JPH02239919A - Production of longitudinal direction strengthened biaxially oriented polyether ketone film - Google Patents

Production of longitudinal direction strengthened biaxially oriented polyether ketone film

Info

Publication number
JPH02239919A
JPH02239919A JP5981289A JP5981289A JPH02239919A JP H02239919 A JPH02239919 A JP H02239919A JP 5981289 A JP5981289 A JP 5981289A JP 5981289 A JP5981289 A JP 5981289A JP H02239919 A JPH02239919 A JP H02239919A
Authority
JP
Japan
Prior art keywords
film
stretching
biaxially oriented
transverse
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5981289A
Other languages
Japanese (ja)
Inventor
Kinji Hasegawa
欣治 長谷川
Yasuhiro Saeki
佐伯 靖浩
Hisashi Hamano
浜野 久
Hideo Kato
秀雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP5981289A priority Critical patent/JPH02239919A/en
Publication of JPH02239919A publication Critical patent/JPH02239919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize film formation properties by firstly stretching an unstretched film of polyether ketone in the lengthwise direction so that specified birefringent index is obtained and then stretching this film in the transverse direction and furthermore performing retardation treatment and thereafter restretching the film in the lengthwise direction. CONSTITUTION:An unstretched film of polyether ketone I is stretched to the lengthwise direction so that birefringent index is regulated to 0.02 or more and less than 0.07. The temp. in longitudinal stretching is regulated to transition temp. or more of glass and 200 deg.C or below. The longitudinally stretched film is stretched to the transverse direction in stretching magnification of 3.0 times or more so that the refractive index of the transverse direction is made larger than the refractive index of the lengthwise direction. Furthermore the biaxially oriented film after transverse stretching is thermally fixed at the transverse stretching temp. or more and 320 deg.C or below and retarded (shrinkage retardation) at 3-30% to the transverse direction (width direction). Thereafter this film is restretched in the lengthwise direction at the temp. not higher than the above-mentioned thermally fixing temp. This film is thermally fixed in accordance with necessity after longitudinal restretching. In such a way, the longitudinal direction strengthened biaxially oriented polyether ketone film which has both >=600kg/mm<2> Young's modulus of the lengthwise direction and <=10% thickness irregularity of the lengthwise and transverse directions is obtained in a stable processing stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は縦方向強力化二軸配向ボリエーテルケトンフィ
ルムの製造方法に関し、更に詳しくは縦横方向の厚み斑
か小さく、かつ縦方向の強度に優れた二軸配向ボリエー
テルケ1〜ンフィルムの製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a biaxially oriented polyetherketone film strengthened in the longitudinal direction, and more specifically, to a method for producing a biaxially oriented polyetherketone film that is strengthened in the longitudinal direction, and more specifically, has a method for producing a biaxially oriented polyetherketone film that is strengthened in the longitudinal direction and has small thickness unevenness in the longitudinal and lateral directions, and has high strength in the longitudinal direction. The present invention relates to a method for producing an excellent biaxially oriented polyether carbon film.

(従来技術とその問題点) 従来から、二軸配向ポリエチレンテレフタレー1・フィ
ルムは、その機械的性質,電機的性質,耐熱性1耐薬品
製等に優れていることから、工業用途に広く用いられて
いる。
(Prior art and its problems) Biaxially oriented polyethylene terephthalate film has been widely used in industrial applications due to its excellent mechanical properties, electrical properties, heat resistance, and chemical resistance. It is being

しかしながら、近年、用途によってはフィルムの要求特
性が高まり、また二軸配向ポリエチレンテレフタレート
フィルムの特性にも限界かあることから、より特性の優
れたフィルムが求められている。例えは、二軸配向ポリ
エチレンデレフタレー1・フィルムは、長期耐熱性がE
種(長期耐熱温度:125℃)ないしB種(同=130
℃)であり、モーター絶縁,電線被覆材料として用いる
場合この長期耐熱性の点からモーターの小型化が制限さ
れるという問題が生じている。また、上記フィルムをコ
ンデンザー用途に用いる場合、85℃近くから誘電正接
が増大し、使用温度の制限をもたらしている。更にまた
、上記フィルムをフレキシブルプリンド回路基盤として
用いる場合、ハンク耐熱性が問題となり、その展開が制
限されている。このようなことから、より耐熱性の優れ
たフィルムが求められている。
However, in recent years, the required properties of films have increased depending on the application, and there are limits to the properties of biaxially oriented polyethylene terephthalate films, so there is a demand for films with even more excellent properties. For example, biaxially oriented polyethylene derephthalate 1 film has a long-term heat resistance of E
Type (long-term heat resistance temperature: 125℃) or B type (long-term heat resistance temperature: 130℃)
℃), and when used as motor insulation or wire coating material, there is a problem in that miniaturization of motors is restricted due to long-term heat resistance. Further, when the above film is used for a capacitor, the dielectric loss tangent increases from around 85° C., which limits the operating temperature. Furthermore, when the above-mentioned film is used as a flexible printed circuit board, the heat resistance of the hank becomes a problem, and its development is limited. For these reasons, there is a demand for films with even better heat resistance.

ところで、強靭で優れた耐熱性を有する結晶性熱可塑性
ボリマーとしてポリエーテルエーテルケ}−ンが知られ
(特公昭60−32642号,特公昭61−10486
号)、このフィルム化の検討,提案がされている。例え
ば、特開昭57−137166号公報には、ポリエーテ
ルエーテルケンI〜は耐熱性を活かした用途分野、すな
わちモーター用絶縁フィルム,1〜ランス用絶縁フィル
ム.コンデンサー用絶縁フィルム,フレキシブルプリン
1一回路基板などへの展開が期待されるとして、圧延法
で一軸方向に配向したフィルムを製造ずる方法が記載さ
れている6特開昭58−63417号公報には、等方性
二軸配向ボリエーテルエーデルケトンフィルムの製造方
法が記載されている。
By the way, polyetherethercane is known as a crystalline thermoplastic polymer that is tough and has excellent heat resistance (Japanese Patent Publication No. 60-32642, Japanese Patent Publication No. 61-10486).
(No.), the development of this film is being considered and proposed. For example, JP-A-57-137166 discloses that polyetheretherkene I~ is used in fields that take advantage of its heat resistance, ie, insulating films for motors, 1~ insulating films for lances. 6 JP-A-58-63417 describes a method for manufacturing a uniaxially oriented film using a rolling method, which is expected to be applied to insulating films for capacitors, flexible printed circuit boards, etc. , a method for producing isotropic biaxially oriented polyether ether ketone films is described.

特開昭60−93625号公報には、圧延法で二軸配向
した垂直磁化用ポリエーデルエーデルケ1〜ンフィルム
が記載されている。
Japanese Unexamined Patent Publication No. 60-93625 describes a perpendicularly magnetized polyester edelken film which is biaxially oriented by a rolling method.

しかしながら、本発明者らの研究結果によると、これら
二軸配向フィルムは高強力化フィルムてはなくヤング率
が低いこと、またこれら方法によっては薄膜化が難しい
ことから、該二軸配向フィルムの用途がヤング率のあま
り要求されない分野に限られてしまうという問題のある
ことが明らかになった6 また、従来よりポリエーテルゲトンの縦方向高強力化二
軸配向フィルムの製造法は提案されているが、この方法
には厚み斑の点で問題かあり、厚み斑を良くしようとす
ると切断が多発し、工程の安定性を損ねるという問題の
あることが明らかとなった6 (問題点を解決するだめの手段) 本発明考らは、ポリエーテルケトン樹脂特にボリエーテ
ルケ1・ンを用いて、縦方向の機械的強度に優れ、厚み
斑か小さくかつ安定して縦方向強力化二軸配向フィルム
を製造する方法を鋭意ω■究した結果、ポリエーテルゲ
トン未延伸フィルムを特定の複屈折率になるようにまず
縦延伸し、次いで横延伸し、更に弛緩処理してから再度
縦延伸することによって縦方向強力化二軸配向ボリエー
テルケトンフィルムを、安定した成膜性で、製造し得る
ことを見出し、本発明を完成するに至った。
However, according to the research results of the present inventors, these biaxially oriented films are not high-strength films and have a low Young's modulus, and it is difficult to make thin films using these methods. It has become clear that there is a problem in that the Young's modulus is limited to fields where Young's modulus is not particularly required6.Furthermore, although methods for producing biaxially oriented polyethergetone films with high strength in the longitudinal direction have been proposed, It has become clear that this method has problems in terms of thickness unevenness, and that attempting to improve the thickness unevenness results in frequent cutting, which impairs the stability of the process. The present invention uses polyetherketone resin, particularly polyetherketone resin, to produce a biaxially oriented film with excellent longitudinal mechanical strength, small thickness unevenness, and stability in the longitudinal direction. As a result of intensive research into the method, we found that the unstretched polyethergetone film was first stretched longitudinally to a specific birefringence, then stretched transversely, further subjected to a relaxation treatment, and then stretched again longitudinally, thereby increasing its strength in the longitudinal direction. The present inventors have discovered that it is possible to produce a biaxially oriented polyetherketone film with stable film formability, and have completed the present invention.

すなわち、本発明は、ポリエーテルケトン未延仲フィル
ムをガラス転移温度以上200℃以下の温度で複屈折率
が0.02以上0,07未満となるように延卸し、次い
で横方向の屈折率か縦方向の屈折率よりも大きくなるよ
うにかつ延伸倍率3.0倍以上で横延伸して二軸配向フ
ィルムとなし、更にこの軸配向フィルムを横延伸温度以
」二、320゜C以下の温度で熱固定ずるとともに横方
向に3〜30%弛緩してから上記熱固定温度以下で再度
縦延伸し、しかる後、必要に応じて熱固定し、縦方向の
ヤング率がf300mr/一以上でかつ、縦,横方向の
厚み斑が10%以下のフィルムとすることを特徴とする
縦方向強力化二軸配向ボリエーテルケトンフィルムの製
造方法である。
That is, in the present invention, an unrolled polyetherketone intermediate film is rolled so that the birefringence becomes 0.02 or more and less than 0.07 at a temperature higher than the glass transition temperature and lower than 200°C, and then the refractive index in the transverse direction is A biaxially oriented film is obtained by horizontally stretching the refractive index in the longitudinal direction at a stretching ratio of 3.0 times or more, and the axially oriented film is then heated at a temperature of 2,320°C or less above the horizontal stretching temperature. After being heat-set and relaxed by 3 to 30% in the transverse direction, it is longitudinally stretched again at below the above heat-setting temperature, and then heat-set as necessary, so that the Young's modulus in the longitudinal direction is f300 mr/1 or more and , a method for producing a biaxially oriented polyetherketone film strengthened in the longitudinal direction, characterized in that the film has thickness unevenness of 10% or less in the longitudinal and lateral directions.

本発明で用いるポリエーテルケトンとは、下記の′!!
4造単位 を単独で、また該単位と他の横成単位からなるボリマー
である6 この他の構成単位としては、例えは ?か上げられる。上記楊成単位において、Aは直接結合
、酸素,−SO■−, 一CO−または二価の低級脂肪
族炭化水素基であり、QおよびQ′は同一であっても相
違してもよく、− C Q−またはS O 2−であり
、nは0または1である。これらボリマーは、特公昭6
0−32642号公報,特公昭61−10486号公報
,特開昭57−137116号公報等に記載されている
。代表的なボリマーとしては、構成単位 からなるボリマー(ポリエーテルエーテルケ1・ン樹脂
)が挙けられる。
The polyetherketone used in the present invention is the following '! !
It is a polymer consisting of the 4 structural unit alone or this unit and other lateral units.6 What are some examples of other structural units? can be raised. In the Yang Cheng unit, A is a direct bond, oxygen, -SO■-, monoCO- or a divalent lower aliphatic hydrocarbon group, and Q and Q' may be the same or different; - C Q- or SO 2-, and n is 0 or 1. These polymers are
It is described in Japanese Patent Publication No. 0-32642, Japanese Patent Publication No. 61-10486, Japanese Patent Application Laid-Open No. 57-137116, etc. A typical polymer includes a polymer consisting of structural units (polyether ether ken resin).

ポリエーテルゲ1〜ンには、流動性改良などの目的でポ
リアリーレンボリエーテル,ポリスルホンボリアリレー
ト,ポリエステル,ポリカーボネート等の樹脂をブレン
ドしても良く、また滑剤,安定剤,酸化防止剤,紫外線
吸収剤等の如き添加剤を含有させても良い。
Polyether genes 1 to 1 may be blended with resins such as polyarylene polyether, polysulfone polyarylate, polyester, and polycarbonate for the purpose of improving fluidity, and may also be blended with lubricants, stabilizers, antioxidants, ultraviolet absorbers, etc. It may also contain additives such as.

好ましい滑剤としては、■炭酸カルシウム,■二酸化ケ
イ素(水和物.ケイ藻土.ケイ砂,石英等を含む)、■
アルミナ、■SiO2分を30重1%以上含有するケイ
酸塩(例えば非晶質或は結晶質の粘土鉱物、アルミノシ
リケート化合物(焼成物や水和物を含む)、温石綿,ジ
ルコン.フライアッシュ等)、■Mg,Zn,Zr,及
びT iの酸化物、■C a. ,及ひBaの硫酸塩、
■Li,Na,及びCaのリン酸塩(1水累塩や2水素
塩を含む)、■Li,Na,及びKの安息香酸塩、■C
a,Ba.,Zn,及びM nのデレフタル酸塩、11
DMg.Ca.,Ba,Zn,Cd,Pb,SrMn,
Fe,Co,及びN5のチタン酸塩、■Ba.及びpb
のクロム酸塩、0炭素(例えはカーボンブラック,タラ
ファイト等)、■ガラス(例えはガラス粉,ガラスしー
ス等)、[株]M g C O 3、■ホタル石,及び
@ZnSが例示される。特に好ましいものとして、球状
シリカ,シリコン樹脂粒子,無水ケイ酸,含水ケイ酸,
酸化アルミニウム,ケイ酸アルミニウム(焼成物,水和
物等を含む)燐酸1リチウム,燐酸3リチウム,燐酸ナ
トリウム,燐酸カルシウム,硫酸バリウム,酸化チタン
,安,蓼、香酸リチウム,これらの化合物の複塩(永和
物を含む).ガラス粉,粘土(カオリン,ベントナイ1
・,白土等を含む),タルク,ゲイ藻上等が挙げられる
6 ポリエーテルケトンは、上述の通り、それ自体公知であ
り、且つそれ自体公知の方法で製造することができる6 上記ポリエーテルケトンは、見かけの溶融粘度が温度3
80℃,見かけの剪断速度1000sec−1の条件で
500ボイス〜10000ボイス、更には1000ボイ
ズ〜5000ボイスの範囲にあるものか、製膜性,フィ
ルム特性の点から好ましい6 本発明で用いる未延仲フィルムは、かかるポリエーテル
ケトンを従来から知られている手段で溶融成膜し、急冷
固化することによって得ることができ、実質的に無配向
の状態にある。急冷固化において静電印荷法を用いるこ
とは好ましい。
Preferred lubricants include: ■ Calcium carbonate, ■ Silicon dioxide (including hydrates, diatomaceous earth, silica sand, quartz, etc.), ■
Alumina, silicates containing 30wt.1% or more of SiO2 (e.g. amorphous or crystalline clay minerals, aluminosilicate compounds (including calcined products and hydrates), hot asbestos, zircon, fly ash) etc.), ■Oxides of Mg, Zn, Zr, and Ti, ■C a. , and sulfate of Ba,
■Li, Na, and Ca phosphates (including monohydrate and dihydrogen salts), ■Li, Na, and K benzoates, ■C
a, Ba. , Zn, and M n dephthalate, 11
DMg. Ca. , Ba, Zn, Cd, Pb, SrMn,
Titanate of Fe, Co, and N5, ■Ba. and pb
chromate, 0 carbon (e.g. carbon black, taraphite, etc.), ■Glass (e.g. glass powder, glass sheath, etc.), M g C O 3, ■ Fluorite, and @ZnS. Illustrated. Particularly preferred are spherical silica, silicone resin particles, anhydrous silicic acid, hydrated silicic acid,
Aluminum oxide, aluminum silicate (including calcined products, hydrates, etc.) monolithium phosphate, trilithium phosphate, sodium phosphate, calcium phosphate, barium sulfate, titanium oxide, ammonium, chloride, lithium fragrant, complexes of these compounds Salt (including permanent salts). Glass powder, clay (kaolin, bentonite 1
・, including white clay, etc.), talc, Geijojo, etc.6 As mentioned above, polyetherketones are known per se, and can be produced by methods known per se.6 The above polyetherketones The apparent melt viscosity is at temperature 3
500 to 10,000 voices, more preferably 1,000 to 5,000 voices under the conditions of 80° C. and an apparent shear rate of 1,000 sec-1, is preferred from the viewpoint of film formability and film properties.6 The unrolled material used in the present invention The intermediate film can be obtained by melting and forming the polyetherketone into a film by a conventionally known method and rapidly solidifying it, and is in a substantially non-oriented state. It is preferable to use an electrostatic loading method in the rapid solidification.

本発明においては、先ず、ポリエーテルケ)・ン未延伸
フィルムを複屈折率が0.02以上0.07未満となる
ように縦方向に延伸する。この縦延伸は、以後、前段延
伸と呼ぶことがある。この複屈折率か0.02未満では
配向効果かなく、横延伸後の熱固定を行なったときにフ
ィルムのエッジ部分が結晶化してしまい、横延伸及び又
は熱固定時にフィルムの切断が多発する。一方、複屈折
率か0,07以上となると、再度の縦延伸時フィルムの
切断か多発し、工程の安定性か損なわれる。複屈折率は
、好ましくは0.06未満、更に好ましくは0,05未
満である。
In the present invention, first, an unstretched film of polyetherketone is stretched in the longitudinal direction so that the birefringence becomes 0.02 or more and less than 0.07. This longitudinal stretching may be hereinafter referred to as pre-stretching. If the birefringence is less than 0.02, there will be no orientation effect, and the edge portions of the film will crystallize when heat setting is performed after transverse stretching, resulting in frequent breakage of the film during transverse stretching and/or heat setting. On the other hand, if the birefringence is 0.07 or more, the film will be frequently cut during longitudinal stretching again, impairing the stability of the process. The birefringence is preferably less than 0.06, more preferably less than 0.05.

前段縦延伸温度は、樹脂のガラス転移温度以上200℃
以下であり、通常145℃〜200℃であれば良いか、
厚み斑の点から見ると180℃以下か好ましく、更に好
ましくは170℃以下である。
The longitudinal stretching temperature in the first stage is 200°C above the glass transition temperature of the resin.
or below, and normally 145℃ to 200℃ is sufficient.
From the viewpoint of thickness unevenness, the temperature is preferably 180°C or lower, more preferably 170°C or lower.

本発明においては、次に、前段樅延仲したフィルムを横
方向の屈折率か縦方向の屈折率よりも大きくなるように
かつ延伸倍率3,0倍以上で横延伸する。横延伸倍率は
3.2倍以」二が好ましく、また、横延伸温度は145
〜200°C,更には150〜170℃であることが好
ましい。横方向の屈折率か縦方向の屈折率と同じか小さ
いと、再縦延伸時にフィルム切断か多発し、製膜か困難
となる。また横方向の延伸倍率が3.0倍未満であると
、横方向のヤング率か低くなり、例えば磁気用途等に用
いる場合デープの端面が容易に折れてしまう等が生じ、
好ましくない。さらに厚み斑も悪く、好ましくない。
In the present invention, the film that has been stretched in the previous stage is then stretched in the transverse direction so that the refractive index in the transverse direction is greater than the refractive index in the longitudinal direction and at a stretching ratio of 3.0 times or more. The lateral stretching ratio is preferably 3.2 times or more, and the lateral stretching temperature is 145
-200°C, more preferably 150-170°C. If the refractive index in the transverse direction is the same as or smaller than the refractive index in the longitudinal direction, the film will be cut frequently during longitudinal re-stretching, making it difficult to form a film. Furthermore, if the stretching ratio in the lateral direction is less than 3.0 times, the Young's modulus in the lateral direction will be low, and for example, when used for magnetic purposes, the end face of the tape may easily break.
Undesirable. Furthermore, thickness unevenness is also bad, which is not preferable.

本発明においては、更に、横延伸後の二軸配向フィルム
を横方向延伸温度以」−320℃以下の温度で熱固定す
るとともに横方向(13方向)に3〜30%弛緩(収縮
弛緩)させ、その後、上記熱固定温度以下の温度で再度
樅延伸をする6」二記熱固定温度は150〜300℃,
更には160〜280℃であることか好ましく、また横
方向弛緩は4〜20%.更には5〜15%であることが
好ましい。再度の縦延伸(以後再縦延伸と呼ぶことがあ
る)の温度は250℃以下、更には200℃か好ましい
。またこの温度は160℃以−F,更に180℃以上,
特に190℃以上が好ましい6再編延伸の倍率は1.2
〜3.0倍,更には1.25〜2.75倍,特に1.3
〜2,7倍であることが好ましい。この再縦延伸倍率は
得られるフィルムの物性,前段縦延伸の倍率等を考慮し
、上記範囲から選ぶことが好ましい。
In the present invention, the biaxially oriented film after transverse stretching is further heat-set at a temperature of -320°C or lower than the transverse stretching temperature and relaxed (contracted and relaxed) by 3 to 30% in the transverse direction (13 directions). , Then, fir stretching is performed again at a temperature below the above heat setting temperature.
More preferably, the temperature is 160 to 280°C, and the lateral relaxation is 4 to 20%. Furthermore, it is preferably 5 to 15%. The temperature for the second longitudinal stretching (hereinafter sometimes referred to as longitudinal re-stretching) is preferably 250°C or lower, more preferably 200°C. In addition, this temperature is 160℃ or more -F, furthermore 180℃ or more,
In particular, the magnification of 6-realignment stretching, which is preferably 190°C or higher, is 1.2.
~3.0 times, further 1.25 to 2.75 times, especially 1.3
It is preferable that it is ~2.7 times. This longitudinal re-stretching ratio is preferably selected from the above range, taking into account the physical properties of the obtained film, the ratio of the previous longitudinal stretching, etc.

再縦延伸後は、必要に応じて熱固定すると良い。After longitudinal re-stretching, heat setting may be performed as necessary.

熱固定温度は200〜360℃,更には230〜350
℃特に240〜340’Cが好ましい。熱固定時間は1
〜100秒,更には5・〜80秒,特に10〜60秒が
好ましい。
Heat setting temperature is 200-360℃, even 230-350℃
C. Especially preferably 240 to 340'C. Heat setting time is 1
-100 seconds, more preferably 5-80 seconds, especially 10-60 seconds.

かくして、縦方向のヤング率か600kg/一以−Fで
、かつ縦,横方向の厚さ斑が10%以下の縦方向強力化
二軸配向ポリエーテルケトンフィルムが安定した工程で
得られる。
Thus, a longitudinally strengthened biaxially oriented polyetherketone film having a Young's modulus in the longitudinal direction of 600 kg/1-F and thickness unevenness in the longitudinal and transverse directions of 10% or less can be obtained in a stable process.

二軸配向ボリエーテルケトンフィルムの厚みは1〜12
5μm,更には1〜75μm,特に1〜50μmか好ま
しい。
The thickness of the biaxially oriented polyetherketone film is 1 to 12
5 μm, more preferably 1 to 75 μm, particularly 1 to 50 μm.

本発明の二軸配向ボリエーテルケトンフィルムは厚み斑
に優れ、縦方向に強力化されているので、磁気記録材料
,コンテンサー用材料として、好ましく用いられる。
Since the biaxially oriented polyetherketone film of the present invention has excellent thickness unevenness and is strengthened in the longitudinal direction, it is preferably used as a magnetic recording material and a condenser material.

(実維例) 以下、実施例を掲げて本発明を更に説明する。(actual example) The present invention will be further explained below with reference to Examples.

なお本発明におりる種々の物性値および特性は以下の如
く測定されたものである。
In addition, various physical property values and characteristics included in the present invention were measured as follows.

(1)厚み斑 安立電気製連続フィルム厚み測定器により軸配向フィル
ムの縦,横方向にそって夫々測定し、1m長さについて
次式より算出した。
(1) Thickness unevenness Measurements were made along the longitudinal and lateral directions of the axially oriented film using a continuous film thickness measuring device manufactured by Anritsu Denki, and the thickness was calculated using the following formula for a length of 1 m.

フィルム最大厚み−フィルム最小厚み 厚み斑= フィルム平均厚み (2)複屈折率 アタゴ光学製アッペ式屈折率計で縦方向,横方向,厚み
方向のそれぞれの屈折率を読みとり、複屈折率は縦方向
屈折率一横方向屈折率より算出した。
Maximum film thickness - Minimum film thickness Thickness unevenness = Film average thickness (2) Birefringence The refractive index is read in the vertical, horizontal, and thickness directions using an Atago Optical Appé refractometer, and the birefringence is measured in the vertical direction. Calculated from refractive index and lateral refractive index.

(3)ヤング率 フルイムを試料rllomm、長さ15(自)に切り、
ヂャック間100mmにして引張速度10IIlm/分
、チャー1〜速度500mm/分でインストロンタイプ
の万能引張試験装置にて引張った。得られた荷重伸び曲
線から定義に基づいて求めた。
(3) Cut the Young's modulus film into sample rllomm, length 15 (self),
It was pulled using an Instron type universal tensile tester at a jack distance of 100 mm, a pulling speed of 10 II lm/min, and a char speed of 500 mm/min. It was determined based on the definition from the obtained load-elongation curve.

エーテルケトン380G )に球状シリカ粒子を0. 
2wt%混合した後、押出機により380゜Cで溶融押
出し、80゜Cの温度に保持したキャスティングドラム
−Lヘキャス1へして無配向の未延伸フィルムを得た。
etherketone 380G) with 0.0% spherical silica particles.
After mixing 2 wt %, the mixture was melt-extruded at 380°C using an extruder and transferred to a casting drum L caster 1 maintained at a temperature of 80°C to obtain a non-oriented unstretched film.

この未延仲フィルムを第1表に示す条件で、セラミック
コートした延伸ロールを用いて前段縦延伸を行ない、次
いで横延伸し、熱固定した後再縦延伸し、更に300℃
で熱固定をして縦方向強力化二軸配向フィルムを得た。
This unstretched intermediate film was first longitudinally stretched using a ceramic-coated stretching roll under the conditions shown in Table 1, then transversely stretched, heat-set, longitudinally stretched again, and then further stretched at 300°C.
After heat setting, a longitudinally strengthened biaxially oriented film was obtained.

このフィルムの厚みは12μであった。The thickness of this film was 12μ.

得られた二軸配向フィルムのヤング率、厚み斑を製膜状
況とともに第1表に記す。
The Young's modulus and thickness unevenness of the obtained biaxially oriented film are shown in Table 1 along with the film forming conditions.

実施例1〜6及び比較例1〜4 ポリエーテルケI〜ン(Icl社製ポリエーテル1/1 第1表から明らかなように、本発明によれば、安定した
製膜状況で、縦方向強力化二軸配向フィルムを得ること
かでき、かつ該二軸配向フィルムはヤング率に優れかつ
厚み斑も良好なものである。
Examples 1 to 6 and Comparative Examples 1 to 4 Polyether cane (polyether 1/1 manufactured by Icl) As is clear from Table 1, according to the present invention, the strength in the longitudinal direction was increased under stable film forming conditions. A biaxially oriented film can be obtained, and the biaxially oriented film has excellent Young's modulus and good thickness unevenness.

(発明の効果) 本発明によれば縦,横方向の厚み斑が小さく、かつ縦方
向の強度に優れた二軸配向ボリエーテルケトンフィルム
を優れた工程安定性で製造ずることができる。
(Effects of the Invention) According to the present invention, a biaxially oriented polyetherketone film having small thickness unevenness in the longitudinal and lateral directions and excellent strength in the longitudinal direction can be produced with excellent process stability.

Claims (1)

【特許請求の範囲】[Claims]  ポリエーテルケトン未延伸フィルムをガラス転移温度
以上200℃以下の温度で複屈折率が0.02以上0.
07未満となるように縦延伸し、次いで横方向の屈折率
が縦方向の屈折率よりも大きくなるようにかつ延伸倍率
3.0倍以上で横延伸して二軸配向フィルムとなし、更
にこの二軸配向フィルムを横延伸温度以上320℃以下
の温度で熱固定するとともに横方向に3〜30%弛緩し
てから上記熱固定温度以下の温度で再度縦延伸し、しか
る後必要に応じて熱固定し、縦方向のヤング率が600
kg/mm^2以上でかつ縦、横方向の厚み斑が10%
以下のフィルムとすることを特徴とする縦方向強力化二
軸配向ポリエーテルケトンフィルムの製造方法。
The polyetherketone unstretched film has a birefringence of 0.02 or more and 0.02 or more at a temperature above the glass transition temperature and below 200°C.
07, and then transversely stretched at a stretching ratio of 3.0 times or more so that the refractive index in the transverse direction is greater than the refractive index in the longitudinal direction to form a biaxially oriented film. The biaxially oriented film is heat set at a temperature above the transverse stretching temperature and below 320°C, relaxed by 3 to 30% in the transverse direction, then longitudinally stretched again at a temperature below the above heat setting temperature, and then heated as necessary. Fixed, Young's modulus in the longitudinal direction is 600
kg/mm^2 or more and thickness unevenness in vertical and horizontal directions is 10%
A method for producing a longitudinally strengthened biaxially oriented polyetherketone film, characterized in that the film is as follows:
JP5981289A 1989-03-14 1989-03-14 Production of longitudinal direction strengthened biaxially oriented polyether ketone film Pending JPH02239919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5981289A JPH02239919A (en) 1989-03-14 1989-03-14 Production of longitudinal direction strengthened biaxially oriented polyether ketone film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5981289A JPH02239919A (en) 1989-03-14 1989-03-14 Production of longitudinal direction strengthened biaxially oriented polyether ketone film

Publications (1)

Publication Number Publication Date
JPH02239919A true JPH02239919A (en) 1990-09-21

Family

ID=13124022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5981289A Pending JPH02239919A (en) 1989-03-14 1989-03-14 Production of longitudinal direction strengthened biaxially oriented polyether ketone film

Country Status (1)

Country Link
JP (1) JPH02239919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003289A (en) * 2009-06-16 2011-01-06 Teijin Ltd Biaxially drawn film for solid polymer electrolyte membrane reinforcement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003289A (en) * 2009-06-16 2011-01-06 Teijin Ltd Biaxially drawn film for solid polymer electrolyte membrane reinforcement

Similar Documents

Publication Publication Date Title
US5093064A (en) Low-shrinkage polyester film and preparation thereof
JPH0571127B2 (en)
JP2585494B2 (en) Polyethylene-2,6-naphthalate film
JPS6185468A (en) Heat set film of thermoplastic polyester stretched in monoaxial or multi-axial direction and its production
JPH02239919A (en) Production of longitudinal direction strengthened biaxially oriented polyether ketone film
JPS62164733A (en) Biaxially oriented polyester film for magnetic recording
JPH0766694B2 (en) Film for electrical insulation materials
JPS5988719A (en) Polyester film for base material of liquid crystal panel
JPH01266177A (en) Film for heat-resistant pressure-sensitive adhesive tape
KR0158241B1 (en) Process for preparing polyester film
JP2783914B2 (en) Biaxially oriented polyester film
JPH02164519A (en) Manufacture of biaxially oriented polyether ketone film
JPH06210720A (en) Molding of polyester film
JP2550746B2 (en) Polyester resin film
JPH0235658B2 (en)
JPH03258835A (en) Oriented polyester film
JPS59139131A (en) Polyester film for magnetic disk
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JP2611413B2 (en) Method for producing high-strength polyester film
JPS63260426A (en) Manufacture of polyphenylene sulfide film
JP2581745B2 (en) Film for membrane switch
JP4259086B2 (en) Biaxially oriented polyphenylene sulfide film
JP2825728B2 (en) Method for producing biaxially oriented polyester film
JPH0324936A (en) Biaxial oriented polyester film
JPH0752237A (en) Biaxially oriented polyethylene terephthalate film and manufacture thereof