steel alloy of this invention has both extremely high mechanical strength and high electrical conductivity, its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 鋼よりなるマトリクス中に、平均の直径2μm以下でア
スペクト比25以上のモリブデン繊維、もしくは鋼中へ
の最大の固溶度が0.5重量%以下である元素の1種類
以上を含有するモリブデン合金繊維を、0.5〜30体
積%分散してなることを特徴とする高強度鋼合金。
A molybdenum alloy containing, in a matrix made of steel, molybdenum fibers with an average diameter of 2 μm or less and an aspect ratio of 25 or more, or one or more elements whose maximum solid solubility in steel is 0.5% by weight or less. A high-strength steel alloy comprising fibers dispersed in an amount of 0.5 to 30% by volume.
JP6075289A 1989-03-15 1989-03-15 High strength copper alloy Pending JPH02240230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6075289A JPH02240230A (en) 1989-03-15 1989-03-15 High strength copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6075289A JPH02240230A (en) 1989-03-15 1989-03-15 High strength copper alloy

Publications (1)

Publication Number Publication Date
JPH02240230A true JPH02240230A (en) 1990-09-25

Family

ID=13151318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6075289A Pending JPH02240230A (en) 1989-03-15 1989-03-15 High strength copper alloy

Country Status (1)

Country Link
JP (1) JPH02240230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472709B2 (en) * 2015-12-11 2019-11-12 Apple Inc. High strength, high conductivity electroformed copper alloys and methods of making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472709B2 (en) * 2015-12-11 2019-11-12 Apple Inc. High strength, high conductivity electroformed copper alloys and methods of making

Similar Documents

Publication Publication Date Title
JP5239022B2 (en) High strength and high toughness magnesium alloy and method for producing the same
EP0244949B1 (en) Manufacturing of a stable carbide-containing aluminium alloy by mechanical alloying
US20160355917A1 (en) High strength and high toughness metal and method of producing the same
EP1640466B1 (en) Magnesium alloy and production process thereof
EP0187235B1 (en) Production of increased ductility in articles consolidated from a rapidly solidified alloy
US7767138B2 (en) Process for the production of a molybdenum alloy
US5273569A (en) Magnesium based metal matrix composites produced from rapidly solidified alloys
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
EP0079755B1 (en) Copper base spinodal alloy strip and process for its preparation
JP6199897B2 (en) Powder mixture for producing nickel-titanium-rare earth metal (Ni-Ti-RE) sintered alloys
CN109706363B (en) Eutectic high-entropy alloy and preparation method thereof
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
KR20180071399A (en) Method for production of alloyed titanium welding wire
EP4083244A1 (en) Heat-resistant powdered aluminium material
US20090311123A1 (en) Method for producing metal alloy and intermetallic products
RU2722378C2 (en) Composite materials with improved mechanical properties at high temperatures
CN111575572A (en) B-doped TiZrNb multi-principal-element alloy and preparation method thereof
JP5070617B2 (en) Tantalum-silicon alloy and products containing the same and method of manufacturing the same
JPS5935642A (en) Production of mo alloy ingot
CN113881871B (en) Ti-W-Nb intermediate alloy and preparation method thereof
CN115679154A (en) Ti-W-Ta-Nb intermediate alloy and preparation method thereof
JPH02240230A (en) High strength copper alloy
EP0801138A2 (en) Producing titanium-molybdenum master alloys
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
RU2624562C1 (en) METHOD OF PRODUCING BILLETS FROM ALLOYS BASED ON INTERMETALLIDES OF Nb-Al SYSTEM