JPH0223824B2 - - Google Patents

Info

Publication number
JPH0223824B2
JPH0223824B2 JP4114683A JP4114683A JPH0223824B2 JP H0223824 B2 JPH0223824 B2 JP H0223824B2 JP 4114683 A JP4114683 A JP 4114683A JP 4114683 A JP4114683 A JP 4114683A JP H0223824 B2 JPH0223824 B2 JP H0223824B2
Authority
JP
Japan
Prior art keywords
light
flame
combustion
behavior
collimator lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4114683A
Other languages
Japanese (ja)
Other versions
JPS59166842A (en
Inventor
Kazuo Konya
Shinichi Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4114683A priority Critical patent/JPS59166842A/en
Publication of JPS59166842A publication Critical patent/JPS59166842A/en
Publication of JPH0223824B2 publication Critical patent/JPH0223824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • G01N21/455Schlieren methods, e.g. for gradient index determination; Shadowgraph

Description

【発明の詳細な説明】 本発明は、内燃機関その他の各種燃焼装置にお
ける燃焼火炎中の微粒子挙動をシヤドウグラフを
利用して測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of measuring the behavior of particulates in a combustion flame in an internal combustion engine or other various combustion devices using a shadow graph.

測定対象の火炎に一様照度の平行光束を入射
し、その透過光のスチール写真あるいは高速度写
真を撮影すると、いわゆるシヤドウグラフ(影写
真)を得ることができる。このシヤドウグラフに
おいては、測定対象中に光の透過を阻止する固体
が含まれるときにはその影が撮影され、また測定
対象が流体の場合には密度差に応じた屈折散乱が
生じるためにその密度差に応じた影を撮影するこ
とができる。ところが、一般には火炎からの燃焼
光が強いため、上記透過光が燃焼光に埋もれて良
好なシヤドウグラフが得られない。そこで、測定
対象への入射光を上記燃焼光よりも十分に強くす
ることが考えられるが、この場合にも鮮明なシヤ
ドウグラフを得ることはできない。
When a parallel light beam of uniform illuminance is incident on a flame to be measured and a still photograph or high-speed photograph of the transmitted light is taken, a so-called shadow graph can be obtained. In this shadow graph, if the object to be measured contains a solid that blocks the transmission of light, its shadow will be photographed, and if the object to be measured is a fluid, refraction and scattering will occur depending on the density difference. You can shoot shadows according to the situation. However, since the combustion light from the flame is generally strong, the transmitted light is buried in the combustion light, making it impossible to obtain a good shadow graph. Therefore, it is conceivable to make the incident light on the measurement object sufficiently stronger than the combustion light, but in this case as well, a clear shadow graph cannot be obtained.

本発明は、光学系の簡単な改良により上記燃焼
光を可及的に遮光し、火炎についての明瞭なシヤ
ドウグラフを得られるようにして、燃焼火炎中に
おける微粒子の分布、濃度、その他の微粒子挙動
を、正確に測定可能にするものである。
The present invention blocks the above-mentioned combustion light as much as possible by simple improvement of the optical system, and makes it possible to obtain a clear shadow graph of the flame, thereby understanding the distribution, concentration, and other particulate behavior in the combustion flame. , making it possible to measure accurately.

即ち、本発明の測定方法は、光源からの光をコ
リメータレンズによつて一様照度の平行光束とし
て観察域の火炎中に入射し、その火炎中を透過し
た平行光束を再び収束して、その収束部に置いた
小径の絞りを通して観察面上に投射させ、而して
上記火炎の燃焼光を遮蔽して微粒子挙動を測定す
るためのシヤドウグラフを得ることを特徴とする
ものである。
That is, in the measurement method of the present invention, light from a light source enters a flame in an observation area as a parallel beam of uniform illuminance through a collimator lens, and the parallel beam that has passed through the flame is converged again. The light is projected onto the observation surface through a small-diameter diaphragm placed in the convergence section, thereby shielding the combustion light of the flame to obtain a shadow graph for measuring particle behavior.

このような本発明の方法によれば、火炎中の微
粒子挙動を観察するための明瞭なシヤドウグラフ
を得ることができ、これによつて火炎中における
微粒子の二次元的な流れや微粒子濃度、その分布
等の測定を行うことができる。
According to the method of the present invention, it is possible to obtain a clear shadow graph for observing the behavior of particulates in a flame. etc. can be measured.

以下、図面を参照しながら本発明の方法をさら
に詳細に説明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明の方法を実施するための光学
系を示すものである。同図において、He−Neレ
ーザ等の光源1から照射するレーザ光は、コンデ
ンサレンズ2、その焦点位置に配置したピンホー
ル3、及びコリメータレンズ4を経て、一様照度
の平行光束とし、これを必要に応じて配設される
マスク5を通して観察域6に入射させる。上記観
察域6は、例えば燃焼室壁8,8を石英等の透視
可能な耐熱性材料で形成した内燃機関7、あるい
はその他の各種燃焼装置における燃焼室によつて
形成されるものである。この燃焼室における燃焼
火炎中の煤等の固体微粒子によつて一部の透過を
妨げられた平行透過光は、コリメータレンズ9に
よつて再び収束させ、必要に応じて配設されるマ
スク10及びフイルタ11を通して、高速度カメ
ラ12のフイルム面、あるいは他の適当な観察面
上に投射させるが、その際、コリメータレンズ9
の焦点位置における透過光の収束部に小径の絞り
13を置き、この絞り13を通して観察面上に投
射させる。この場合に、上記観察域6における火
炎の燃焼光もコリメータレンズ9を通して観察面
に投射することになるが、コリメータレンズ4に
より平行光束として観察域6に投射した光は、そ
の収束部に置いた絞り13を通して殆んど全てが
観察面に到達するのに対し、上記観察域6におい
て発光する燃焼光は実質的に上記平行光束を平行
な方向に出た光のみが絞り13を通過し、その他
の方向に出た光はたとえコリメータレンズ9によ
つて収束されたとしても絞り13を通過せず、そ
の周辺において遮蔽される。従つて、上記観察面
においては、火炎の燃焼光を遮蔽して微粒子挙動
を測定するためのシヤドウグラフを得ることがで
きる。
FIG. 1 shows an optical system for carrying out the method of the invention. In the figure, a laser beam emitted from a light source 1 such as a He-Ne laser passes through a condenser lens 2, a pinhole 3 placed at its focal point, and a collimator lens 4, and becomes a parallel beam of uniform illuminance. The light is made to enter the observation area 6 through a mask 5 provided as necessary. The observation area 6 is formed, for example, by a combustion chamber in an internal combustion engine 7 in which the combustion chamber walls 8, 8 are made of transparent heat-resistant material such as quartz, or in other various combustion devices. The parallel transmitted light whose transmission is partially blocked by solid particles such as soot in the combustion flame in the combustion chamber is refocused by the collimator lens 9, and the mask 10 and the mask 10 disposed as necessary The collimator lens 9 is projected through the filter 11 onto the film surface of the high-speed camera 12 or other suitable viewing surface.
A small-diameter diaphragm 13 is placed at the focal point of the transmitted light, and the light is projected onto the observation surface through the diaphragm 13. In this case, the combustion light of the flame in the observation area 6 is also projected onto the observation surface through the collimator lens 9, but the light projected onto the observation area 6 as a parallel beam by the collimator lens 4 is placed at its convergence part. Almost all of the combustion light emitted in the observation area 6 passes through the aperture 13 and reaches the observation surface, whereas substantially only the light emitted from the parallel light flux in the parallel direction passes through the aperture 13, and the others Even if the light emitted in the direction is converged by the collimator lens 9, it does not pass through the aperture 13 and is blocked around it. Therefore, on the observation plane, it is possible to obtain a shadow graph for measuring particle behavior by shielding the combustion light of the flame.

このような方法は、内燃機関ばかりでなく、外
燃機関その他の燃焼装置における燃焼火炎中の微
粒子の挙動、特に火炎中の煤粒子濃度の二次元的
測定に有効に利用することができる。即ち、微粒
子の径Dと照射光波長λが、πD/λ<0.2の関係
をみたす、いわゆるRayleigh散乱域では、上記
波長、粒径とは無関係に、光の透過率から直ちに
微粒子濃度を求めることができるため、上記煤濃
度の二次元的測定をも簡易に行うことができる。
Such a method can be effectively used not only for internal combustion engines but also for two-dimensional measurement of the behavior of particulates in combustion flames in external combustion engines and other combustion apparatuses, particularly the soot particle concentration in the flames. That is, in the so-called Rayleigh scattering region where the particle diameter D and the irradiation light wavelength λ satisfy the relationship πD/λ<0.2, the particle concentration can be immediately determined from the light transmittance, regardless of the wavelength and particle size. Therefore, the two-dimensional measurement of the soot concentration described above can be easily performed.

而して、例えばデイーゼル燃焼室内の煤粒子の
濃度測定を行う場合、従来の方法による燃焼室の
一定点測定では、代表的測定点の選択が難しく、
さらに煤の生成、消滅の全般的過程を追うことが
困難であるが、上述した本発明の方法によれば、
このような問題が一挙に解決され、煤の挙動を二
次元的、画像的に測定することができる。
For example, when measuring the concentration of soot particles in a diesel combustion chamber, it is difficult to select representative measurement points by measuring at a fixed point in the combustion chamber using conventional methods.
Furthermore, although it is difficult to follow the overall process of soot production and disappearance, according to the method of the present invention described above,
These problems are solved at once, and the behavior of soot can be measured two-dimensionally and image-wise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する光学系の構成
図である。 1……光源、4,9……コリメータレンズ、6
……観察域、13……絞り。
FIG. 1 is a block diagram of an optical system for carrying out the method of the present invention. 1... Light source, 4, 9... Collimator lens, 6
...Observation area, 13...Aperture.

Claims (1)

【特許請求の範囲】[Claims] 1 光源からの光をコリメータレンズによつて一
様照度の平行光束として観察域の火炎中に入射
し、その火炎中を透過した平行光束を再び収束し
て、その収束部に置いた小径の絞りを通して観察
面上に投射させ、而して上記火炎の燃焼光を遮蔽
して微粒子挙動を測定するためのシヤドウグラフ
を得ることを特徴とする燃焼火炎中の微粒子挙動
の測定方法。
1. The light from the light source enters the flame in the observation area as a parallel beam of uniform illuminance through a collimator lens, and the parallel beam that passes through the flame is converged again, and a small-diameter diaphragm is placed at the convergence part. 1. A method for measuring the behavior of particulates in a combustion flame, which comprises projecting the particulate behavior through a combustion flame onto an observation surface, thereby shielding the combustion light of the flame to obtain a shadow graph for measuring particulate behavior.
JP4114683A 1983-03-12 1983-03-12 Measuring method of fine particle movement in burning flame Granted JPS59166842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4114683A JPS59166842A (en) 1983-03-12 1983-03-12 Measuring method of fine particle movement in burning flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4114683A JPS59166842A (en) 1983-03-12 1983-03-12 Measuring method of fine particle movement in burning flame

Publications (2)

Publication Number Publication Date
JPS59166842A JPS59166842A (en) 1984-09-20
JPH0223824B2 true JPH0223824B2 (en) 1990-05-25

Family

ID=12600270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4114683A Granted JPS59166842A (en) 1983-03-12 1983-03-12 Measuring method of fine particle movement in burning flame

Country Status (1)

Country Link
JP (1) JPS59166842A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459576A (en) * 1994-01-24 1995-10-17 Display Inspection Systems, Inc. Differential phase contrast inspection system
FR2958298B1 (en) * 2010-04-06 2014-10-17 Commissariat Energie Atomique METHOD FOR DETECTING AMAS FROM BIOLOGICAL PARTICLES
CN108287086B (en) * 2017-11-23 2020-10-27 彩虹显示器件股份有限公司 Sampling method for micron-sized particles of flat glass plate

Also Published As

Publication number Publication date
JPS59166842A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US3873206A (en) Method for determining a specific characteristic of fluid suspended particles
EP0476931A2 (en) Phase shift device and laser apparatus utilizing the same
JPH0223824B2 (en)
JPH058628B2 (en)
JP2002340777A (en) Apparatus for measuring particle by holography
RU1340313C (en) Method of determining characteristics of disperse medium
JPS58206948A (en) Measuring device of intensity of front minute angle scattered light
JPS6313446Y2 (en)
JPS58201005A (en) Device for measuring particle diameter
JP2005308439A (en) Three dimensional geometry measuring arrangement by pattern projection method
JPH0339625B2 (en)
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
Withrington Application of holography to bubble chambers-a review
JPH07151521A (en) Detecting head floating amount measuring device and measuring method
SU824113A2 (en) Method of producing photographic pictures with spatial carrier frequency
JP2922008B2 (en) Particle size distribution measuring device
JPH0430736B2 (en)
SU1287090A1 (en) Photocopying apparatus
Montilla et al. Determining the inclination of a diffusing surface with regard to viewing direction by speckle photography
SU1698634A1 (en) Method for determining relocation field
JPH01132905A (en) Apparatus for detecting dripping liquid droplet
JPS61223602A (en) Optical wave interference device
JPS58166238A (en) Measuring device of quantity of light leakage between optical fiber strands
JPS56152249A (en) Image pickup device for inspection
SU1191872A1 (en) Method of determining focusing plane position of reflex camera