JPH02237678A - Coating device - Google Patents

Coating device

Info

Publication number
JPH02237678A
JPH02237678A JP5387989A JP5387989A JPH02237678A JP H02237678 A JPH02237678 A JP H02237678A JP 5387989 A JP5387989 A JP 5387989A JP 5387989 A JP5387989 A JP 5387989A JP H02237678 A JPH02237678 A JP H02237678A
Authority
JP
Japan
Prior art keywords
coating
film
film thickness
coated
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5387989A
Other languages
Japanese (ja)
Inventor
Atsushi Aya
淳 綾
Kenji Marumoto
健二 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5387989A priority Critical patent/JPH02237678A/en
Publication of JPH02237678A publication Critical patent/JPH02237678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Coating Apparatus (AREA)

Abstract

PURPOSE:To supply only a conforming article to the treating stage after the coating stage and to efficiently reduce the working cost and material cost by detecting a film thickness in the radial direction as well as in the peripheral direction during the rotational coating. CONSTITUTION:A body 1 to be coated is placed on a chuck 4 and fixed by vacuum suction. A coating soln. 2 is dripped from a nozzle 3. The chuck 4 is rotated at high speed for a specified time by a motor 5 to expand the coating soln. 2 by centrifugal force, and the film of the coating soln. 2 is formed. When the body 1 is irradiated by the laser beams from He-Ne lasers 50 and 51 during coating, the beams are reflected by the interface between the body 1 and the film of the coating soln. 2 and by the interface between the film of the coating soln. 2 and the atmosphere, and the beams interfere with each other. The interference beams are received by photodetectors 52 and 53 and transduced into electric signals, which are sent to a detection part 200, amplified by amplifiers 54 and 55, and passed through low-pass filters 58 and 59. As a result, an electric signal proportional to the intensity of the reflected light is obtained. The signal is processed by the arithmetic part 81 of a discrimination part 24, and the quality of the film thickness distribution is discriminated by a radial film thickness distribution discrimination part 82.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は液体の塗布装置、例えば半導体ウエハの表面
にフォトレジストを回転塗布するスピンコー夕のような
塗布装置に関する発明である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid coating device, such as a spin coater that spins and coats a photoresist onto the surface of a semiconductor wafer.

[従来の技術] 回転塗布については、株式会社工業調査会発行、[電子
材料J 1988年12月号別冊、78〜83ページに
示されているように、膜厚の均一な薄膜をシリコンウエ
ハなどの被塗布体上に形成するのに用イラレル。第3図
は従来の一般的なこの種の塗布装置であり、肢塗布体(
1)はチャック(4)上に置かれ、真空吸着などの方法
により固定される。塗布液(2)をノズル(3)がら被
塗布体(1)上に滴下し、モータ(5)により′チャッ
ク(4)を介して被塗布体(1)を一定時間、高速回転
させることにより、遠心力で塗布液(2)を拡げ、その
薄膜を形成する。
[Prior art] Regarding spin coating, as shown in [Electronic Materials J, December 1988 issue, special edition, pages 78 to 83, published by Kogyo Research Association Co., Ltd., a thin film with a uniform thickness is coated on a silicon wafer, etc. It is used for forming on the target material. Figure 3 shows a conventional general applicator of this type, with a limb applicator (
1) is placed on the chuck (4) and fixed by a method such as vacuum suction. By dropping the coating liquid (2) onto the object to be coated (1) through the nozzle (3), and rotating the object to be coated (1) at high speed for a certain period of time by the motor (5) via the chuck (4). , the coating liquid (2) is spread by centrifugal force to form a thin film.

回転前あるいは回転中に塗布液(2)の溶媒蒸発ムラや
ゴミあるいは塗布液(2)の飛沫が被塗布体(1)の面
上に付着することや、被塗布体面上のキズなどにより塗
布液膜は乱されて、膜厚にムラが生じることになる。
Before or during rotation, uneven solvent evaporation of the coating liquid (2), dust or droplets of the coating liquid (2) may adhere to the surface of the object to be coated (1), or scratches on the surface of the object to be coated may cause coating problems. The liquid film is disturbed, resulting in uneven film thickness.

第4図〜第6図に膜厚分布の均一な塗布液膜が形成され
た被塗布体(以下ではこれを良品と呼ぶ)と膜厚分布の
不均一な塗布液膜が形成された被塗布体(以下ではこれ
を不良品と呼ぶ)の上面と断面の模式図を示す。第4図
に示す不良品は、ストライエーション(l5)やゴミ(
16)による塗布不良(17)が起こり、塗布膜厚が不
均一になったものである。第5図に示す不良品は、塗布
液中に含まれる溶媒の蒸発が面内で不均一に起こること
などの原因で半径方向の膜厚分布に不均一が生じている
Figures 4 to 6 show a workpiece on which a coating liquid film with a uniform thickness distribution was formed (hereinafter referred to as a good product) and a workpiece on which a coating liquid film with an uneven thickness distribution was formed. A schematic diagram of a top surface and a cross section of a body (hereinafter referred to as a defective product) is shown. The defective products shown in Figure 4 include striations (l5) and dust (
Coating failure (17) due to 16) occurred, and the coating film thickness became non-uniform. The defective product shown in FIG. 5 has non-uniform film thickness distribution in the radial direction due to non-uniform evaporation of the solvent contained in the coating liquid within the surface.

第6図に示すのは良品で、塗布不良は生じておらず、塗
布膜厚は均一である。第4図,第5図に示す状態で露光
工程・現像工程のパタ〜ンニングを行うと、パターン線
幅のムラを生じたり、パターンか描けないことになり、
その箇所は不良品となり、歩留りが悪くなる。
The product shown in FIG. 6 is a good product, with no coating defects and a uniform coating thickness. If patterning in the exposure and development steps is performed in the conditions shown in FIGS. 4 and 5, the pattern line width may become uneven or the pattern may not be drawn.
At that location, the product will be defective and the yield will be poor.

以上のような従来の塗布装置では膜厚分布が検出されて
おらず、被塗布体上に形成された塗布液膜の膜厚分布の
不均一を発見することができない。
The conventional coating apparatus described above does not detect the film thickness distribution, and cannot discover non-uniformity in the film thickness distribution of the coating liquid film formed on the object to be coated.

このために、肢塗布体は良品と不良品の区別がないまま
に塗布工程以降の処理工程に進み、さらに加工された状
態で不良が発見されるという問題点があった。
For this reason, there is a problem in that the limb-applied body proceeds to the processing steps after the coating step without distinguishing between good and defective products, and defects are discovered in the further processed state.

この問題点を解決するために本発明者らは第7図に示す
ものを発明した。この先行発明は、被塗布体(1)の回
転中心以外の一点で塗布液(2)の周方向の膜厚あるい
は膜厚と相関をもつ他の物理量を光学的手法を用いて塗
布中に検出する検出11(too)と、その検出結果を
基に塗布膜の良・不良を判定する判定部(14)と、そ
の決定結果を基に処理を行う洗浄液供給装置(6)、洗
浄液ノズル(7)からなる処理手段を備えている。検出
部(100)はレーザ(10)からのレーザ光の反射を
受光する受光素子(11)、アンプ(12)、ハイパス
フィルタ(I3)を備えている。
In order to solve this problem, the present inventors invented what is shown in FIG. This prior invention detects the circumferential film thickness of the coating liquid (2) or other physical quantities correlated with the film thickness at a point other than the rotation center of the coated object (1) during coating using an optical method. a detection unit (14) that determines whether the coating film is good or bad based on the detection result, a cleaning liquid supply device (6) that performs processing based on the determination result, and a cleaning liquid nozzle (7). ). The detection unit (100) includes a light receiving element (11) that receives reflected laser light from the laser (10), an amplifier (12), and a high-pass filter (I3).

以上のような構成により、まず、チャック(4)上に被
塗布体(1)を載せ、真空吸着により固定する。その後
、ノズル(3)から塗布液(2)を被塗布体(1)上に
滴下する。さらに、モータ(5)により被塗布体(1)
およびチャック(4)を一定時間、高速で回転し、被塗
布体(1)上の塗布液(2)を遠心力により拡げて、塗
布液(2)の膜を形成する。塗布中、tie−Neレー
ザ(10)で被塗布体(1)上にレーザ光を照射する。
With the above configuration, first, the object to be coated (1) is placed on the chuck (4) and fixed by vacuum suction. Thereafter, the coating liquid (2) is dripped onto the object to be coated (1) from the nozzle (3). Furthermore, the object to be coated (1) is
Then, the chuck (4) is rotated at high speed for a certain period of time to spread the coating liquid (2) on the object to be coated (1) by centrifugal force, thereby forming a film of the coating liquid (2). During coating, a tie-Ne laser (10) irradiates the object to be coated (1) with laser light.

その光は肢塗布体(1)と塗布液(2)の膜との界面お
よび塗.布液(2冫の膜と大気との界面の2つの面で反
射し、干渉を起す。第8図に膜厚と反射光の強度の時間
変化を示す。図中の(イ)、(口)の曲線において膜厚
△σで1周期となる強度変化をしており、膜厚の減少速
度が時間の経過と共に遅《なる。また、1μm程度の膜
厚のときには、変化の周期は通常一回転に要する時間よ
り長い周期となる。第6図に示した良品、第4図に示し
た不良品を円周状(18)に検査した場合、反射光の強
度変化は第9図のようになる。この不良品の場合、而内
の膜厚分布の不均一により反射光強度は一回転の間にも
変化するようになる。これに反し、良品の場合はそのよ
うな早い周期の変化はない。
The light is transmitted to the interface between the limb coating body (1) and the coating liquid (2) film and to the coating. The liquid is reflected on two surfaces, the interface between the film and the atmosphere, causing interference. Figure 8 shows the changes in film thickness and intensity of reflected light over time. ), the intensity changes in one period with the film thickness △σ, and the rate of decrease in film thickness slows down with the passage of time.Furthermore, when the film thickness is about 1 μm, the period of change is usually one cycle. The period is longer than the time required for rotation.When inspecting the non-defective product shown in Figure 6 and the defective product shown in Figure 4 in a circumferential manner (18), the intensity change of the reflected light is as shown in Figure 9. In the case of this defective product, the reflected light intensity changes even during one revolution due to the unevenness of the film thickness distribution.On the other hand, in the case of a good product, such a rapid periodic change will occur. do not have.

干渉光を受光素子(11)で受光し、受光素子(11)
は受けた光を電気的信号に変換し、検出部(100)へ
その信号を送る。検出部(100)においてその信号を
アンプ(12)で増幅させて、ハイパスフィルタ(l3
)を通せば第10図のような電気的信号が得られる。こ
の信号のピークや平均値をもとに良・不良を判定部(1
4)で判定する。判定の結果、良品と判断されれば、肢
塗布体(1)をそのまま次の工程に進ませる。不良品と
判断されれば、塗布終了後に洗浄液供給装置(6)を起
動させ、洗浄液ノズル(7)から洗浄液を滴下し、被塗
布体(1)から塗布液(2)を除去し、乾燥後、再塗布
を行う。
The interference light is received by the light receiving element (11), and the light receiving element (11)
converts the received light into an electrical signal and sends the signal to the detection section (100). In the detection section (100), the signal is amplified by an amplifier (12) and then passed through a high-pass filter (13).
), an electrical signal as shown in FIG. 10 can be obtained. Based on the peak and average value of this signal, there is a section (1
Determine according to 4). As a result of the determination, if it is determined to be a good product, the limb application body (1) is directly allowed to proceed to the next step. If it is determined that the product is defective, the cleaning liquid supply device (6) is activated after coating is completed, the cleaning liquid is dripped from the cleaning liquid nozzle (7), the coating liquid (2) is removed from the object to be coated (1), and after drying. , reapply.

[発明が解決しようとする課題1 以上のような先行発明による塗布装置は、周方向の膜厚
もしくは膜厚と相関のある他の物理量だけを検知するも
のであり、半径方向の膜厚は検知することかできない。
[Problem to be solved by the invention 1 The coating device according to the prior invention as described above detects only the film thickness in the circumferential direction or other physical quantities correlated with the film thickness, and does not detect the film thickness in the radial direction. I can't do anything.

従って、半径方向に膜厚分布の不均一が生じた場合には
、この先行発明では対応できない。
Therefore, if non-uniformity of film thickness distribution occurs in the radial direction, this prior invention cannot deal with it.

この発明は上記のような問題点を解消するためになされ
たもので、回転塗布中に周方向のみならず半径方向の膜
厚もしくは膜厚と相関のある他の物理量をも検出するこ
とにより、不良検知を行い、塗布工程後の処理工程に良
品のみを供給し、加工費、材料費の無駄を省き、かつ塗
布中に検査を行うことで検査に要する時間を省くことの
できる塗布装置を得ることにある。
This invention was made to solve the above problems, and by detecting the film thickness not only in the circumferential direction but also in the radial direction or other physical quantities correlated with the film thickness during spin coating, To obtain a coating device that can detect defects, supply only good products to a treatment process after the coating process, eliminate wasted processing costs and material costs, and reduce the time required for inspection by inspecting during coating. There is a particular thing.

[課題を解決するための手段] この発明に係る塗布装置は、被塗布体の半径方向の異な
る複数個の箇所で塗布液の膜厚あるいは膜厚と相関を持
つ他の物理量を光学的手法を用いて塗布中に検出する検
出部と、その検出結果を基に塗布膜の良・不良を判定す
る判定部と、その判定結果を基に処理を行う処理手段と
を備えている。
[Means for Solving the Problems] The coating apparatus according to the present invention uses an optical method to measure the film thickness of the coating liquid or other physical quantities correlated with the film thickness at a plurality of different locations in the radial direction of the object to be coated. The present invention includes a detection section that uses the detection section to detect during coating, a judgment section that judges whether the coating film is good or bad based on the detection result, and processing means that performs processing based on the judgment result.

[作 用] この発明においては、例えば、ゴミやキズにより生じる
周方向のみならず半径方向にも膜厚分布の不均一な肢塗
布体を、検査時間を新たに設けることなく発見すること
ができる。また、不良品を塗布工程以降の処理工程に送
ることがな《なる。
[Function] According to the present invention, for example, it is possible to detect a limb coated body with uneven film thickness distribution not only in the circumferential direction but also in the radial direction, which is caused by dust or scratches, without adding additional inspection time. . In addition, there is no need to send defective products to processing steps after the coating step.

さらに、発見された不良品を洗浄することで再利用する
ことも可能になる。
Furthermore, found defective products can be washed and reused.

U実施例コ 第1図はこの発明の一実施例を示し、被塗布体(1)の
半径の異なる2点にレーザ光を照射する2つのlie−
Neレーザ(so), (51)と、これらのレーザに
対応する受光素子(52), (53)が設けられてお
り、受光素子(52), (53)の出力信号は、検出
部(200)のアンプ(54), (55)にそれぞれ
接続されている。検出部(200)にはこれらのアンプ
(54), (55)・に対応してハイバスフィルタ(
56), (57)およびローパスフィルタ(58),
 (59)が設けられている。検出部(200)に接続
されている判定部(24)には、周方向膜厚分布判定部
(80)に加え、演算部(81)を有する半径方向膜厚
分布判定部(82)が設けられている。
U Embodiment FIG. 1 shows an embodiment of the present invention, in which two lie-
Ne lasers (so), (51) and light receiving elements (52), (53) corresponding to these lasers are provided, and the output signals of the light receiving elements (52), (53) are sent to the detection unit (200). ) are connected to amplifiers (54) and (55), respectively. The detection section (200) is equipped with a high-pass filter (corresponding to these amplifiers (54), (55)).
56), (57) and low pass filter (58),
(59) is provided. The determination section (24) connected to the detection section (200) is provided with a radial thickness distribution determination section (82) having a calculation section (81) in addition to a circumferential thickness distribution determination section (80). It is being

その池、第7図におけると同一符号は同一部分である。The same reference numerals as in FIG. 7 indicate the same parts.

以上の構成により、被塗布体(1)へ塗布液(2)の塗
布を行う場合、まずチャック(4)上に被塗布体(1)
を載せ、真空吸着により固定する。その後、ノズル(3
)から塗布液(2)を被塗布体(1)上に滴下する。さ
らに、モータ(5)により肢塗布体(1)およびチャッ
ク(4)を一定時間、高速で回転し、被塗布体(1)上
の塗布液(2)を遠心力により拡げて、塗布液(2)の
膜を形成する。塗布中、He−Neレーザ(50), 
(51)で被塗布体(1)上にレーザ光を照射する。そ
れらの光は被塗布体(1)と塗布液(2)の膜との界面
および塗布液(2)の膜と大気との界面の2つの面で反
射し、それぞれ干渉を起こす。第5図に示した不良品を
円(1g), (19)に沿って同心円状に検査した場
合、反射光の強度変化は第8図のようになる。第8図中
の曲線(イ)は円(19)の円周状に検査した反射光強
度であり、曲線(口)は円(l8)の円周状に検査した
反射光強度である。第5図の不良品の場合、半径方向の
膜厚分布の不均一により反射光強度は第8図の曲線(イ
),(口)で時間的な位相のずれを生じる。干渉光を受
光素子(52), (53)で受光し、受光素子(52
), (53)は受けた光を電気的信号に変換し、検出
部(200)へその信号を送る。検出部(200)にお
いてその信号をアンプ(54), (55)で増幅させ
て、ローバスフィルタ(58), (59)を通せば第
8図(b)の反射光強度に比例した電気的信号が得られ
る。この信号を判定部(24)の演算部(8l)で処理
することにより第2図のような信号になる。第2図(a
)は第8図の(イ)の出力電圧を(口)の出力電圧で除
いた結果であり、第2図(b)は第8図の(イ)の出力
電圧から(口)ノ出力電圧を引いた結果である。
With the above configuration, when applying the coating liquid (2) to the object (1), first place the object (1) on the chuck (4).
Place it and fix it by vacuum suction. After that, nozzle (3
) and drop the coating liquid (2) onto the object to be coated (1). Furthermore, the limb applicator (1) and the chuck (4) are rotated at high speed for a certain period of time by the motor (5), and the coating liquid (2) on the object to be coated (1) is spread by centrifugal force. 2) Form the film. During coating, He-Ne laser (50),
At (51), the object to be coated (1) is irradiated with laser light. These lights are reflected at two surfaces: the interface between the object to be coated (1) and the film of the coating liquid (2), and the interface between the film of the coating liquid (2) and the atmosphere, causing interference with each other. When the defective product shown in FIG. 5 is inspected concentrically along circles (1g) and (19), the intensity change of the reflected light is as shown in FIG. 8. The curve (a) in FIG. 8 is the reflected light intensity tested circumferentially around the circle (19), and the curve (opening) is the reflected light intensity tested circumferentially around the circle (18). In the case of the defective product shown in FIG. 5, the reflected light intensity has a temporal phase shift between the curves (a) and (b) in FIG. 8 due to the non-uniformity of the film thickness distribution in the radial direction. The interference light is received by the light receiving elements (52) and (53), and the light receiving element (52)
), (53) convert the received light into an electrical signal and send the signal to the detection section (200). In the detection section (200), the signal is amplified by amplifiers (54), (55) and passed through low-pass filters (58), (59) to generate an electrical signal proportional to the reflected light intensity as shown in Fig. 8(b). I get a signal. By processing this signal in the arithmetic unit (8l) of the determining unit (24), a signal as shown in FIG. 2 is obtained. Figure 2 (a
) is the result of subtracting the output voltage of (a) in Figure 8 by the output voltage of (mouth), and Figure 2 (b) is the result of subtracting the output voltage of (mouth) from the output voltage of (a) in Figure 8. This is the result of subtracting .

2つの膜厚の経時変化が等しければ第2図(a)の値は
変化することはない。また、第2図(b)の場合でも検
査に用いた2つのレーザの出力と受光素子の感度が同じ
ものであるか、あるいは一度2つの信号を正規化した後
に演算部(8l)で処理すれば、第8図における(イ)
の出力電圧と(口)の出力電圧の差の時間的な変動はな
いはずである。
If the changes in the two film thicknesses over time are equal, the values shown in FIG. 2(a) will not change. Also, in the case of Fig. 2(b), it is necessary to check whether the output of the two lasers used for inspection and the sensitivity of the light receiving element are the same, or whether the two signals are processed in the calculation unit (8l) after being normalized. For example, (a) in Figure 8
There should be no temporal variation in the difference between the output voltage of and the output voltage of (mouth).

従って、この信号を基に良・不良を半径方向膜厚分布判
定部(82)で判定することができる。この精度はレー
ザの光干渉を利用しているために非常に高《、.被塗布
体(1)がシリコンウエハで、塗布液(2)がフォトレ
ジストの場合には10人程度の分解能が容易に達成でき
る。判定の結果、良品と判断されれば、肢塗布体(1)
をそのまま次の工程に進ませる。不良品と判断されれば
、塗布終了後に洗浄液供給装置(6)を起動させ、洗浄
液ノズル(7)から洗浄液を滴下し、被塗布体(1)か
ら塗布液(2)を除去し、乾燥後、再塗布を行うことに
なる。
Therefore, based on this signal, the radial film thickness distribution determining section (82) can determine whether the film is good or bad. This accuracy is extremely high because it uses laser optical interference. When the object to be coated (1) is a silicon wafer and the coating liquid (2) is photoresist, a resolution of about 10 people can be easily achieved. As a result of the judgment, if it is determined to be a good product, the limb application body (1)
Proceed directly to the next step. If it is determined that the product is defective, the cleaning liquid supply device (6) is activated after coating is completed, the cleaning liquid is dripped from the cleaning liquid nozzle (7), the coating liquid (2) is removed from the object to be coated (1), and after drying. , you will have to reapply.

また、上記動作説明は半径方向の膜厚分布の不良検知に
ついて述べたが、週方向の膜厚分布の不良検知について
も先行発明のところで記述したようにして行うことがで
きる。装置としては、図中のハイバスフィルタ(56)
, (57)や周方向膜厚分布判定部(80)を用いれ
ばよい。
Furthermore, although the above description of the operation describes the detection of defects in the film thickness distribution in the radial direction, the detection of defects in the film thickness distribution in the week direction can also be performed in the same manner as described in the prior invention. The device is the high-pass filter (56) in the figure.
, (57) or the circumferential film thickness distribution determining section (80) may be used.

なお、上記実施例では不良検知後の処理装置として洗浄
装置を備えたものを示したが、洗浄せずに不良品を別な
所に集める装置や、後工程で処理を行わないように制御
回路を設けても良い。また、レーザを光源として示した
が白色光源とフィルタを組み合わせたものや、あるいは
それにレンズを組み合わせたものでも良い。また、測定
方法もここで述べた光干渉を利用する方法の他に膜中の
光吸収を利用することも可能である。
In addition, in the above embodiment, a cleaning device is shown as a processing device after detecting a defect. may be provided. Further, although a laser is shown as a light source, a combination of a white light source and a filter, or a combination of a lens and a white light source may also be used. Further, as for the measurement method, in addition to the method using optical interference described here, it is also possible to use optical absorption in the film.

[発明の効果] 以上のように、この発明によれば、被塗布体の半径方向
の異なる複数個の箇所で塗布液の膜厚あるいは膜厚と相
関を持つ他の物理量を光学的手法を用いて塗布中に検出
する検出部と、その検出結果を基に塗布膜の良・不良を
判定する判定部と、その判定結果を基に処理を行う処理
手段を備えたことにより、下記の効果を奏する。
[Effects of the Invention] As described above, according to the present invention, the film thickness of the coating liquid or other physical quantities correlated with the film thickness can be measured using an optical method at a plurality of different locations in the radial direction of the object to be coated. By being equipped with a detection unit that detects during coating, a determination unit that determines whether the coating film is good or bad based on the detection results, and processing means that performs processing based on the determination results, the following effects can be achieved. play.

(i)周方向のみならず半径方向の膜厚分布をも検査す
ることができるので先行発明よりも正確に不良を発見で
きる。
(i) Since the film thickness distribution can be inspected not only in the circumferential direction but also in the radial direction, defects can be found more accurately than in the prior invention.

(11)良品のみを塗布後の工程に送ることができるの
で、後工程で加工された後に不良品となることがないの
で加工費、材料費が低減される。
(11) Since only non-defective products can be sent to the post-coating process, they will not become defective after being processed in the post-process, reducing processing costs and material costs.

(i)不良検知が被塗布体(ウエノ・など)上の塗布液
膜で作られたパターン線幅の目視検査などに比べて簡単
であり、また、自動化されているため正確に迅速に行う
ことができ、かつ省大化できる。
(i) Defect detection is easier than visual inspection of the pattern line width created by the coating liquid film on the object to be coated (Ueno, etc.), and is automated, so it can be done accurately and quickly. can be done, and the size can be reduced.

(iv)  検査は塗布中に行うために、そのための時
間や場所を新たに設ける必要がない。
(iv) Since the inspection is performed during application, there is no need to set up additional time or space for it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の概略側断面図、第2図は
第1図のものにおける演算結果の特性線図である。 第3図〜第lO図は従来の塗布装置を示し、第3図は概
略側面図、第4図は塗布液膜不良の場合の平面図(a)
, (a)の1−1線、■一■線、I−III線に沿う
平面での断面図(b.), (bt), (b3)、第
5図は別の塗布膜不良の場合の平面図(a),断面図(
b)、第6図は塗布液膜が良の場合の平面図(a),断
面図(b)、第7図は先行発明の概略側断面図、第8図
は塗布中の膜厚および反射光強度の時間変化特性線図、
第9図は不良品、良品の反射光強度の時間変化特性比較
線図、第10図は第9図に対応する出力電圧特性比較線
図である。 (1)・・被塗布体、(2)・・塗布液、(200)な
お、各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a schematic side sectional view of an embodiment of the present invention, and FIG. 2 is a characteristic line diagram of calculation results for the one shown in FIG. Figures 3 to 10 show a conventional coating device, with Figure 3 being a schematic side view and Figure 4 being a plan view (a) in the case of a defective coating liquid film.
, Cross-sectional views (b.), (bt), (b3) on the plane along the 1-1 line, ■1■ line, and I-III line in (a), Figure 5 shows another case of coating film defect. Plan view (a), cross-sectional view (
b), Figure 6 is a plan view (a) and cross-sectional view (b) when the coating liquid film is good, Figure 7 is a schematic side sectional view of the prior invention, and Figure 8 is the film thickness and reflection during coating. Time change characteristics diagram of light intensity,
FIG. 9 is a comparison diagram of time change characteristics of reflected light intensity of defective products and non-defective products, and FIG. 10 is a comparison diagram of output voltage characteristics corresponding to FIG. 9. (1)...Object to be coated, (2)...Coating liquid, (200) In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 被塗布体上に塗布液を滴下し、前記被塗布体を回転させ
て、前記塗布液を遠心力により拡げ、前記被塗布体上に
前記塗布液の薄膜を形成させる塗布装置において、前記
被塗布体の半径方向に異なる複数個の箇所で前記塗布液
の薄膜およびこの薄膜と相関を持つ他の物理量のいずれ
かを光学的手法により塗布中に検出する検出手段と、そ
の検出結果を基に塗布膜の良・不良を判定する判定部と
、その判定結果を基に処理を行う処理手段とを備えてな
ることを特徴とする塗布装置。
In a coating device that drops a coating liquid onto an object to be coated, rotates the object to be coated, spreads the coating liquid by centrifugal force, and forms a thin film of the coating liquid on the object to be coated. a detection means for detecting either a thin film of the coating liquid or any other physical quantity correlated with the thin film at a plurality of different locations in the radial direction of the body using an optical method; 1. A coating device comprising: a determination section that determines whether a film is good or bad; and processing means that performs processing based on the determination result.
JP5387989A 1989-03-08 1989-03-08 Coating device Pending JPH02237678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5387989A JPH02237678A (en) 1989-03-08 1989-03-08 Coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5387989A JPH02237678A (en) 1989-03-08 1989-03-08 Coating device

Publications (1)

Publication Number Publication Date
JPH02237678A true JPH02237678A (en) 1990-09-20

Family

ID=12955035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5387989A Pending JPH02237678A (en) 1989-03-08 1989-03-08 Coating device

Country Status (1)

Country Link
JP (1) JPH02237678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344416B1 (en) * 2000-03-10 2002-02-05 International Business Machines Corporation Deliberate semiconductor film variation to compensate for radial processing differences, determine optimal device characteristics, or produce small productions
JP2009290210A (en) * 2008-05-30 2009-12-10 Asml Netherlands Bv Method of determining defects in substrate and apparatus for exposing substrate in lithographic process
JP2011066049A (en) * 2009-09-15 2011-03-31 Sokudo Co Ltd Substrate treatment apparatus, substrate treatment system, and inspection/periphery exposure apparatus
WO2022138291A1 (en) * 2020-12-24 2022-06-30 東京エレクトロン株式会社 Substrate treatment apparatus, substrate treatment method, and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344416B1 (en) * 2000-03-10 2002-02-05 International Business Machines Corporation Deliberate semiconductor film variation to compensate for radial processing differences, determine optimal device characteristics, or produce small productions
JP2009290210A (en) * 2008-05-30 2009-12-10 Asml Netherlands Bv Method of determining defects in substrate and apparatus for exposing substrate in lithographic process
US8345231B2 (en) 2008-05-30 2013-01-01 Asml Netherlands B.V. Method of determining defects in a substrate and apparatus for exposing a substrate in a lithographic process
JP2011066049A (en) * 2009-09-15 2011-03-31 Sokudo Co Ltd Substrate treatment apparatus, substrate treatment system, and inspection/periphery exposure apparatus
WO2022138291A1 (en) * 2020-12-24 2022-06-30 東京エレクトロン株式会社 Substrate treatment apparatus, substrate treatment method, and storage medium

Similar Documents

Publication Publication Date Title
US4977330A (en) In-line photoresist thickness monitor
US6801321B1 (en) Method and apparatus for measuring lateral variations in thickness or refractive index of a transparent film on a substrate
JPH02237678A (en) Coating device
JP2006319217A (en) Application inspection method and oil immersion exposure method
WO2019130757A1 (en) Double-side polishing device and double-side polishing method for workpiece
JPH02233176A (en) Coating apparatus
JPS6038827A (en) Calibration for sensitivity of automatic foreign substance inspecting device
JP2800587B2 (en) Foreign matter inspection device and foreign matter inspection method
JP2564310B2 (en) Appearance inspection device
JP2003240723A (en) Method and apparatus for examining defect
JP2000311925A (en) Visual inspection apparatus
JPH051067Y2 (en)
JP2768720B2 (en) Coating device
JPH05234870A (en) Method and apparatus for coating chemical liquid
JPH01251629A (en) Estimation method of particle
JPH02660B2 (en)
JPS59120909A (en) Method for measuring thickness of resist coated film
JP2690526B2 (en) Application method
JP2000223451A (en) Polishing state measuring method
JP2544161B2 (en) Development method
JPH03163332A (en) Method for measuring diameter of minute particulate with laser beam
JP2550863B2 (en) Optical disc master observation device
JPH0325356A (en) Wafer inspecting method
JPH02233177A (en) Coating apparatus
JPH05189811A (en) Inspection method of coating-film face on optical disk