JPH02660B2 - - Google Patents

Info

Publication number
JPH02660B2
JPH02660B2 JP54171019A JP17101979A JPH02660B2 JP H02660 B2 JPH02660 B2 JP H02660B2 JP 54171019 A JP54171019 A JP 54171019A JP 17101979 A JP17101979 A JP 17101979A JP H02660 B2 JPH02660 B2 JP H02660B2
Authority
JP
Japan
Prior art keywords
signal
threshold value
width
comparator
outputted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54171019A
Other languages
Japanese (ja)
Other versions
JPS5694248A (en
Inventor
Kenichi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17101979A priority Critical patent/JPS5694248A/en
Publication of JPS5694248A publication Critical patent/JPS5694248A/en
Publication of JPH02660B2 publication Critical patent/JPH02660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はLSI用フオトマスクの材料であるフオ
トマスク基板、乾板の表面異物検出装置に関す
る。超LSIを頂点とする最近の半導体製造技術の
進歩、発展にはめざましいものがある。進歩発展
をもたらした要因は種々ある中で半導体の機能、
製造歩留りに大きな影響をもつフオトマスクの品
質は非常に重要なものとなつてきている。従つて
フオトマスクに要求される内容も微細パターンに
よる高集積・高精度化と欠陥の少ない高品質化の
両面から規定され製造装置の限界を超えるものも
めずらしくない。 このような状況において、マスク製造全体をみ
た場合、品質、精度を実際に計測し、保証する検
査の重要性が高まつてきている。 ところでガラス基板上にクロム等でパターニン
グをしたブランクマスクのピンホール欠陥は、
IC、バブル等のデバイスの歩留りに影響し、高
精度な非破壊全面検査が要求されている。 そこで良好な可干渉性、指向性、高輝度性を有
するレーザー光スポツトをブランクマスクのピン
ホール部分に照射した場合に生ずる反射光回折光
の強度及び空間的分布が、欠陥の程度に応じて変
化する性質を利用し、第1図に示すようにレーザ
ー光スポツトをブランクマスク上で順次移動する
ことにより、マスク全面を検査する方法が用いら
れている。 第1図において1は波長6328Åのヘリウム−ネ
オン(He−Ne)レーザー、2はスキヤニングミ
ラー、3はスキヤニングレンズ、4は基板、6は
レジスト、7は移動台、8,8′は欠陥部からの
散乱反射光を検出するPINシリコンフオトダイオ
ードからなる光電検出器である。 ところでフオトマスクは次のような工程で製作
される。ガラス等の透明基板上にクロム(Cr)、
酸化クロム(Cr2O3)等の薄膜を蒸着した後に、
基板上にフオトレジストを回転塗布し乾燥する。
前記レジストを塗布した基板を乾板と称する。次
に乾板上にフオトマスクを密着させて紫外光を露
光する。露光後現像液を用いて現像し、パターニ
ングを行う。次にレジストをマスクとして露出し
た部分のCr、Cr2O3等の薄膜をエツチング除去
し、次いで残つているレジスト層を除去してフオ
トマスクを完成させる。 ところで、フオトレジストの塗布は相対湿度20
%以下に常に制御した無塵ボツクスの窒素雰囲気
中でスピナを用いて行なう。作業室はクラス1000
以下、クリーン・ベンチ内では100以下に清浄に
し、また外部環境も常に清浄に管理されている。 粘度25センチポイズに調整したフオトレジスト
を毎分5000回転で約30秒塗布する。次に赤外線ラ
ンプを照射するか、電気オーブンを用いて窒素雰
囲気でパージングしながら80℃30分のプレベーキ
ングを行ない、粘度調整のために用いた有機溶剤
を揮発させると基板上に膜厚約7000Åのフオトレ
ジスト層が形成される。上記工程で形成される基
板上のフオトレジスト層の表面は、回転塗布、或
は溶剤等の蒸発時に、第2図aに示す如きマクロ
なうねりCを生じた構造となつている。第2図a
はガラス基板4上にクロム層5を蒸着し、その上
にレジスト層6を塗布した乾板である。Aは大き
な異物、Bは小さな異物である。 従来フオトマスクの材料であるフオトマスク基
板、乾板の表面検査を行なう場合、第1図の如き
装置を用いて、レーザー1からのレーザービーム
をスキヤニングミラー2、スキヤニングレンズ3
によりスポツトに絞つて、試料面を走査し表面検
査をする。第2図bは第2図aの乾板をレーザー
光で左端から右端にスキヤニングした時光電検出
器に生ずる、乾板からの散乱反射光の出力信号で
ある。 フオトレジスト層には、前述の第2図aのCの
ような大きなうねりが存在しているので、光電検
出器8,8′には散乱反射光が検知される。この
レジストのうねりによる雑音は第2図bのC′に示
すように信号振幅7〜8mV、信号幅20μs程度で
あることが判つた。レジストに第2図aのAのよ
うな大きな異物がある場合、照射レーザービーム
は大きな異物Aにより強く散乱されるので、光電
検出器にはA′のような強い散乱光が検知される。
従来は信号の振幅が10mV以上である場合に、異
物として検出されていた。しかるにレジスト上に
第2図aのBのような小さな異物がある場合に
は、照射光は小さな異物により散乱されるもの
の、散乱反射光強度が弱いため、B′のように信
号振幅は10mV以下であり、前記フオトレジスト
層表面の大きなうねりによる信号振幅7〜8mV
の雑音C′と重つてしまい、小さな異物の検出を行
うことができなかつた。 本発明の目的は、乾板の表面をレーザー光で走
査し、該乾板からの散乱反射光を光電検出器で検
出して乾板の表面検査を行うに際し、振幅弁別回
路とパルス幅弁別回路とを設け振幅と信号幅の両
方でレベル判定を行うことにより異物からの信号
とレジストからのノイズとを区別することを特徴
とする。 以下本発明の実施例を詳述する。 乾板表面に塵芥などが付着することにより存在
する異物が小さくなる程周辺の雑音域と同信号値
になつてしまうが、実験により求めた異物の大小
と周辺の雑音の特徴は表に示す如きものであつ
た。
The present invention relates to a device for detecting foreign matter on the surface of photomask substrates and dry plates, which are materials for LSI photomasks. The recent progress and development of semiconductor manufacturing technology, with VLSI at its peak, has been remarkable. Among the various factors that brought about progress and development, the functions of semiconductors,
The quality of photomasks has become extremely important as it has a significant impact on manufacturing yield. Therefore, the requirements for photomasks are defined in terms of both high integration and precision through fine patterns and high quality with fewer defects, and it is not uncommon for photomasks to exceed the limits of manufacturing equipment. Under these circumstances, when looking at mask manufacturing as a whole, inspections that actually measure and guarantee quality and accuracy are becoming increasingly important. By the way, pinhole defects in a blank mask patterned with chromium etc. on a glass substrate are
This affects the yield of devices such as ICs and bubbles, and requires highly accurate non-destructive full-scale inspection. Therefore, when a laser beam spot with good coherence, directivity, and high brightness is irradiated onto the pinhole portion of a blank mask, the intensity and spatial distribution of the reflected light diffracted light change depending on the degree of defects. Taking advantage of this property, a method is used in which the entire surface of a mask is inspected by sequentially moving a laser beam spot on a blank mask as shown in FIG. In Figure 1, 1 is a helium-neon (He-Ne) laser with a wavelength of 6328 Å, 2 is a scanning mirror, 3 is a scanning lens, 4 is a substrate, 6 is a resist, 7 is a moving table, and 8 and 8' are defects. This is a photoelectric detector consisting of a PIN silicon photodiode that detects scattered reflected light from the By the way, a photomask is manufactured through the following process. Chromium (Cr) on a transparent substrate such as glass,
After depositing a thin film such as chromium oxide (Cr 2 O 3 ),
A photoresist is spin-coated onto the substrate and dried.
The substrate coated with the resist is called a dry plate. Next, a photomask is placed on the dry plate and exposed to ultraviolet light. After exposure, development is performed using a developer to perform patterning. Next, using the resist as a mask, the exposed portions of the thin film of Cr, Cr 2 O 3 , etc. are removed by etching, and then the remaining resist layer is removed to complete the photomask. By the way, photoresist is applied at a relative humidity of 20
% or less using a spinner in a nitrogen atmosphere in a dust-free box. The work room is class 1000
The inside of the clean bench is kept clean to below 100, and the outside environment is also kept clean at all times. Apply photoresist adjusted to a viscosity of 25 centipoise for approximately 30 seconds at 5000 revolutions per minute. Next, pre-baking is performed at 80℃ for 30 minutes while being irradiated with an infrared lamp or purged in a nitrogen atmosphere using an electric oven, and the organic solvent used for viscosity adjustment is evaporated, resulting in a film thickness of approximately 7000Å on the substrate. A photoresist layer is formed. The surface of the photoresist layer on the substrate formed in the above process has a structure in which macroscopic undulations C as shown in FIG. 2A are generated during spin coating or evaporation of a solvent or the like. Figure 2a
This is a dry plate in which a chromium layer 5 is deposited on a glass substrate 4, and a resist layer 6 is applied thereon. A is a large foreign object, and B is a small foreign object. Conventionally, when inspecting the surface of photomask substrates and dry plates, which are the materials of photomasks, a device as shown in Fig. 1 is used to direct the laser beam from a laser 1 through a scanning mirror 2 and a scanning lens 3.
The sample surface is scanned and the surface inspected by focusing on the spot. FIG. 2b shows an output signal of scattered reflected light from the dry plate generated on the photoelectric detector when the dry plate shown in FIG. 2a is scanned from the left end to the right end with a laser beam. Since the photoresist layer has large undulations as shown in C in FIG. 2A, the photodetectors 8 and 8' detect scattered reflected light. It was found that the noise due to the waviness of the resist had a signal amplitude of 7 to 8 mV and a signal width of about 20 .mu.s, as shown by C' in FIG. 2b. If there is a large foreign object such as A in FIG. 2a in the resist, the irradiated laser beam is strongly scattered by the large foreign object A, and the photoelectric detector detects strongly scattered light such as A'.
Conventionally, if the amplitude of the signal was 10 mV or more, it was detected as a foreign object. However, if there is a small foreign object on the resist like B in Figure 2a, the irradiated light is scattered by the small object, but the intensity of the scattered reflected light is weak, so the signal amplitude is less than 10 mV as shown in B'. The signal amplitude is 7 to 8 mV due to the large waviness on the surface of the photoresist layer.
The noise overlapped with the noise C', making it impossible to detect small foreign objects. An object of the present invention is to provide an amplitude discrimination circuit and a pulse width discrimination circuit when inspecting the surface of a dry plate by scanning the surface of the dry plate with a laser beam and detecting scattered reflected light from the dry plate with a photoelectric detector. It is characterized by distinguishing between signals from foreign objects and noise from resist by performing level determination on both amplitude and signal width. Examples of the present invention will be described in detail below. The smaller the foreign matter that is present due to dust adhering to the surface of the dry plate, the more the signal value will be the same as the surrounding noise area, but the size of the foreign matter and the characteristics of the surrounding noise determined through experiments are as shown in the table. It was hot.

【表】 上記特性から異物検出を行うためには第3図に
示すフローチヤートを適用し振幅と信号幅の両方
でレベル判定を行ない雑音信号を除く。 光電検出器からの入力信号を波高弁別する。
すなわち入力信号が10mV以上かどうかを比較
し、10mV以上なら大きな異物として出力させ
る。入力信号が10mV未満のものについては入
力信号をパルス幅弁別する。すなわち入力信号が
3μsec以下なら雑音として出力させる。このため
に第4図に示す回路を用いる。 光電検出器からの入力信号1をコンパレータ2
で振幅10mV以上のものと振幅10mV未満のもの
に分ける。振幅10mV以上のものは出力回路3に
異物大の信号を出力させる。振幅10mV未満のも
のは整形器4である程度波形を整形し、二つの入
力を持つアンドゲート6に入力させる。アンドゲ
ート6には基準発振機5から1MHzの基準信号を
入力させる。アンドゲート6からの信号幅をデジ
タルコンパレータ7で設定値と比較し、設定値
3μs以下の場合出力回路3に異物小の信号を出力
させ、設定値15μs以上の場合出力回路3に雑音の
信号を出力させる。 以上の説明から明らかな如く、信号処理系に、
波高弁別回路とパルス幅弁別回路とを設けた本発
明の回路を用いることにより、従来では弁別する
ことができなかつた小さな異物をレジストのウネ
リにより生ずる雑音から分離させることが可能と
なり、従つて小さな異物までも検出することが出
来るようになつた。
[Table] In order to detect foreign objects based on the above characteristics, the flowchart shown in FIG. 3 is applied, level judgment is performed on both amplitude and signal width, and noise signals are removed. Discriminates the wave height of the input signal from the photoelectric detector.
That is, it compares whether the input signal is 10 mV or more, and if it is 10 mV or more, it is output as a large foreign object. If the input signal is less than 10 mV, the input signal is subjected to pulse width discrimination. That is, if the input signal is
If it is 3 μsec or less, it is output as noise. For this purpose, the circuit shown in FIG. 4 is used. Input signal 1 from photoelectric detector to comparator 2
It is divided into those with an amplitude of 10 mV or more and those with an amplitude of less than 10 mV. If the amplitude is 10 mV or more, the output circuit 3 outputs a signal as large as a foreign object. If the amplitude is less than 10 mV, the waveform is shaped to some extent by a shaper 4, and then input to an AND gate 6 having two inputs. A 1MHz reference signal is inputted to the AND gate 6 from the reference oscillator 5. The signal width from AND gate 6 is compared with the set value by digital comparator 7, and the set value is
If the time is 3 μs or less, the output circuit 3 is made to output a signal indicating a small foreign object, and if the set value is 15 μs or more, the output circuit 3 is made to output a noise signal. As is clear from the above explanation, in the signal processing system,
By using the circuit of the present invention, which includes a pulse height discrimination circuit and a pulse width discrimination circuit, it is possible to separate small foreign objects, which could not be discriminated in the past, from noise caused by resist waviness. It has become possible to detect even foreign objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザー光を用いた表面異物検出装置
の概略図、第2図aは乾板上の断面図、第2図b
はレーザービームを走査して得られる第2図aに
対応する散乱反射光出力変化、第3図は本発明の
信号処理回路、第4図は第3図の回路を説明する
フローチヤートである。 1:He−Neレーザー、2:スキヤニングミラ
ー、3:スキヤニングレンズ、4:基板、6:レ
ジスト、A:レジスト上の大きな異物、B:レジ
スト上の小さな異物、C:レジスト表面のうね
り、7:移動台、8:光電検出器。
Figure 1 is a schematic diagram of a surface foreign matter detection device using laser light, Figure 2 a is a cross-sectional view of a dry plate, Figure 2 b
3 shows a change in the output of scattered reflected light corresponding to FIG. 2a obtained by scanning a laser beam, FIG. 3 is a signal processing circuit of the present invention, and FIG. 4 is a flowchart explaining the circuit of FIG. 3. 1: He-Ne laser, 2: Scanning mirror, 3: Scanning lens, 4: Substrate, 6: Resist, A: Large foreign matter on resist, B: Small foreign matter on resist, C: Waviness on resist surface, 7: Moving table, 8: Photoelectric detector.

Claims (1)

【特許請求の範囲】 1 乾板の表面をレーザー光で走査するレーザー
光源、スキヤニング光学系と、 該乾板からの散乱反射光を検出する光電検出器
と、 該光電検出器からの入力信号を第1の閾値以上
の信号と第1の閾値未満第2の閾値以上の信号と
に波高弁別する第1及び第2のコンパレータと、 振幅弁別された該第1の閾値未満の信号を波形
整形する整形器と、 該整形器で整形された信号と高周波基準発振器
よりの基準信号とが入力されるアンドゲートと、 該アンドゲートからの信号幅を設定値と比較し
パルス幅弁別するデイジタルコンパレータと、 該第1のコンパレータからの閾値以上の信号を
異物大として出力させ、 該デイジタルコンパレータからの第1の設定信
号幅以下の信号を異物小として出力させ、第2の
設定信号幅以上の信号をレジストのうねりとして
出力させる出力回路とを有することを特徴とする
表面異物検出装置。
[Scope of Claims] 1. A laser light source that scans the surface of a dry plate with a laser beam, a scanning optical system, a photoelectric detector that detects scattered reflected light from the dry plate, and a first input signal from the photoelectric detector. a first and second comparator that discriminates the wave height between a signal that is above a threshold value and a signal that is below the first threshold value and above a second threshold value; and a shaper that shapes the waveform of the amplitude-discriminated signal that is below the first threshold value. an AND gate into which the signal shaped by the shaper and a reference signal from a high-frequency reference oscillator are input; a digital comparator that compares the signal width from the AND gate with a set value to discriminate pulse width; A signal from the first comparator that is equal to or greater than the threshold value is outputted as a large foreign object, a signal from the digital comparator that is less than or equal to the first set signal width is outputted as a small foreign material, and a signal that is equal to or larger than the second set signal width is outputted as a resist waviness. What is claimed is: 1. A surface foreign matter detection device, comprising: an output circuit that outputs an output signal.
JP17101979A 1979-12-28 1979-12-28 Detector for foreign matter on surface Granted JPS5694248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17101979A JPS5694248A (en) 1979-12-28 1979-12-28 Detector for foreign matter on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17101979A JPS5694248A (en) 1979-12-28 1979-12-28 Detector for foreign matter on surface

Publications (2)

Publication Number Publication Date
JPS5694248A JPS5694248A (en) 1981-07-30
JPH02660B2 true JPH02660B2 (en) 1990-01-09

Family

ID=15915575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17101979A Granted JPS5694248A (en) 1979-12-28 1979-12-28 Detector for foreign matter on surface

Country Status (1)

Country Link
JP (1) JPS5694248A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151544A (en) * 1982-03-05 1983-09-08 Nippon Jido Seigyo Kk Defect inspecting device by dark view field
JPS58223328A (en) * 1982-06-22 1983-12-24 Toshiba Corp Inspecting device for defect of mask
JPS60209187A (en) * 1984-07-17 1985-10-21 Matsushita Graphic Commun Syst Inc Inspecting device for solid-state image pickup element
DE3929549C1 (en) * 1989-09-06 1991-02-14 Fa. Carl Zeiss, 7920 Heidenheim, De Sensitive measurer for light dispersed on optical component - has time-window discriminator blocking detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957887A (en) * 1972-09-30 1974-06-05
JPS50143590A (en) * 1974-05-08 1975-11-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957887A (en) * 1972-09-30 1974-06-05
JPS50143590A (en) * 1974-05-08 1975-11-19

Also Published As

Publication number Publication date
JPS5694248A (en) 1981-07-30

Similar Documents

Publication Publication Date Title
CN109975319B (en) Device and method for rapidly detecting surface quality of planar optical element
US20110101226A1 (en) Method and apparatus for duv transmission mapping
JP3712481B2 (en) Manufacturing method of semiconductor device
JPH02660B2 (en)
JPS6038827A (en) Calibration for sensitivity of automatic foreign substance inspecting device
JPH0682727B2 (en) Inspection substrate and manufacturing method thereof
JP2002340811A (en) Surface evaluation device
JPH06118009A (en) Foreign matter inspecting device and method therefor
JPH03203343A (en) Inspecting method
JPH0755702A (en) Crystal-defect measuring device and semiconductor manufacturing apparatus using the device
JPH0291504A (en) Method for inspecting cross-sectional profile of fine pattern
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JPH0743323B2 (en) Surface foreign matter inspection device
US7573568B2 (en) Method and apparatus for detecting a photolithography processing error, and method and apparatus for monitoring a photolithography process
JPH04344447A (en) Detecting device for defect in transparent glass substrate
JPH08264605A (en) Method for inspecting laminated board, soi wafer using the same, semiconductor integrated circuit using the wafer and apparatus for inspecting the laminated board
JPH07142363A (en) Method and apparatus for manufacture of semiconductor integrated circuit device
JPS63103951A (en) Dust inspection device
JPH09218162A (en) Surface defect inspection device
JPS58164227A (en) Inspection of pattern defect
JPH1020472A (en) Production of phase shift mask and apparatus for production therefor
JPH0915134A (en) Method and equipment for inspecting particle
JPH05234870A (en) Method and apparatus for coating chemical liquid
JPH04103144A (en) Inspection of foreign substance
JPH10227617A (en) Mocroline width measuring method and apparatus