JPH02238055A - Moisture absorbing molded resin product - Google Patents

Moisture absorbing molded resin product

Info

Publication number
JPH02238055A
JPH02238055A JP5625589A JP5625589A JPH02238055A JP H02238055 A JPH02238055 A JP H02238055A JP 5625589 A JP5625589 A JP 5625589A JP 5625589 A JP5625589 A JP 5625589A JP H02238055 A JPH02238055 A JP H02238055A
Authority
JP
Japan
Prior art keywords
coordination complex
parts
moisture absorbing
resin product
molded resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5625589A
Other languages
Japanese (ja)
Inventor
Michio Tokutomi
徳富 美智男
Mitsuyuki Yamamoto
満之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5625589A priority Critical patent/JPH02238055A/en
Publication of JPH02238055A publication Critical patent/JPH02238055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a moisture absorbing molded resin product excellent in physical properties and moldability by blending a coordination complex of a highly moisture absorbing metal halide with a polyalkylene oxide with a synthetic resin. CONSTITUTION:A moisture absorbing molded resin product, obtained by blending (A) a coordination complex prepared by dissolving (A1) a metal halide (preferably magnesium chloride, lithium chloride or sodium iodide) having >=20%, preferably >=40%, especially >=80% saturation moisture absorptivity at 20 deg.C and 65% relative humidity and (A2) a polyalkylene oxide (preferably polyethylene oxide) in respective solvents, mixing the resultant solutions and removing the solvents with (B) a synthetic resin (preferably polyolefin, polyester, etc.) before, during, after polymerization reaction for producing the component (B) or melt molding, etc., and containing 1-30wt.% component (B).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、物理的性質及び成形性に優れた吸湿性樹脂成
形品に関する. 〔従来の技術〕 合成樹脂成形品は、その優れた特性等により繊維及びフ
ィルムなどをはじめ種々の形態のものが、広く一般的に
使用されている. しかしながら、かかる樹脂成形品は概ね疎水性であり、
そのために、吸湿性及び制電性が欠如していて、使用で
きない分野がある.特に、ta維及びフィルム分野にお
いて、この疎水性の性状は、致命的なものとなって著し
く使用分野が限定されている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hygroscopic resin molded article having excellent physical properties and moldability. [Prior Art] Synthetic resin molded products are widely and commonly used in various forms, including fibers and films, due to their excellent properties. However, such resin molded products are generally hydrophobic;
Therefore, it lacks hygroscopicity and antistatic properties and cannot be used in some fields. Particularly in the field of Ta fibers and films, this hydrophobic property is fatal and the field of use is extremely limited.

そこで、従来より樹脂成形品に吸湿性および制電性を付
与すべく、数々の提案がなされているが、未だに実用化
されたものはほとんどない.例えば、ポリエステル繊維
では、吸湿性を付与するために、特開昭47−2948
6号、及び特開昭59−47480号公報に開示されて
いるように、繊維を形成するポリエステルに、ポリアル
キレングリコールに代表される親水性有機化合物を添加
して、反応及び(または)混合することが数多く提案さ
れている. 然しなから、かかる方法によって得られるポリエステル
繊維の吸湿性は充分なものではなく、また、得られた繊
維の強度等σ物理的な物性値は実用性に乏しく、本来の
ポリエステル繊維のもつ優れた物理特性を犠牲にしなけ
ればならなかった.また、吸湿性を付与するために、高
吸湿性の金属無機化合物を樹脂に直接配合する方法も考
えられる.しかし、使用する無機金属化合物の融点は、
樹脂の融点よりも一般に数百゜C以上高く、成形時に溶
融しないために、成形品の透明性、均一性に乏しくまた
、溶融成形性が悪く、実用性のほとんどないものであっ
た. 〔発明が解決しようとする課題〕 本発明は、従来公知の樹脂成形品が有する前述の課題を
解消して、優れた吸湿性を有する樹脂成形品を提供する
ことを目的とする. 〔課題を解決するための手段〕 本発明者等は、前述の目的を達成すべく鋭意検討した結
果、前述のように、金属ハロゲン化物では、一般に60
0〜800゜Cの高融点をもつため、樹脂に直接配合す
ると、様々な困難性を伴うものである.これに対して、
これら金属ハロゲン化物とポリアルキレングリコールと
の配位錯体は、300゜C以下の低融点を有することを
発見し、各種樹脂との直接配合が有利に行い得ることに
着眼し、本発明を完成するに至ったものである.すなわ
ち、本発明は; 合成崩脂および20℃、65%RHに於ける飽和吸湿率
が20%以上の金属ハロゲン化物とポリアルキレンオキ
サイドとの配位錯体を含有する吸湿性樹脂成形品である
Therefore, many proposals have been made to impart hygroscopic and antistatic properties to resin molded products, but few have been put to practical use yet. For example, in order to impart hygroscopicity to polyester fibers, Japanese Patent Laid-Open No. 47-2948
No. 6 and Japanese Patent Application Laid-Open No. 59-47480, a hydrophilic organic compound typified by polyalkylene glycol is added to the polyester forming the fiber, and then reacted and/or mixed. Many things have been proposed. However, the hygroscopicity of the polyester fibers obtained by this method is not sufficient, and the physical properties such as strength of the obtained fibers are not practical, and the superior properties of the original polyester fibers are insufficient. Physical properties had to be sacrificed. Furthermore, in order to impart hygroscopic properties, a method of directly blending a highly hygroscopic metal inorganic compound into the resin is also considered. However, the melting point of the inorganic metal compound used is
Generally, the melting point is several hundred degrees C higher than the melting point of the resin, and it does not melt during molding, resulting in poor transparency and uniformity of molded products, poor melt moldability, and almost no practical use. [Problems to be Solved by the Invention] It is an object of the present invention to solve the above-mentioned problems of conventionally known resin molded products and to provide a resin molded product having excellent hygroscopicity. [Means for Solving the Problems] As a result of intensive studies to achieve the above-mentioned object, the present inventors found that, as mentioned above, metal halides generally contain 60
Since it has a high melting point of 0 to 800°C, there are various difficulties when directly blending it into resins. On the contrary,
They discovered that these coordination complexes of metal halides and polyalkylene glycols have a low melting point of 300°C or less, and realized that they can be advantageously blended directly with various resins, and completed the present invention. This is what led to this. That is, the present invention is a hygroscopic resin molded article containing a synthetic fat-soluble resin and a coordination complex of a metal halide and a polyalkylene oxide having a saturated moisture absorption rate of 20% or more at 20° C. and 65% RH.

本発明の吸湿性樹脂成形品は、前記配位錯体吸湿(制電
)剤が、樹脂成形時の加工温度以下の融点、概ね300
℃以下の融点を有するため、樹脂の成形温度で溶融でき
るから、透明性が良く、工程的にも安定で樹脂本来が持
つ優れた物理的性質を損なうことなく実用的な吸湿性を
備えた樹脂成形品を提供する. 本発明でいう金属ハロゲン化物とは、20℃、65%R
Hにおける飽和吸湿率が20%以上であることが必要で
ある。好ましくは、40%以上、特に好ましくは80%
以上である. 具体例を挙げると、飽和吸湿率が80%以上である、塩
化マグネシウム、臭化マグネシウム、沃化マグネシウム
、塩化リチウム、臭化リチウム、沃化リチウム、塩化亜
鉛、臭化亜鉛、沃化亜鉛、臭化ニッケル及び、沃化ニッ
ケル等がある。また、飽和吸湿率が、40%以上の金属
ハロゲン化物としては、沃化ナトリウムが挙げられる.
これらの中で、塩化マグネシウム、塩化リチウム、沃化
ナトリウムが更に好ましい。この他に、飽和吸湿率が2
0%以上であって、ポリアルキレンオキサイドと配位措
体を形成するものであれば、任意の金属無機化合物を採
用することも出来る.一方、この飽和吸湿率が20%未
満であると、実用上充分な吸湿率及び制電性を有する樹
脂成形品を得るためには、ポリアルキレンオキサイドと
の配位錯体を樹脂成形品に対して、30重量%以上添加
しなければならず、これによると、得られた樹脂成形品
の強度等の物理的特性が著しく低下し、一般に実用に耐
えないものとなる.本発明で云うポリアルキレンオキサ
イドとは、繰返し単位が、−CIIRI−CHRI−0
−  (但し、R+..Rxは、H又は炭化水素である
。)なる構造であり、前述の金属ハロゲン化物と配位錯
体を形成できれば、どの様なものでもよいが、ポリエチ
レンオキサイド及び、ポリプロピレンオキサイドが好ま
しく、この中でポリエチレンオキサイドが好ましい。
In the hygroscopic resin molded article of the present invention, the coordination complex hygroscopic (antistatic) agent has a melting point below the processing temperature during resin molding, approximately 300 yen
Because it has a melting point below ℃, it can be melted at the molding temperature of the resin, so it has good transparency, is stable in terms of process, and has practical hygroscopicity without impairing the excellent physical properties of the resin. We provide molded products. The metal halide referred to in the present invention is 20°C, 65%R
It is necessary that the saturated moisture absorption rate in H is 20% or more. Preferably 40% or more, particularly preferably 80%
That's it. Specific examples include magnesium chloride, magnesium bromide, magnesium iodide, lithium chloride, lithium bromide, lithium iodide, zinc chloride, zinc bromide, zinc iodide, and magnesium chloride with a saturated moisture absorption rate of 80% or more. These include nickel oxide and nickel iodide. Further, examples of metal halides having a saturated moisture absorption rate of 40% or more include sodium iodide.
Among these, magnesium chloride, lithium chloride, and sodium iodide are more preferred. In addition, the saturated moisture absorption rate is 2
Any metal inorganic compound can be used as long as it has a content of 0% or more and forms a coordination body with the polyalkylene oxide. On the other hand, if this saturated moisture absorption rate is less than 20%, in order to obtain a resin molded article with practically sufficient moisture absorption rate and antistatic properties, it is necessary to apply a coordination complex with polyalkylene oxide to the resin molded article. , must be added in an amount of 30% by weight or more, and if this is done, the physical properties such as strength of the resulting resin molded product will be significantly reduced, making it generally unsuitable for practical use. The polyalkylene oxide referred to in the present invention means that the repeating unit is -CIIRI-CHRI-0
- (However, R+..Rx is H or a hydrocarbon.) Any material may be used as long as it can form a coordination complex with the metal halide mentioned above, but polyethylene oxide and polypropylene oxide can be used. are preferred, and among these, polyethylene oxide is preferred.

また、本発明で云う配位錯体の合成方法は、金属ハロゲ
ン化物及び、ポリアルキレンオキサイドを各々の溶剤に
溶解混合し、溶剤を取り除くことによって得られる。
Furthermore, the method for synthesizing the coordination complex referred to in the present invention is obtained by dissolving and mixing a metal halide and a polyalkylene oxide in their respective solvents, and then removing the solvent.

合成に使用できる溶剤は、金属ハロゲン化物及びポリア
ルキレンオキサイドの種類及びこれらの組合せによって
異なるが、塩化マグネシウムーポリエチレンオキサイド
の配位錯体では、各々エタノール及びアセトニトリルが
好ましい.また、本発明で云う樹脂とは、熱可塑性樹脂
であれば、どのようなものでも使用できるが、ポリエチ
レン、ボリブロピレン等のポリオレフィン、または、ポ
リスチレン、ポリアクリロニトリルまたは、ポリエチレ
ンテレフタレート、ポリプチレンテレフタレート等のポ
リエステル及び(または)ナイロン6、ナイロン66等
のポリアミドが、特に好ましい。なお、これらを主成分
とし、他の成分を共重合及び、または混合した樹脂、さ
らには、これらの混合したものであっても一向に差し支
えない. なお、樹脂成形品へこの配位錯体を配合する時期は、各
々の樹脂を製造する重合反応前、中、後でも、また、樹
脂製造後に、溶融成形前又は途中でも一向に差し支えな
い. また、樹脂成形品中の本発明の配位錯体の含有量は、特
に制限されないが、成形性および物性保持の点からは、
一般に1〜30重量%が好ましい.1重量%以下では吸
湿性が充分ではない.然しながら、樹脂成形品への制電
性付与を目的とする場合には、0.1%以上の配合量で
充分な性能が得られる.一方、30重量%を越えると物
理特性の著しい低下、透明性及び、成形性が不良となる
ため、好ましくない. この樹脂成形品中に、必要に応じて、各種添加剤、例え
ば染料、顔料、充填剤、滑剤、補強剤、難燃剤、安定剤
、紫外線吸収剤などを配合してもよい. この樹脂成形品には、各種繊維、その編織物、不襟布、
フィルム、シート(板)、管など任意の形態のものが含
まれる. 本発明の樹脂成形品は、樹脂原料と配位錯体などから任
意の成形、賦形手段で、例えば紡糸、延伸成形、押出成
形、射出成形、圧縮成形などにより容易に製造できる. 〔実施例〕 以下、実施例により本発明を具体的に説明するが、これ
らは本発明の範囲を制限するものでない.実施例中の%
は重量%、部は重量部の省略である. ■融点; パーキンエルマー社DSC−4で測定した.■吸湿率(
以下、MRと略す); 20℃、65%RHの恒温恒湿器(タバイ製、PR−2
G>中に48時間放置して得られた値であり、次式によ
り算出した. 絶乾成形品重量 ■長繊維の摩擦帯電圧; 繊維については、JIS  L−1094B法で、また
、フィルムの体積固有抵抗率については、JIs  K
−6911法で測定した. 実施例l 分子量300万のポリエチレンオキサイド6部を無水ア
セトニトリル200部に溶解する.また、無水塩化マグ
ネシウム4部を無水エタノール40部に溶解し、両者を
混合後、溶媒を除去し、更に減圧下(1mmHg)10
0゜Cで48時間乾燥し、融点183゜Cのモル比1:
4(但し、ポリエチレンオキサイドは、その構成単位で
ある CHzCHtO−の44をもって1モルとした。)の塩
化マグネシウムーポリエチレンオキサイドの配位錯体を
得た。
Solvents that can be used in the synthesis vary depending on the type of metal halide and polyalkylene oxide and their combination, but ethanol and acetonitrile are preferred for the magnesium chloride-polyethylene oxide coordination complex, respectively. Furthermore, the resin referred to in the present invention may be any thermoplastic resin, including polyolefins such as polyethylene and polypropylene, polystyrene, polyacrylonitrile, and polyesters such as polyethylene terephthalate and polybutylene terephthalate. and/or polyamides such as nylon 6 and nylon 66 are particularly preferred. It should be noted that there is no problem with resins containing these as main components and copolymerized and/or mixed with other components, or even mixtures thereof. The coordination complex may be added to the resin molded product before, during, or after the polymerization reaction for producing each resin, or after resin production, before or during melt molding. In addition, the content of the coordination complex of the present invention in the resin molded product is not particularly limited, but from the viewpoint of moldability and retention of physical properties,
Generally, 1 to 30% by weight is preferred. If it is less than 1% by weight, hygroscopicity is not sufficient. However, if the purpose is to impart antistatic properties to resin molded products, sufficient performance can be obtained with a blending amount of 0.1% or more. On the other hand, if it exceeds 30% by weight, it is undesirable because the physical properties deteriorate significantly and transparency and moldability become poor. If necessary, various additives such as dyes, pigments, fillers, lubricants, reinforcing agents, flame retardants, stabilizers, and ultraviolet absorbers may be added to this resin molded article. This resin molded product includes various fibers, their knitted fabrics, non-collared fabrics,
It includes any form such as film, sheet (board), tube, etc. The resin molded article of the present invention can be easily produced from a resin raw material and a coordination complex by any molding or shaping method, such as spinning, stretch molding, extrusion molding, injection molding, or compression molding. [Examples] Hereinafter, the present invention will be specifically explained using Examples, but these are not intended to limit the scope of the present invention. % in examples
is an abbreviation for % by weight, and part is an abbreviation for parts by weight. ■Melting point: Measured with PerkinElmer DSC-4. ■Moisture absorption rate (
(hereinafter abbreviated as MR); 20°C, 65% RH constant temperature and humidity chamber (manufactured by Tabai, PR-2
This is the value obtained by leaving it for 48 hours in G> and was calculated using the following formula. Weight of bone-dried molded product ■Frictional charging voltage of long fibers; For fibers, use JIS L-1094B method, and for film specific volume resistivity, use JIS K
Measured using the -6911 method. Example 1 6 parts of polyethylene oxide with a molecular weight of 3 million is dissolved in 200 parts of anhydrous acetonitrile. In addition, 4 parts of anhydrous magnesium chloride was dissolved in 40 parts of absolute ethanol, and after mixing both, the solvent was removed, and further 10 parts of anhydrous magnesium chloride was dissolved under reduced pressure (1 mmHg).
Dry at 0°C for 48 hours, melting point 183°C, molar ratio 1:
A magnesium chloride-polyethylene oxide coordination complex of 4 (1 mole was defined as 44 of CHzCHtO-, which is a constituent unit of polyethylene oxide) was obtained.

なお、塩化マグネシウムーポリエチレンオキサイド配位
錯体の合成は、L.L,Yang等の文献に従って行っ
た. (J.Electrochem,Soc,vo1.13
3巻,1380−1384頁,  (1986)〕 この配位錯体10部を通常のポリエチレンテレフタレー
ト(ηsp/c=0.73、オルソクロロフェノール1
重量%溶液中、35゜C)90部に、溶融成形時に配合
し、MR=6.1%、摩擦帯電圧1500vの長繊維(
150デニール、24フィラメント)及び、MR=6.
3%、体積固有抵抗率7.9X10”Ω・cmのフィル
ム(厚さ50μ)を得た。
The synthesis of the magnesium chloride-polyethylene oxide coordination complex is described by L. The procedure was carried out according to the literature of L., Yang et al. (J. Electrochem, Soc, vol.13
3, pp. 1380-1384, (1986)] 10 parts of this coordination complex was mixed with ordinary polyethylene terephthalate (ηsp/c=0.73, orthochlorophenol 1
It was blended into 90 parts of 35°C (weight% solution) at the time of melt molding, MR = 6.1%, and a long fiber with a frictional charging voltage of 1500V (
150 denier, 24 filaments) and MR=6.
A film (thickness: 50 μm) with a specific volume resistivity of 7.9×10”Ω·cm and a volume resistivity of 3% was obtained.

実施例2 実施例1で用いた配位錯体20部を通常のナイロン6 
(ηr=2.43、98%H,So.1重量%溶液中、
25゜C)80部に、溶融成形時に配合して、MR=1
5.2%、摩擦帯電圧1600Vの長繊維(70デニー
ル、20フィラメント)を得た. 実施例3 実施例!で用いた配位錯体15部を通常のボリプロピレ
ン(MFR=4.5g/10分、JISK−6758法
に準拠)85部に、溶融成形時に配合して、MR−9.
0%、体積固有抵抗率8,6X10”Ω・cmのフィル
ム(厚さ50μ)を得た.但し、MFRは、溶融流れ指
数(MeltF 1 ow  Ra t e)の省略で
ある.実施例4 実施例lで用いた配位錯体10部を通常のポリスチレン
(MFR=7.5g/10分、5Kg,200’C)9
0部に、溶融成形時に配合し、MR一6.8%、体積固
有抵抗率6.4XlO”Ω・cmのプレートを得た. 実施例5 実施例1で用いた配位錯体10部を通常のポリメタクリ
ル酸メチル(VFR=5.1g/10分、1 0Kg、
200℃)90部に、溶融成形時に配合し、MR−7.
9%、体積固有抵抗率4.2×10”Ω・cmのプレー
トを得た. 実施例6 分子量300万のポリエチレンオキサイド8部を無水メ
タノール480部に溶解した.また、塩化リチウム2部
を同じくメタノール20部に溶解し両者を混合後、溶媒
を除去して、塩化リチウム〜ポリエチレンオキサイドの
配位錯体を得た。
Example 2 20 parts of the coordination complex used in Example 1 was added to ordinary nylon 6
(ηr=2.43, 98% H, So. 1% by weight solution,
25°C) and 80 parts at the time of melt molding, MR = 1
Long fibers (70 denier, 20 filaments) with a friction charge voltage of 1,600 V and a friction charge voltage of 5.2% were obtained. Example 3 Example! 15 parts of the coordination complex used in MR-9. was blended with 85 parts of ordinary polypropylene (MFR = 4.5 g/10 min, according to JISK-6758 method) during melt molding.
A film (thickness: 50 μm) with a volume resistivity of 0% and a volume resistivity of 8.6×10”Ω·cm was obtained. However, MFR is an abbreviation for melt flow index (MeltF 1 ow Rate). Example 4 Implementation 10 parts of the coordination complex used in Example 1 were added to ordinary polystyrene (MFR=7.5g/10min, 5Kg, 200'C)
Example 5 10 parts of the coordination complex used in Example 1 was added to 0 parts during melt molding to obtain a plate with an MR of 6.8% and a volume resistivity of 6.4XlO''Ωcm. of polymethyl methacrylate (VFR=5.1g/10min, 10Kg,
200°C) at the time of melt molding, and MR-7.
A plate with a specific volume resistivity of 4.2 x 10" Ωcm was obtained. Example 6 8 parts of polyethylene oxide with a molecular weight of 3 million was dissolved in 480 parts of anhydrous methanol. Also, 2 parts of lithium chloride was dissolved in the same solution. After dissolving in 20 parts of methanol and mixing the two, the solvent was removed to obtain a coordination complex of lithium chloride and polyethylene oxide.

この配位錯体15部を実施例lで用いたポリエチレンテ
レフタレート90部に、溶融成形時に配合し、MR=8
.7%、摩擦帯電圧950vの長繊維(150デニール
、24フィラメント)を得た。
15 parts of this coordination complex was blended with 90 parts of polyethylene terephthalate used in Example 1 during melt molding, and MR=8
.. Long fibers (150 denier, 24 filaments) with a friction charging voltage of 950 V and a friction charging voltage of 7% were obtained.

実施例7 分子量300万のポリエチレンオキサイド5.4部を無
水メタノール450部に溶解した.また、沃化ナトリウ
ム4.6部を同じく無水メタノール50部に溶解し、両
者を混合後、溶媒を除去して、沃化ナトリウムーポリエ
チレンオキサイドの配位錯体を得た. この配位錯体10部をポリメタクリル酸メチル(PMM
A)に実施例1と同様にしてMR=2.3%、摩擦帯電
圧950vの長繊維を得た。
Example 7 5.4 parts of polyethylene oxide with a molecular weight of 3 million was dissolved in 450 parts of anhydrous methanol. Further, 4.6 parts of sodium iodide was similarly dissolved in 50 parts of anhydrous methanol, and after mixing the two, the solvent was removed to obtain a sodium iodide-polyethylene oxide coordination complex. 10 parts of this coordination complex was mixed with polymethyl methacrylate (PMM).
In A), a long fiber having an MR of 2.3% and a frictional charging voltage of 950 V was obtained in the same manner as in Example 1.

比較例1 実施例lで用いた配位錯体を35部、ポリエチレンテレ
フタレート65部を溶融成形時に配合したが、成形性が
悪く、長繊維及びフィルムは、得られなかった. 比較例2 実施例lで用いた無水塩化マグネシウム4部をポリエス
テル及びナイロン6、96部に、溶融成形時に配合した
が、成形性が非常に悪く、長繊維及び、フィルムは、得
られなかった. 比較例3〜5 実施例1〜3で用いたポリエチレンテレフタレート、ナ
イロン6及びポリプロピレンを、実施例1〜3と同様に
成形し、吸湿率、摩擦帯電圧及び一体積固有抵抗率を測
定した. なお、比較例3〜5の吸湿率、摩擦帯電圧及び体積固有
抵抗率を表−1中に示す. 比較例6 実施例5で用いた配位錯体0.5部を実施例lで用いた
ポリエチレンテレフタレー}99.5部に溶融成形時に
配合し、摩擦帯電圧1800vの長繊維(150デニー
ル、24フィラメント)を得た。
Comparative Example 1 Although 35 parts of the coordination complex used in Example 1 and 65 parts of polyethylene terephthalate were blended during melt molding, moldability was poor and long fibers and films could not be obtained. Comparative Example 2 4 parts of anhydrous magnesium chloride used in Example 1 was blended with 6.96 parts of polyester and nylon during melt molding, but the moldability was very poor and no long fibers or film were obtained. Comparative Examples 3 to 5 The polyethylene terephthalate, nylon 6, and polypropylene used in Examples 1 to 3 were molded in the same manner as in Examples 1 to 3, and the moisture absorption rate, frictional charging voltage, and specific volume resistivity were measured. The moisture absorption rate, frictional charging voltage, and volume resistivity of Comparative Examples 3 to 5 are shown in Table 1. Comparative Example 6 0.5 part of the coordination complex used in Example 5 was blended with 99.5 parts of polyethylene terephthalate used in Example 1 during melt molding, and a long fiber (150 denier, 24 filament) was obtained.

その結果を併せて表−1中に示す. 〔発明の効果] 本発明においては、樹脂成形品用吸湿(制電)剤として
、高吸湿性をもつが、樹脂との溶融性、相溶性に欠ける
金属ハロゲン化物を、ポリアルキレンオキサイドとの配
位錯体の形態で樹脂に配合するようにしたので、この配
位錯体の融点が大幅に低下したことに起因して、優れた
成形性、吸湿性および制電性をもつ樹脂成形品が得られ
る。
The results are also shown in Table 1. [Effects of the Invention] In the present invention, metal halides, which have high hygroscopicity but lack meltability and compatibility with resins, are used as hygroscopic (antistatic) agents for resin molded products in combination with polyalkylene oxides. Since it is blended into the resin in the form of a coordination complex, the melting point of this coordination complex is significantly lowered, resulting in a resin molded product with excellent moldability, hygroscopicity, and antistatic properties. .

(ほか1名) 手続補正書 平成2年5月 1日(1 other person) Procedural amendment May 1, 1990

Claims (1)

【特許請求の範囲】[Claims] 合成樹脂および20℃、相対湿度65%に於ける飽和吸
湿率が20%以上の金属ハロゲン化物とポリアルキレン
オキサイドとの配位錯体を含有することを特徴とする、
吸湿性樹脂成形品。
characterized by containing a synthetic resin and a coordination complex of a metal halide and a polyalkylene oxide having a saturated moisture absorption rate of 20% or more at 20°C and a relative humidity of 65%,
Hygroscopic resin molded product.
JP5625589A 1989-03-10 1989-03-10 Moisture absorbing molded resin product Pending JPH02238055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5625589A JPH02238055A (en) 1989-03-10 1989-03-10 Moisture absorbing molded resin product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5625589A JPH02238055A (en) 1989-03-10 1989-03-10 Moisture absorbing molded resin product

Publications (1)

Publication Number Publication Date
JPH02238055A true JPH02238055A (en) 1990-09-20

Family

ID=13021977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5625589A Pending JPH02238055A (en) 1989-03-10 1989-03-10 Moisture absorbing molded resin product

Country Status (1)

Country Link
JP (1) JPH02238055A (en)

Similar Documents

Publication Publication Date Title
JPH06504566A (en) impact resistant polymer blend
JPS63156842A (en) Polypropylene composition
JP2763575B2 (en) Polyalkylene arylate resin composition
JPH02238055A (en) Moisture absorbing molded resin product
JP2002507647A (en) Polyester composition
JP2891522B2 (en) Polypropylene resin composition
IE48681B1 (en) Mouldable compositions based on a thermoplastic polymer,glass fibres and a bis-maleimide
JPS63312342A (en) Thermoplastic resin composition
US3997503A (en) Polymer composition
JPH0491136A (en) Hygroscopic polyester molding
JPS6281444A (en) Thermoplastic resin composition
JPH0593054A (en) Thermoplastic synthetic resin molded product
JPH0489840A (en) Moisture-absorptive polyamide molding
JP3951252B2 (en) Lamp reflector
JPH0397758A (en) Modification of electrical conductivity of molded article of resin
JPS59193955A (en) Molding resin composition
EP0807666B1 (en) Composite material of liquid crystal polyazomethine or copolyazomethine
JPH01279974A (en) Thermoplastic resin composition
JPS59193953A (en) Polyester composition
US4054549A (en) Polymer composition
JPH03152162A (en) Thermoplastic composite resin composition
CN114990731A (en) PLA/PBAT composite flame-retardant antibacterial degradable short fiber and preparation method thereof
JPS61246246A (en) Antistatic thermoplastic resin composition
JPS6021185B2 (en) Flame retardant polyester composition
JPS62265343A (en) Polybutylene terephthalate resin composition